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Abstract.

Background: Over 20 single-nucleotide polymorphisms (SNPs) are associated with increased risk of Alzheimer’s disease
(AD). We categorized these loci into immunity, lipid metabolism, and endocytosis pathways, and associated the polygenic
risk scores (PRS) calculated, with AD biomarkers in mild cognitive impairment (MCI) subjects.

Objective: The aim of this study was to identify associations between pathway-specific PRS and AD biomarkers in patients
with MCI and healthy controls.

Methods: AD biomarkers (['®F]Florbetapir-PET SUVR, FDG-PET SUVR, hippocampal volume, CSF tau and amyloid-3
levels) and neurocognitive tests scores were obtained in 258 healthy controls and 451 MCI subjects from the ADNI dataset at
baseline and at 24-month follow up. Pathway-related (immunity, lipid metabolism, and endocytosis) and total polygenic risk
scores were calculated from 20 SNPs. Multiple linear regression analysis was used to test predictive value of the polygenic
risk scores over longitudinal biomarker and cognitive changes.

Results: Higher immune risk score was associated with worse cognitive measures and reduced glucose metabolism. Higher
lipid risk score was associated with increased amyloid deposition and cortical hypometabolism. Total, immune, and lipid
scores were associated with significant changes in cognitive measures, amyloid deposition, and brain metabolism.
Conclusion: Polygenic risk scores highlights the influence of specific genes on amyloid-dependent and independent pathways;
and these pathways could be differentially influenced by lipid and immune scores respectively.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia affecting individuals over 65 years
of age [1]; 50 million people have dementia world-
wide, and there are nearly 10 million new cases every
year [2]. With the aging population, the burden of AD
on healthcare systems and society is set to rise [3,
4]. The failure of clinical trials to improve cognitive
function and halt disease progression in AD, together
with the demonstration of a long preclinical phase of
the disease, highlights the need for early interven-
tion, and indeed challenges our understanding of the
disease.

Subjects with mild cognitive impairment (MCI) are
at increased risk of developing AD dementia with
50% of amyloid positive MCI subjects converting to
AD within 2 years [5, 6]. Thus, predicting which MCI
patients will actually progress is of utmost impor-
tance, which is now helped by biomarkers including
cerebrospinal fluid (CSF) levels of amyloid- (AB)
and tau, and neuroimaging modalities [7, 8].

Individual risk for AD is determined by genetic,
environmental, and demographic factors, as well as
interactions among them [9]. Unlike familial AD,
where genetic mutations in APP, PSENI, and PSEN2
are mostly fully penetrant and of autosomal dominant
inheritance, sporadic AD (sAD) also has signifi-
cant heritability [10]. Inheritance of the &4 allele of
the apolipoprotein E (APOE) is the most important
genetic risk factor for SAD, increasing risk 3-fold in
heterozygotes and 15-fold in homozygotes [11].

Recently, genome wide association studies
(GWAS) have been able to identify over 30 risk loci
associated with the development of sAD [12-18].
Although the effect of the single locus might be
small, a polygenic risk score (PRS) allows us to
evaluate the combined effects of gene variants.
To date, several studies have used this polygenic
approach to estimate the risk of AD progression and
to evaluate the association of AD genetic risk with
endophenotypes of the disease. Harrison et al. have
demonstrated the association between a total PRS
and hippocampal thinning in healthy individuals
[19]. Other studies have shown that an association
exists between PRS and CSF biomarkers and disease
progression [20], as well as between PRS and
plasma inflammatory biomarkers [21]. A PRS can
improve the diagnostic accuracy of APOE alone at
identifying AD cases [22], predict the age of AD
onset [23], and can generally improve risk prediction
in healthy older adults [24, 25]. Moreover, a PRS has

been demonstrated to predict cognitive decline and
neurodegeneration in subjects at risk of AD [26].
Recently, pathway-specific PRS have been associ-
ated with AD biomarkers, grouping risk loci together
according to their biological functions [27] and, in
some cases, finding that pathway-specific PRS might
hold higher predictive value over total PRS [28].

In this study we categorized 20 of the single
nucleotide polymorphisms (SNPs) susceptibility loci
into the three pathways of endocytosis, immunity,
and lipid metabolism to create a PRS for each of
them, and also a total PRS. We selected SNPs identi-
fied by the International Genomics of Alzheimer’s
Project (IGAP) [12, 14]. The immune pathway
contained nine loci (CRI, INPP5D, MEF2C, HLA-
DRB5/HLA-DRBI, EPHAI, CLU, MS4A6A, ABCA?7,
CD33), the endocytosis pathway contained six loci
(BINI, CD2AP, EPHAI, PICALM, SORLI, CD33),
and the lipid pathway contained three (CLU, SORLI,
ABCA?7), with five loci overall contributing to more
than one pathway. The total PRS comprised all the
above plus seven variants that, due to lack of strong
biological evidence, were not attributed to any of
the specific pathways (NMES, ZCWPWI, PTK2B,
CELFI1, FERMT2, SLC24A4/RIN3, CASS4). These
were compared against the main pathological sub-
strates of AD: amyloid deposition (CSF AP and
amyloid PET), tau aggregation (CSF phosphory-
lated tau), and neurodegeneration (CSF total tau,
fludeoxyglucose (FDG) PET and MRI volumes). The
aim was to identify possible associations between
pathway-specific PRS and AD biomarkers in patients
with MCI and healthy controls. To date, no previous
study has compared PRS to such an extensive range
of biomarkers [20, 24, 29].

METHODS

Data collection was downloaded from the Alz-
heimer’s Disease Neuroimaging initiative (ADNI)
from October 2017 to December 2017. ADNI is
an ongoing international longitudinal study aimed
at the identification of markers for the early detec-
tion and monitoring of AD such as proteomics, CSF
tau and amyloid, MRI, FDG and tau PET scans,
including baseline demographics of healthy con-
trols (HC), MCI, and AD subjects. According to
the ADNI guidelines, MCI is defined by a Mini-
Mental State Examination (MMSE) score of 24-30,
an education adjusted cut-off on the Logical Mem-
ory II subscale from the Wechsler Memory Scale
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clinical dementia rating scale (CDR) of 0.5, and
preserved daily functioning at home confirmed by
a study partner. For this study, we included FDG-
PET and amyloid ([]8F]Florbetapir) PET standard
uptake value ratio (SUVR), hippocampal volumes,
CSF total and phosphorylated tau, CSF Af3, neu-
rocognitive tests (ADAS COG-11 and 13, CDR-SB,
MMSE), APOE4 status, and level of education, which
were obtained from the ADNI dataset. We retrieved
baseline and 24-months follow up data for 258 HC
and 451 MCI subjects.

For Florbetapir scans, 370 MBq (10.0 mCi) & 10%
of tracer was injected, and scans were acquired in
4 x 5 min frames with acquisition time of 50-70 min
post-injection. For, FDG PET, 185MBq (5.0 mCi)
4 10% of tracer was injected and scans were acquired
for 30min (6 x Smin frames) with an acquisition
time of 30-60 min post-injection. For image process-
ing, either six 5-min frames (ADNI1) or four 5-min
frames (ADNI GO/2) are acquired 30 to 60 min post-
injection. Each extracted frame is co-registered to
the first extracted frame of the raw image file (frame
acquired at 30-35 min post-injection). Co-registered
image is generated simply by averaging different time
frames.

FDG-PET scans were analyzed using target to
pons ratio as detailed in the ADNI protocol which
provided SUVR for a set of pre-defined regions of
interest (MetaROIs) based on coordinates cited fre-
quently in other FDG studies comparing AD, MCI,
and normal subjects and including left and right
temporal lobe, left and right angular gyrus and the
posterior cingulate. SUVR for FDG uptake were cal-
culated using a pons/vermis reference region [30].
['8F]Florbetapir-PET scans provided SUVR values
for the frontal, parietal and temporal lobe, cingu-
late gyrus, the medial temporal lobe (MTL), for both
the left and right side and the total cortical amyloid
load, using the cerebellum as a reference region [31].
All regional values were derived from ADNI dataset.
Data for hippocampal volume were derived from
3D-MPRAGE MRI scans using a semi-automated
hippocampal volumetry tool.

Available genotype data for the ADNI cohort
(818 individuals genotyped on the Illumina Omni2.5
array) was downloaded from the ADNI website
and subjected to quality control. Individuals were
excluded if they had a call rate <98%, were out-
liers on principal components analysis based on a
pairwise identity by descent matrix, or were related
to another genotyped ADNI participant at the level
of first cousin or closer. Variants were excluded

if they departed from Hardy-Weinberg equilibrium
(p<10™). As not all susceptibility SNPs identified
through GWAS had been genotyped on the Illu-
mina Omni2.5 array, IMPUTE?2 was used to impute
genotypes for these variants, using 1,000 Genomes
haplotypes as a reference panel (Phase I integrated
variant set release (produced using SHAPEIT?2) in
NCBI build 37 coordinates). All missing variants
were successfully imputed with info scores >0.95.
Imputed dosage data was converted to hard-called
genotypes using GTOOL.

Immune, endocytotic, and lipid genome-wide sig-
nificant PRS (GWS-PRS) were calculated in PLINK,
based on 20 of the SNPs common variants identified
by the meta-analysis conducted by the IGAP [12, 14]
(see Supplementary Table 1 for the SNPs assigned
to each pathway-specific score). Moreover, a total
GWS-PRS was calculated. Weighted risk scores were
calculated per person as the sum of the product of the
number of risk alleles of the selected SNPs and the
natural log of the corresponding odds ratio reported
in the IGAP meta-analysis [12, 14]. To compare sub-
jects with high or low GWS-PRS, the 10th and 90th
percentile of each of the scores were calculated, with
an approach also used by others [26].

Statistical analysis was performed using SPSS 25.
Normality was evaluated with Kolmogorov-Smirnov
test on the whole population. The total, immune, and
endocytotic GWS-PRS were normally distributed,
while the lipid GWS-PRS did not follow a normal
distribution. Independent sample t test was used to
compare normally distributed variables at baseline
and paired sample t tests to determine significant
difference at follow up. When the sample variable
was non-linear, non-parametric Mann-Whitney U test
was used. Simple linear regression was performed for
normally distributed variables and Spearman’s rank
test was used to test correlation between the lipid
GWS-PRS and biomarkers. Multiple linear regres-
sion analysis was conducted on the delta variables of
biomarkers and cognitive measures testing the differ-
ent GWS-PRS as predictors, with or without APOE4
status, and adjusting for age and gender.

RESULTS

The baseline characteristics of the HC and MCI
groups are shown in Table 1. As expected, the MCI
group was significantly impaired in the neuropsy-
chometric tests evaluated, compared to the HC. The
number of APOE4 carriers was similar between HC
and MCI. Interestingly, the mean total and immune
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Table 1
Baseline characteristics of healthy controls and MCI subjects
HC MCI
N N
Male n (%) 131 (50.78) 258 271 (60.09) 451
Age mean (SD) (years) 74.71 (5.49) 258 72.52 (7.41)* 451
GWS SNP score mean (SD) 1.23 (0.16) 258 1.25 (0.16)* 451
Immune SNP score mean (SD) 0.42 (0.11) 258 0.44 (0.11)* 451
Endocytotic SNP score mean (SD) 0.55(0.11) 258 0.56 (0.10) 451
Lipid metabolism SNP score mean (SD) 0.36 (0.07) 258 0.37 (0.08) 451
CDR-SB mean (SD) 0.03 (0.14) 258 1.43 (0.86)* 451
ADASI11 mean (SD) 5.85(2.90) 258 9.57 (4.31)* 450
ADAS13 mean (SD) 9.16 (4.21) 258 15.34 (6.62)* 448
MMSE mean (SD) 29.07 (1.16) 258 27.92 (1.67)* 451
ApoE4 Non carrier n (%) 175 (67.8) 258 259 (57.4) 451
ApoeE4 Heterozygous n (%) 72 (27.9) 258 158 (35.0) 451
ApoeE4 Homozygous n (%) 11 (4.3) 258 34 (7.5) 451
Years of Education mean (SD) 16.43 (2.64) 258 16.01 (2.9) 451
Hx of Smoking n (%) 104 (40.30) 258 182 (40.4)* 451
Right handed n (%) 240 (93.0) 258 408 (90.5) 451

*Significant difference between HC and MClI at p < 0.05 Data displayed in the table is represented as mean (standard
deviation), or number (percentage). N, number of total available subjects for which data was available; HC, healthy

controls; MCI, mild cognitive impairment.

Table 2
Baseline biomarkers of healthy controls and MCI subjects
HC MCI

N N
[18F]Florbetapir Frontal lobe mean (SD) 1.30 (0.28) 141 1.39 (0.30)* 301
['8F]Florbetapir Parietal lobe mean (SD) 1.32 (0.28) 141 1.40 (0.30)* 301
['8F]Florbetapir Temporal lobe mean (SD) 1.23 (0.25) 141 1.30 (0.27)* 301
['F]Florbetapir Cingulate gyrus mean (SD) 1.42 (0.29) 141 1.50 (0.31)* 301
[18F]Florbetapir Left MTL mean (SD) 1.22 (0.27) 141 1.31 (0.28)* 301
[ISF]Florbetapir Right MTL mean (SD) 1.26 (0.25) 141 1.33 (0.29)* 301
CSF AB mean (SD) 211.61 (59.68) 16 178.07 (55.80) 27
CSF tau mean (SD) 78.3 (51.66) 16 93.47 (40.34) 27
CSF p-tau mean (SD) 33.95 (18.85) 16 45.87 (27.68) 27
L Hippocampal volume mean (SD) (mm?) 2315.20 (291.02) 19 1901.01 (361.07)* 19
R Hippocampal volume mean (SD) (mm?) 2253.31 (358.51) 19 1909.00 (440.25)* 19
FDG Left angular gyrus mean (SD) 1.32 (0.12) 190 1.26 (0.16)* 373
FDG Right angular gyrus mean (SD) 1.31(0.13) 190 1.26 (0.15)* 373
FDG Posterior cingulate gyrus mean (SD) 1.39 (0.14) 190 1.36 (0.17)* 373
FDG Left Temporal lobe mean (SD) 1.27 (0.13) 190 1.21 (0.14)* 373
FDG Right Temporal lobe mean (SD) 1.24 (0.12) 190 1.20 (0.12)* 373

*Significant difference between HC and MCl at p < 0.05 Data displayed in the table is represented as mean (standard
deviation), or number (percentage). N, number of total available subjects for which data was available; HC, healthy

controls; MCI, mild cognitive impairment.

GWS-PRS were higher in MCI compared to HC,
while the endocytotic and lipid metabolism PRS were
similar between the two groups. There was no differ-
ence between males and females in terms of any of
the GWS-PRSs scores, both in the group as a whole
and in HC and MCI separately.

When looking at the baseline biomarkers (Table 2),
the MCI showed significantly higher brain Af3
deposition compared to HC, as detected by [!8F]
Florbetapir-PET in all the predefined regions. Based
on the cut-off of 1.1 for ['®F]Florbetapir in compos-

ite cortical region [31], 48/139 HC and 159/297 MCI
were A positive. The CSF levels of A, tau, and p-
tau were not significantly different between the two
groups, although the CSF data were only available
for a small subgroup of subjects (16 HC and 27 MCI).
The biomarkers of neurodegeneration (hippocampal
volume and FDG uptake in all the predefined regions)
were significantly lower in MCI subjects compared
to HC, as expected. When stratifying the popula-
tion according to APOE4 and AP status, we found
that APOE4 +/AB+ subjects (n=121) had signifi-
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Fig. 1. Linear regression between genome-wide significant PRS and AD biomarkers. Direct association was shown between the immune
PRS and [lgF]Florbetapir uptake in frontal lobe (A) while significant inverse association was shown between the immune PRS and FDG
uptake in the left angular gyrus (B). The endocytotic PRS showed a significant direct association with CSF tau levels (C). The total PRS
showed significant inverse association with FDG uptake in the left angular gyrus (D).

cantly higher GWS-PRSs compared to APOE4-/AR-
(n=181) subjects.

To evaluate the relationship between the GWS-
PRSs and biomarkers at baseline, we run linear
regression between the immnune, endocytotic, lipid,
and total GWS-PRS and both CSF and imag-
ing biomarkers. As shown in Fig. 1, significant
inverse association was shown between the immune
GWS-PRS and FDG uptake in the left angular
gyrus (2=0.01, p=0.019), while direct associa-
tion were shown between the immune GWS-PRS
and ['8F]Florbetapir uptake in frontal, temporal,
parietal, mid-temporal lobes and cingulate gyrus
(correlation with frontal ['3F]Florbetapir uptake is
shown in Fig. 1, 2 =0.02, p=0.00). The total GWS-
PRS showed significant inverse association with
FDG uptake in the left angular gyrus (r%>=0.007,
p=0.049). The endocytotic GWS-PRS showed a
significant direct association with CSF tau levels
(12=0.13, p=0.01), while the lipid GWS-PRS did
not show any significant correlations with any of the
biomarkers.

To better clarify which biomarkers can be asso-
ciated with the pathway-specific GWS-PRS, we
compared the 10th and 90th percentile of each of
the four GWS-PRS (total, immune, endocytotic, and
lipid) to see how the low and high GWS-PRS groups
differ in terms of biomarkers. The mean GWS-PRS
values for 10th and 90th percentile and the number
of subjects included in the percentile groups of each
GWS-PRS are shown in Supplementary Table 2.

The 10th and 90th percentile groups of the
total GWS-PRS differed significantly in terms of
cognitive measures (CDR-SB, ADAS13, MMSE),
['8F]Florbetapir uptake and CSF tau levels (Supple-
mentary Table 3). The comparison between 10th and
90th percentile of the immune GWS-PRS indicated
that the two groups differed in terms of cognitive
measures (CDR-SB, ADAS11, ADAS13) and FDG
uptake in the left angular gyrus (Supplementary
Table 4). There were no significant differences in any
of the biomarkers when comparing the 10th and 90th
percentiles of the endocytotic GWS-PRS. The 10th
and 90th percentile groups of the lipid GWS-PRS dif-
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fered significantly in terms of ['®F]Florbetapir uptake
in all the predefined regions and FDG uptake in the
left temporal lobe (Supplementary Table 5).

The 10th and 90th percentile groups of total,
immune, and endocytotic GWS-PRS did not differ in
terms of prevalence of APOE4 carriers, while there
were significantly more APOE4 carriers in the 90th
percentile of lipid GWS-PRS compared to the 10th
percentile group (56.4% versus 43.6%, p=0.044).
Moreover, the 10th and 90th percentile groups of
total, lipid, and endocytotic GWS-PRS did not dif-
fer in terms of prevalence of MCI subjects compared
to control subjects. However, there were significantly
more MCI subjects in the 90th percentile immune
GWS-PRS group compared to the 10th percentile
group (60.4% versus 39.6%, p=0.001).

In the whole population, the parameters that sig-
nificantly changed from baseline to follow up were:
CDR-SB, ADAS11,ADAS13, MMSE, CSF A3, CSF
total tau, FDG uptake in all the predefined regions,
['8F]Florbetapir uptake in all the predefined regions,
left and right hippocampal volume (Supplementary
Table 6).

We calculated delta variables for each of the above
using the following formula: ((xf —xi)/xi)*100, where
xf is the follow up value and xi is the baseline value.

Then we compared the delta variables between
10th and 90th percentile for each of the polygenic
scores. The parameters showing significant differ-
ences are reported in Fig. 2.

Significant variations from baseline to follow up
were observed in ADAS11 and ADAS13 scores, as
well as in temporal FDG between 10th and 90th per-
centiles of total GWS-PRS.

A significant variation in MMSE scores and
in frontal ['8F]Florbetapir uptake was observed
between 10th and 90th percentiles of immune GWS-
PRS, while 10th and 90th percentiles of lipid
GWS-PRS showed significant longitudinal changes
in MMSE scores and FDG uptake in the left angular
gyrus.

Moreover, on a subset of 367 subjects, we retrieved
information on stability or clinical progression at 24
months. Overall, 33 subjects progressed (from HC to
MCI or from MCI to AD) and 334 remained stable.
When looking at baseline GWS-PRSs scores in stable
subjects versus progressing subjects, we did not find
significant differences in the scores.

Finally, we performed multiple regression analysis
for each of the delta variables, building two models
including each of the GWS-PRSs as a predictor, with
or without APOE4 carrier status. Significant associ-

ations were observed only for changes in CDR-SB
and FDG uptake in posterior cingulate and left tem-
poral lobe, as shown in Table 3. Interestingly, the
immune GWS-PRS was an independent predictor of
FDG longitudinal change in posterior cingulate and
left temporal lobe, even when APOE was not included
in the model. The immune GWS-PRS was not signifi-
cantly associated with changes in amyloid deposition,
CSF biomarkers or cognitive measures. The total
GWS-PRS was a significant predictor of CDR-SB
changes, while the lipid score was not independently
associated with any changes in the biomarkers. Over-
all, the variance explained by the models, with or
without APOE status, was between 1.9% and 3.3%.

DISCUSSION

In this study we have demonstrated the association
between GWS-PRS for critical molecular pathways
involved in AD pathogenesis (immunity, endocyto-
sis, and lipid metabolism) and biomarkers in a cohort
of subjects at risk of AD. The calculation of the
GWS-PRS has been performed based on the indi-
vidual genetic risk from the 20loci identified by
IGAP. Our data indicate that higher immune GWS-
PRS was associated with hypometabolism of the
angular gyrus and worse cognitive performance at
baseline and with increased longitudinal amyloid
deposition. Moreover, immune GWS-PRS was an
independent predictor of hypometabolism in the pos-
terior cingulate and left temporal lobe. A higher lipid
GWS-PRS was associated with increased cortical
amyloid uptake and left temporal hypometabolism
at baseline and with longitudinal reduction in FDG
uptake. The endocytotic GWS-PRS correlated with
baseline total CSF tau levels but not with longitudinal
changes in any of the biomarkers, neither with base-
line differences between high and low GWS-PRS.
The total GWS-PRS, which includes all the 20 SNP
scores, was associated with worse cognitive perfor-
mance and higher total CSF tau levels at baseline,
and with longitudinal changes in cognitive measures
and temporal hypometabolism. Moreover, the total
GWS-PRS was an independent predictor of CDR-SB
longitudinal changes. To our knowledge, this is the
first study aiming at evaluating all these biomarkers
profiles changes in the AD risk trajectory and their
association with gene variations grouped according
to their function. The results of this study indicate
which AD endophenotypes are more likely to be
affected by genes involved in immunity, endocytosis,
and lipid metabolism, shedding further light on the
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possible mechanisms underlying the 20 genes func-
tion. Indeed, as an endophenotype is influenced by
fewer genetic risk factors than the disease as a whole,
it can provide important information about the bio-
logical pathway through which a gene might act [32].

Other studies have evaluated PRS in AD progres-
sion, based on the hypothesis that an aggregated
genetic risk score could perform better than any
individual variant. Escott-Price et al. have recently
demonstrated that PRS analysis has a good pre-
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Table 3
Effects of genome-wide significant PRSs on longitudinal cognitive and biomarker changes

Model A (without APOE)

Model B (with APOE)

B 95% CI R2 B 95% CI R2
Regression coefficients for longitudinal CDR-SB variation
Immune PRS 112.56 -30.17, 255.29 101.70 —40.90, 244.29
Endocytotic PRS 78.28 -71.59, 228.15 62.59 —87.50, 212.68
Lipid PRS 182.96 -18.36, 384.28 167.47* -33.72, 368.65 0.024
Total PRS 119.34* 19.48,219.21 0.020 106.30* 5.72, 206.89 0.028
Regression coefficients for longitudinal variation
in FDG uptake in posterior cingulate
Immune PRS -5.26* -10.31,-0.22 0.020 —4.78% -9.81,0.25 0.033
Endocytotic PRS -1.19 -6.47, 4.09 -0.54 -5.81,4.74
Lipid PRS -0.82 -7.94,6.29 -0.12* 721, 6.98 0.025
Total PRS —3.28* -6.73,0.18 0.019 -2.76* —-6.23,0.70 0.022
Regression coefficients for longitudinal variation
in FDG uptake in left temporal lobe
Immune PRS -7.07* -12.8,-1.34 0.020 —-6.76* -12.50,-1.02 0.024
Endocytotic PRS -2.35 -8.35, 3.66 -1.92 -7.95,4.11
Lipid PRS —4.11 -12.20, 3.99 -3.65 -11.75, 4.46
Total PRS —4.06 -7.99,-0.13 -3.74 -7.70, 0.22

All models are additionally adjusted for age and gender. *p <0.05 and fp <0.01 for the model. Significant PRS predictors within the model

are in bold.

dictive value for AD in pathologically confirmed
case-control series [33] and PRS have been validated
in both Black and White populations [34]. PRS anal-
ysis has also suggested that sporadic late onset AD
and familial and early onset forms might share a
common genetic architecture and that in early onset
cohorts the PRS is associated with CSF p-tau/A3
ratio [35]. A PRS has been associated with longitu-
dinal hippocampal thinning in older adults [19], with
CSF A4 levels [20], and with plasma inflammatory
biomarkers [21]. It has been demonstrated that PRS is
associated with younger age of AD onset, worse cog-
nitive performance over time, and worse biomarker
profile [23] and, recently, with longitudinal cognitive
decline in preclinical AD and MCI [26]. However,
some authors, when considering a PRS based on nine
AD-related risk loci, were not able to show a pre-
dictive role in progression from MCI to AD in four
independent large cohorts [9]. Our study does not
only explore the relationship between PRS and AD
biomarkers but, by grouping the 20 risk loci accord-
ing to their biological role, provides further evidence
on the pathways underlying biomarkers changes in
the AD continuum (Fig. 3).

Our immune GWS-PRS takes into account the
cumulative genetic risk given by the known SNP in
the following genes implicated in immune function:
CRI1, INPP5D, MEF2C, HLA-DRB5/HLA-DRBI,
EPHAI, CLU, MS4A6A, ABCA7, and CD33 [36-41].
In our dataset, higher immune GWS-PRS was

associated with worse cognitive profile and brain
hypometabolism in the angular gyrus, as well as
with longitudinal cortical amyloid accumulation.
Moreover, it was a significant predictor of brain
hypometabolism. Overall, while our data confirm the
literature evidence of a strong relationship between
brain immune function and A3 accumulation, they
also indicate an association with biomarkers of
neurodegeneration and with cognitive status. In par-
ticular, while the association between mediators
of neuroinflammation and AP accumulation and
aggregation in early AD stages is well established
[42], recent preclinical evidence suggest that the
same mediators are also associated with markers
of neurodegeneration and with cognitive decline
[43-45].

The lipid GWS-PRS score in our study considers
the risk alleles of the following genes: CLU, SORLI,
and ABCA7 [46]. Our subjects with high lipid
GWS-PRS showed increased cortical AP levels at
baseline and longitudinal brain hypometabolism,
indicating that the influence of the three genetic risk
variants included in our score is mainly exerted onto
AP accumulation and brain metabolism. However,
we would also have to consider the higher prevalence
of APOE4 carriers in the 90th percentile group of
the lipid score. Moreover, probably because only
three variants were included in the lipid GWS-PRS,
its predictive value over longitudinal biomarker
changes was not significant.
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Fig. 3. Genes involved in the immune, lipid, and endocytotic pathways. Schematic representation of how the 20 genes grouped into the
polygenic risk scores of immunity, lipid metabolism, and endocytosis might affect the amyloid cascade, neurofibrillary tangles (NFT)
formation and neuroinflammation in AD (see text for details on genes function).

The endocytotic GWS-PRS is made of cumulative
risk from gene variants in: BINI, CD2AP, EPHAI,
PICALM, SORLI, and CD33 [32, 47, 48]. Probably
due to the cumulative effect of the different genes on
tau pathology, our endocytotic GWS-PRS showed a
significant direct correlation with baseline CSF tau
levels in this cohort, despite the small number of
subjects for whom CSF data was available.

Some of the known risk variants have
not been included in the pathway-specific
GWS-PRS but are part of the total GWS-
PRS we wused in our study. These include:
NMES, ZCWPWI, PTK2B, CELFI, FERMT2,
SLC24A4, and CASS4 [36, 38, 49-52]. The total
GWS-PRS, considering all the genes variants,
provides with information related to the cumulative
effects of the 20 genes. In our cohort, higher total
GWS-PRS was associated with worse cognitive
measures, increased ['®F]Florbetapir uptake and

higher CSF tau levels, as well as with longitudinal
cognitive decline and brain hypometabolism. All the
aspects of AD pathology are associated with total
GWS-PRS, as expected, as this score carries risk
from all genes, involved in multiple pathways and
overlapping functions.

Although a total GWS-PRS can help stratifying
patients according to their cumulative genetic risk,
our data suggest that for enrichment strategies in clin-
ical trials the use of specific GWS-PRS looking at
the different pathways (immunity, lipid metabolism,
endocytosis) might be more effective in selecting the
appropriate populations for specific treatment and
thus reducing the number of subjects needed to test
a specific outcome. Although the associations iden-
tified between our GWS-PRS and biomarkers were
small, accounting for 1.9%-3.3% of the variance
within the population, these effect sizes are consis-
tent with other biomarker studies assessing polygenic
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scores [53]. With an approach widely used by other
researchers in different fields [54, 55], we stratified
our cohort in percentiles of GWS-PRS and compared
the bottom (10th percentile) and top (90th percentile)
ends of the distribution of GWS-PRS in order to eval-
uate the differences between subjects in low or high
risk categories. Because PRS provide a measure of
relative risk for a condition, the percentile value for
the individual subject might be more meaningful [56].
Indeed, studies utilizing PRS for targeting specific
treatments have shown that for highly prevalent con-
ditions, precision can be better than one in two for the
top decile, and most patients will benefit from treat-
ment, so that over half of preventable events can be
avoided by targeting just the high-risk decile [57].

While some of the strengths of using the ADNI
database are the large sample size, the standardized
methodology and detailed biomarkers information,
one of the limitations of the present study is that
not all measures were available for all biomarkers
at the time of data access. In particular, while cogni-
tive data were available on the whole cohort, imaging
data were available on a varying subset of subjects
according to the modality. Moreover, a 2-year follow
up might be too short to look at significant changes
associated with genetic risk variants. Indeed, based
on available data, 9.5% of the subjects progressed
at 2 years and there was no difference in baseline
GWS-PRS between stable and progressing partici-
pants. However, a longer follow up, as reported by
Mormino et al. and others, might have outlined sig-
nificant longitudinal associations between PRSs and
clinical conversion [26, 53]. In addition to that, some
of the 20 genes have overlapping functions, thus the
results of one PRS are not independent from another
PRS. Moreover, replicating these results in larger
longitudinal cohorts and expanding the PRS calcu-
lation to include novel SNPs would allow for a better
understanding of the endophenotypes associated with
early changes in AD biomarkers in presymptomatic
subjects.

In conclusion, this study highlights that polygenic
risk scores can be a good indicator of AD-related
changes in biomarkers and cognitive function in a
population of HC and MCI subjects with varying
degrees of AD risk. In particular, specific risk scores
based on the function of genes are associated with
different endophenotypes that characterize the AD
continuum. This study highlights the influence of
different pathways (inflammation, endocytosis, and
lipid metabolism) on different pathological process in
AD. This is the first study highlighting that immune

pathway may influence neurodegeneration affecting
amyloid independent pathway, while lipid pathway
may be influencing AD through amyloid dependent
pathway. These findings underline the importance
of enrichment strategies for clinical trials evaluat-
ing specific biomarkers for specific treatment. This
also highlights the importance of evaluating different
pathways further to better understand how different
therapeutic strategies could be employed in subsets of
AD populations. This also implies that for an effec-
tive therapeutic strategy in AD, it may be essential
to target immunity, endocytosis, and lipid metabolic
pathways.
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