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Abstract. In longitudinal imaging studies, geodesic regression in the
space of diffeomorphisms [9] can be used to fit a generative model to
images over time. The parameters of the model, primarily its initial di-
rection or momentum, are important objects for study that contain bi-
ologically meaningful information about the dynamics occurring in the
underlying anatomy. Unfortunately, it is common for any given subject
to have a very limited number of longitudinal images available, the ac-
quisition of which is corrupted by noise and variability due to scanning
conditions. Furthermore, the underlying anatomy is subject to many en-
tangled biological processes, the effect of which on images is in many
cases poorly characterized. Hence, the approach must fit a model to few
data points with uncharacterized variability. Here, we propose supple-
menting the lack of longitudinal information for an individual patient
with information that can be extracted cross-sectionally from a popula-
tion of time series to improve the model fit for the individual. To that
effect, we propose a probabilistic model that leads to a well established
technique from classical statistics: James-Stein estimators. We show that
recent work on groupwise registration for improved geodesic estimation
is a sub-optimal special case of our proposed model. Finally, we validate
the model by showing geodesics refined by the James-Stein estimator
extrapolate more accurately on average than raw geodesic estimates.

1 Introduction

In the large deformation diffeomorphic metric mapping (LDDMM) framework
for nonlinear image registration [1], interpolation and extrapolation of longitu-
dinal image time series can be accomplished with geodesic regression [9]. In this
setting, a geodesic on a manifold of diffeomorphisms is estimated such that it
passes maximally close to transformations that optimally map the initial image
to all subsequent images in the time series. The geodesic is parameterized by
an initial transformation (here fixed at the identity for simplicity) and a single
vector field (tangent to the manifold at the identity), which specifies the direc-
tion of the geodesic. If one assumes this vector field is everywhere proportional



to the initial image gradient [8], then the geodesic is fully specified by a sin-
gle scalar-valued image, henceforth referred to as the momentum. The task of
geodesic regression can then be formulated as: given the time series of images
I1(x), ..., IN (x), find the momentum p(x) such that the geodesic parameterized

by p(x) passes through φ2(x), ..., φN (x) and
∑N
i=2 d(I1◦φi, Ii)2 is minimal; where

d(I, J) is some quantitative assessment of similarity between images I and J .

As in any learning task, our confidence in the ability of the geodesic model
to make accurate predictions at unobserved time points increases with the num-
ber of observations. Unfortunately however, due to the high cost of collecting
anatomical images, many longitudinal studies of brain structure collect images
at fewer than 5 time-points per individual, and often at relatively small time
intervals. The short time intervals are particularly problematic considering the
slow dynamics of many neurodegenerative diseases. Such a small number of ob-
servations, prone to noise, over a short time interval may be insufficient to fit
a geodesic that generalizes to unobserved time points with an acceptable level
of confidence. We address the challenge of improving geodesic model general-
ization for an individual time series by pooling information from multiple time
series cross-sectionally, and using it to regularize the individual geodesic models.
Such an approach may have practical implications on study design, wherein a
researcher may choose to acquire fewer images over a shorter time period from
more individuals, and yet achieve similar confidence in the accuracy of individ-
ual geodesics had they collected more images over a longer period of time from
fewer individuals.

We find a natural mathematical setting to implement this in the James-
Stein estimator. The James-Stein estimator is a classical statistical model that
improves upon the maximum-likelihood estimate for the mean of a Gaussian
random variable. That is, the James-Stein estimator is closer in Euclidean dis-
tance on average to the unobserved ground truth value of the mean than its
maximum-likelihood estimate. James-Stein estimators are commonly used for
massively parallel data sets where the same inference must be made for many
samples. Information is pooled across the samples and used to regularize the in-
ference of each individual sample. This model reflects the case in neuroimaging
where only short sparsely sampled time series are available but for many patients.
Using James-Stein estimates as opposed to maximum-likelihood estimates can
offer substantial improvements on model accuracy on average [3]. We utilize the
James-Stein estimator to leverage the information contained cross-sectionally in
a population of time series to improve the geodesic fit for each individual time
series.

A necessary first step for James-Stein estimators is to estimate a groupwise
representation of the samples. Several recent works have proposed methods for
constructing a groupwise representation of image time series data, any of which
is compatible with our proposal. In [2] the authors proposed a method to reg-
ister time series of images in both space and time simultaneously; a groupwise
representation of the time series, or spatiotemporal atlas, can then be found in
the common spatiotemporal coordinate system. In [10] the authors propose a



hierarchical geodesic model in which individual geodesics are estimated, then
used to construct a groupwise geodesic. Their proposed probabilistic model al-
lows an extension that is not fully explored in [10], which is to re-estimate the
individual geodesics after the groupwise representation has been constructed.
If the groupwise representation is used as a prior (which is suggested by the
probabilistic model), the new estimates are similar to the James-Stein estimates
for the individual trajectories. The James-Stein estimator shows how to do this
second inference optimally.

After a groupwise representation is obtained, James-Stein estimators shrink
individual estimates toward the groupwise representation. We show below that
this is in fact a maximum a posteriori (MAP) estimate, where the shape of the
prior distribution is inferred from the data itself. This can also be viewed as a
groupwise consistency constraint. Other recent works have proposed groupwise
consistency to cope with difficulty in estimation of individual models. In [12],
the authors propose a hierarchical Markov random field (hMRF) for segmen-
tation of structural MRI images into functional networks based on fMRI time
series. Individual segmentations are constrained to be smooth and consistent
with the fMRI data for that individual. They are also constrained to be similar
to a grouplevel representation of the network which is jointly estimated with
the individual networks. The authors show that this cross-sectional constraint
improves the recovery of networks in ficticious data and results in smoother
networks with more anatomical meaning in real data.

Similarly, in [4], pairs of longitudinal brain images from a population of
individuals diagnosed with Alzheimer’s disease (AD) were registered simulta-
neously. The optimal set of transformations was defined not only to map the
template images to their references, but also to satisfy a groupwise consistency
constraint. The authors showed that the resulting geodesics predicted a third
time point image not used in the learning step more accurately on average than
geodesics learned without the groupwise consistency constraint. We demonstrate
below that their approach is in fact a special case of James-Stein estimators. Es-
tablishing the connection with James-Stein estimators grounds that work in a
probabilistic model from classical statistics that provides better intuition for the
meaning of parameters and how to find their optimal values.

2 Methods

2.1 Derivation of the multivariate James-Stein estimator for momenta:
For simplicity, we consider time series with two images. Because the derivation of
James-Stein estimators will deal exclusively with momenta, the generalization to
time series of arbitrary length is trivial. Let Ii and Ji for i ∈ {1, ..., N} be initial
and follow up image acquisitions of the same anatomy for N patients. In order to
share information cross sectionally we must have a common coordinate system.
So we also assume we’re given transformations ψi such that Ii(ψi) ∼ Ij(ψj) for
all i and j. This can be accomplished by finding a study specific atlas, or minimal
deformation template (MDT), for the images Ii. All further formula are assumed



to be in the common coordinate system. (That is, all momenta have been moved
to the common coordinate system by co-adjoint transport, which for the scalar
field pi is Dψi · pi(ψi), where D is the Jacobian operator.)

Now, suppose pi specifies a geodesic beginning at identity and passing through
an optimal φi such that Ii(φi) ∼ Ji for all i. The true values of the pi are un-
known, but let βi be a noisy estimate of pi acquired via geodesic regression. Now,
suppose the following probabilistic model:

pi ∼ N (p∗, A), (1)

βi|pi ∼ N (pi, σ
2
0 · Id). (2)

Equation (1) indicates the unobservable pi are independent samples from a nor-
mal distribution with mean p∗ and covariance A. This distribution models the
variability in time series trajectory across individuals due to differing contribu-
tions of the underlying processes that affect the dynamics of aging and disease.
The mean momentum parameterizes a geodesic representing the average dynam-
ics over time for images in the population. (Hence, any one of the previously
discussed methods for construction of a groupwise representation of time series
[2, 10] can be taken as a definition for p∗.)

Equation (2) indicates the observable βi are independent samples from a
normal distribution with mean pi and covariance σ2

0 · Id, where Id is the matrix
identity of the appropriate size. This distribution models the variability of the
momentum measurement βi due to image noise and registration inaccuracies.
Hence, each βi is distributed about its (unobserved) ground truth value of pi
with isotropic variability, the extent of which is given by σ2

0 . This is consistent
with standard noise assumptions in much of the image registration literature.

These distributions have the form of a prior and likelihood, which enables us
to write the posterior distribution for the pi:

P (pi|βi) =
P (βi|pi)P (pi)∫
P (βi|pi)P (pi)dpi

= N (βi − σ2
0B(βi − p∗), σ2

0B), (3)

where B = (A+ σ2
0 · Id)−1. We see from (3) that the MAP estimate of pi is:

pmapi = βi − σ2
0B(βi − p∗). (4)

Equation (4) reveals what we gain by incorporating (1) as a prior to regularize
βi. We see that pmapi is equal to the measurement βi minus an adjustment:
σ2
0B(βi− p∗). The adjustment is a linear transformation of the difference vector
βi−p∗. If that transformation were the identity, this would simply move βi toward
p∗. However, the linear transformation is actually the covariance matrix of the
posterior distribution: σ2

0B. Hence, (4) begins with the idea of moving βi toward
p∗, but takes into account the shapes of the prior and likelihood distributions
and adjusts the direction in which we move the estimate accordingly. The net
affect is the rearrangment of the observations βi such that the scatter of the pmapi

is more consistent with the prior covariance structure A. Assuming the prior (1)



is correct, pmapi is guaranteed to be a better estimate of pi on average than the
original measurement βi [7, 3].

Unfortunately, we cannot use (4) directly, as σ2
0 , p∗ and A are unknown. How-

ever, with N independent parallel time series at our disposal, we can estimate
them directly from the data. First we observe the marginal distribution for βi:

P (βi) =

∫
P (βi|pi)P (pi)dpi = N (p∗, A+ σ2

0 · Id) (5)

The maximum likelihood estimate for the mean of a Gaussian random variable
is the sample mean. Hence, the maximum likelihood estimate for p∗ is simply:
p∗ ∼ β̂ = 1

N

∑N
i=1 βi. Next, we define the sample covariance matrix for the βi as:

S =
∑N
i=1(βi − β̂)(βi − β̂)T . Because βi is a random variable, so too is S; which

hence must have a corresponding distribution. In fact, the sample covariance
matrix of a multivariate normal random variable (such as βi) is distributed by
the Wishart distribution, a multivariate analog of the χ2 distribution. We now
observe:

E
{

(N − d− 1)σ2
0S

−1
}

= σ2
0B (6)

where d is the dimensionality of βi and the expectation is taken with respect
to the Wishart distribution. From (6) then, we see that (N − d − 1)σ2

0S
−1 is

the maximum likelihood estimate for σ2
0B. Combining this with β̂ (the maxi-

mum likelihood estimate for p∗) and equation (4) we arrive at the James-Stein
estimator for image time series momenta:

pjsi = βi − (N − d− 1)σ2
0S

−1(βi − β̂). (7)

The final ingredient is to estimate σ2
0 . Recall, in this model σ2

0 does not model
any biological variability, which is entirely captured by the prior covariance A
in (1). σ2

0 is the noise in the βi estimates exclusively due to image noise and
registration inaccuracy. Hence, any method for estimating the variability due to
noise and registration inaccuracy can be used to estimate σ2

0 .
We note here that if we let d be the number of image voxels (the naive

dimensionality of βi), it is almost certain for image analysis applications that
d >> N , which is generally prohibited if equation (8) is to be useful. Further-
more if d >> N , S is certain to be singular and therefore the estimation of
S−1 becomes problematic. This is the crux issue to be dealt with if one wants
to use pjsi for the proposed application. Below, we make the simplest (and least
informative) assumption to contend with this issue and then discuss alternatives
that might improve the framework.

2.2 Connection to groupwise registration with similarity constraint:
To incorporate cross sectional information into the registration of a population
of N time series, recent works [4] proposed an objective function of the form:

αP[φ1, ..., φN ] +

N∑
i=1

D[Ji, Ii[φi]] + γS[φi] = min (8)



Here, the typical image similarity term D and smoothing prior S are summed
over the N pairs of images. The objective is augmented by a new term P that is
a function of the full set of N transformations, or in the diffeomorphic case, of
the estimated transformation momenta in MDT coordinates βi. Specifically, for
P those works proposed:

P[β1, ..., βN ] =

N∑
i=1

‖βi − β̂‖2 (9)

which is the sum of squared difference of the N momenta from their sample
average. The Euler-Lagrange equations for this term are: ∇βiP[β1, ..., βN ] =

2α(βi − β̂) such that at every iteration the estimate for βi is updated according
to:

βt+1
i = βti − 2α(βi − β̂)−∇βiD −∇βiS (10)

The first two terms in equation (10) are very similar to equation (4). In
fact, if B in (4) were proportional to the identity matrix then the first two
terms in (10) would be identical to (4): a shrinkage of the estimate βi directly

toward β̂ proportional to some scalar value. B is proportional to the identity
if and only if A in (1) is proportional to the identity. This reveals two things:
the simultaneous registration with groupwise consistency is equivalent to using
pjsi with an isotropic prior distribution instead of βi at every iteration, and
that the parameter α in (10) is a function of A and σ2

0 . The perspective of
James-Stein estimators thus enables us to generalize the groupwise consistency
to anisotropic prior structures and provides an interpretation of the groupwise
consistency parameter α.

3 Experiments and Results

3.1 Images: We downloaded screening, 1 year follow up, and 2 year follow
up 1.5 Tesla T1-weighted images for 57 participants in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). All 57 participants had been diagnosed with
Alzheimer’s Disease (AD) prior to the acquisition of their screening image. The
population consisted of 32 males mean age 75.91 +/- 7.85 years and 25 females
mean age 75.08 +/- 8.15 years. This was the maximum number of individuals
we could download from the ADNI 1 cohort that were in the AD group and
had screening, year 1, and year 2 follow up images available. All images were
corrected for geometric distortion and bias in the static field with GradWarp
and N3 before downloading as part of the ADNI preprocessing protocol. Subse-
quent to downloading, the images were linearly registered to the ICBM template
and skull stripped using ROBEX [6]. Transformations ψi mapping the template
images Ii into a MDT coordinate system were computed using a preexisting
implementation of [13]. We then registered the screening (Ii) to the follow up
images (Ji) to acquire the βi using our own implementation of the geodesic



shooting algorithm proposed in [11].

3.2 Experimental design: The multivariate James-Stein estimator, equation
(7), presents some computational challenges for image data. The full image res-
olution for most image data sets (a total of d voxels) is very large. Hence S and
S−1 may be computationally intractable to compute or store. The easiest way to
avoid this problem is to assume A and thus S and S−1 are proportional to the
identity. In that case, the coefficient in front of the second term in (7) reduces
to a scalar value:

pjsi = βi − α(βi − β̂) (11)

The scalar α can then be estimated empirically using cross-validation, which is
what we’ve done for our first tier validation experiments. This assumption is
permitted in the context of James-Stein estimators, and more accurate assump-
tions about the prior structure can only improve results. More elegant solutions
that would allow for anisotropic prior densities are explored in the discussion.

3.3 Results: Using the empirically determined value α = 0.098, we computed
pjsi according to equation (11). We then compared the ability of the βi and the

pjsi to predict the year 2 follow up images (Ki) by extrapolating their geodesics
forward to the year 2 time point and composing the initial image Ii with the
resulting transformations. This produced two predictions for each Ki, which we
label Kβ

i and Kjs
i respectively. We calculated the square Euclidean distances

d(Ki,K
β
i )2 and d(Ki,K

js
i )2 between the ground truth year 2 images and those

predictions. In Figure 1 we present
d(Ki,K

js
i )2

d(Ki,K
β
i )

2
for all 57 patients.

Figure 1 shows that by measure of sum of squared differences, the pjsi make
better predictions of the third time point image for nearly all patients by about
5% on average. In the best case, an improvement of 20% is achieved. We also sub-
jected the differences d(Ki,K

β
i )2−d(Ki,K

js
i )2 to a pairwise one sided Student’s

t-test to evaluate the likelihood of achieving these improvements by chance. The
p-value of 0.0002 suggests that these results are significant, and that the im-
provements are due to the use of the James-Stein estimates.

We also inspected the predicted images Kβ
i and Kjs

i for any qualitative dif-

ferences. While the majority of gains due to pjsi are spread thinly throughout
the whole image, some improvements clearly correspond to an anatomical inter-
pretation. Figure 2 shows one such case, where β overestimates the expansion of
the posterior horn of the left ventricle. The top row is the time series of images
I, J , and K from left to right. The bottom row are the predictions corresponding

to β and pjs. The heat map shows |K−µ
σ − Kjs−µjs

σjs | − |K−µ
σ − Kβ−µβ

σβ
|. That is,

it is the difference of the absolute values of the difference images, normalized to
their own intensity distributions. This reveals, in cool colors, the locations where
pjs provided a better estimate of K. The boxed areas show β overestimates the
expansion of the ventricle more severely than pjs.



Student T test results for
d(Ki,K

β
i )2 − d(Ki,K

js
i )2

µ 187.23

σ 341.84

T 4.135

p .0002

Fig. 1. Square euclidean distance between ground truth year 2 images and predictions
made with pjsi for α = 0.098. For each i the distance is normalized by the distance
between the ground truth year 2 image and the prediction made with the unrefined
βi. This reveals (by the distance under the red line) the percent improvement earned
by using pjsi instead of βi. The pairwise one sided student’s T test shows the improved
predictions are due to the use of pjsi .

Fig. 2. A time series of images from one patient is shown in the top row. The predictions
for the year 2 image derived from β and pjs are in the bottom row. The heat map shows
in cool colors areas where the pjs improved the prediction over β. For this patient, pjs

reduced an over estimation of ventrical expansion.



4 Discussion

Consistent with expectations, the results indicate the James-Stein estimates pjsi
provide geodesics that extrapolate more accurately on average. Hence, our choice
of an isotropic prior covariance (that is, A = a · Id for some scalar a) to cope
with the high dimensionality of the βi is sufficient to gain some improvement
in trajectory estimates. A more accurate prior model can only provide more
information to improve results.

The simplest relaxation is to let A be diagonal but not necessarily propor-
tional to the identity. In that case, we only have to estimate d variables, an
independent variance at every voxel. Different parts of the brain are more or less
likely to change over time depending on age and pathology, hence this is more
biologically plausible than A = a · Id. More plausible still is to allow A to be non
diagonal, but assume that it is sparse. The spatial dependence between voxels
is likely to fall off after some appropriate distance, hence many entries in A are
likely to be zero or near zero. In that case, many recent methods for learning
with sparsity constraints may be brought to bear.

Possibly the most elegant solution would be to use a low dimensional pa-
rameterization for the βi. One option would be to use a subset of the principal
components. First one would have to determine an optimal number of compo-
nents that retains the fine scale variability inherent to longitudinal deformations
while reducing the dimension to an acceptable level. A second possibility is to
use a band limited Fourier basis. It was recently shown that geodesics for cross-
sectional image registration can be parameterized with as few as eight Fourier
coefficients per spatial dimension without compromising registration accuracy
[14].

Above, we used the estimate p∗ ∼ β̂ = 1
N

∑N
i=1 βi, which is the maximum

likelihood estimate of p∗ under the marginal distribution for βi. However, for
many groupwise representations of time series, p∗ is a function of time. Hence,
the βi would need to be normalized in time (as well as in space) before averag-
ing. Similarly when computing pjsi , which involves a term (βi−p∗), p∗ should be
normalized in the time domain to βi. Propagating p∗ along a geodesic is a simple
matter of parallel transport, however finding the appropriate correspondence in
time between subjects is not trivial. The naive solution is to use nominal time,
however aging and pathological effects may not have constant velocity in time.
Also, the age of onset of pathological affects is not known for most patients.
Hence, a method that infers temporal correspondence directly from the data
independent of the acquisition times of the images such as those in [5, 2] would
be needed.

5 Conclusion

We have presented the derivation of multivariate James-Stein estimators in the
context of image time series regression. We have established a previously pub-



lished method as a sub-optimal special case of the current model. Further, we
have demonstrated that the use of James-Stein estimators can improve the ex-
trapolation of individual geodesics in a population of time series, even with the
most naive prior structure. We conclude that for the purpose of interpolation
and extrapolation of individual time series within a population, the James-Stein
estimate of the geodesic is a more accurate representation of the underlying
biological dynamics than the raw measurement.
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