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Abstract. Here we present an algorithm for the simultaneous regis-
tration of N longitudinal image pairs such that information acquired
by each pair is used to constrain the registration of each other pair.
More specifically, in the geodesic shooting setting for Large Deforma-
tion Diffeomorphic Metric Mappings (LDDMM) an average of the initial
momenta characterizing the N transformations is maintained through-
out and updates to individual momenta are constrained to be similar to
this average. In this way, the N registrations are coupled and explore the
space of diffeomorphisms as a group, the variance of which is constrained
to be small. Our approach is motivated by the observation that trans-
formations learned from images in the same diagnostic category share
characteristics. The group-wise consistency prior serves to strengthen the
contribution of the common signal among the N image pairs to the trans-
formation for a specific pair, relative to features particular to that pair.
We tested the algorithm on 57 longitudinal image pairs of Alzheimer’s
Disease patients from the Alzheimer’s Disease Neuroimaging Initiative
and evaluated the ability of the algorithm to produce momenta that bet-
ter represent the long term biological processes occurring in the underly-
ing anatomy. We found that for many image pairs, momenta learned with
the group-wise prior better predict a third time point image unobserved
in the registration.

1 Introduction

Nonlinear image registration in brain imaging has progressed to an advanced
stage with powerful mathematical tools for sensitive and precise measurements
with important theoretical properties. The LDDMM framework establishes a
setting wherein constructions like the Fréchet mean and geodesic regression in
a space of diffeomorphisms are well defined [7,16]. For some lines of work, the
availability of such statistical constructs has promoted a more probabilistic view
of transformations. Real image data is noisy, and transformations estimated from
it are susceptible to over fitting to this noise. For example, given three images
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of the same anatomy acquired over time, it is not likely that a geodesic can
be drawn in the transformation space that passes through the identity and the
optimal transformations for both of the follow up images. (For example, see Fig. 4
in [5].) Hence, an initial momentum characterizing the geodesic between the
identity and the optimal transformation for the first or second follow up image
does not describe the optimal geodesic that would be obtained from geodesic
regression of all three images.

In this paper we attempt to estimate initial momenta from only two images
with improved ability to predict future unobserved images, by simultaneously
registering many image pairs that share information throughout optimization.
Our approach can be viewed in two equivalent ways: we maintain a group level
representation of a transformation and constrain individual transformations to
be similar to this representation, which is equivalent to compressing the vari-
ance of the set of transformations about their mean. Both of these techniques
have precedent in the literature. For example in [13], to estimate functional
networks from resting state fMRI data, the authors construct a hierarchical
Markov Random Field (hMRF) where the highest level of the hierarchy is a
group-wise representation of the network estimate. Edges connecting this level
to the individual levels represent a group-wise consistency constraint. Shrinkage
of the transformations about their mean is also reminiscent of a James-Stein
estimator [4], where we have chosen the average momentum as the prior esti-
mate of the true geodesic regression slope. From this perspective, our method
can be viewed as an empirical Bayes prior.

This work uses cross-sectional information in a longitudinal study, which also
has precedent in the literature. Other works have used statistical information to
constrain registration, but more often in the form of a prior learned from a train-
ing set as suggested in [8] and implemented in [2]. These authors constrained
the strain tensor of an elastic transformation to be similar to an average strain
learned from training data. More recently, the authors of [5] use the transforma-
tions of normal controls to refine transformations of AD patients for effects due
to the disease. Perhaps most similar to our proposal is [9], in which a group level
trajectory is jointly estimated with individual trajectories. The group level tra-
jectory is considered a latent generator for the individual trajectories, but unlike
the proposed work, deviation from the group level is not explicitly penalized.
In all cases, the incorporation of group level information resulted in transforma-
tions with features not found without the group level information, and in many
cases, these features were shown to be desirable.

2 Methods

Background, the LDDMM Framework: We begin with a brief review of the
LDDMM framework for nonlinear image registration [1]. Given I0, I1 ∈ L2(Ω,R),
the LDDMM energy functional is defined as:

E(v, I0, I1) =
∫ 1

0

‖v‖V dt + ‖I0 ◦ φ−1
1 − I1‖L2 (1)
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where v ∈ L2([0, 1], V ) is a time dependent velocity field drawn from the repro-
ducing kernel Hilbert space (RKHS) V . The RKHS is specified by the choice of
kernel K, and the inner product in V is then given by 〈K−1u, u〉L2 for any u ∈ V .
The transformation φ(t, x) is given by the flow of the velocity v(t, x) through the
ODE: (d/dt)φ(t, x) = v(t, φ(t, x)), with initial condition φ(0, x) = x. v(t, x) and
φ(t, x) will be written as vt(x) and φt(x). The minimizer of (1) is considered the
optimal φ for the registration of I0 and I1.

The second term on the right hand side of (1) is a quantitative assessment
of the similarity between the images I0 ◦ φ−1

1 and I1, whereas the first term
is the geodesic energy of the flow of vt(x). For suitable choices of K, φt(x) is
always a diffeomorphism [10]; hence, (1) defines φ1 to be the transformation that
best matches I0 and I1 such that φt is a geodesic in a space of diffeomorphisms
specified by the choice of K. As φt is a geodesic when E(v, I0, I1) is optimal,
E(v, I0, I1) defines a metric distance d(Id, φ1)2 in the space of diffeomorphisms.
This can also be considered a metric d(I0, I1)2 on the orbit given by the group
action of the space of diffeomorphisms on the template image I0.

Background, Geodesic Shooting Algorithm: Several approaches to opti-
mizing (1) have been proposed. In this paper we use the geodesic shooting
approach [6,12], which we now review. The kernel K can also be considered
a mapping between V ∗, the space of linear functionals on V , and V itself. Note
that V ∗ is also a Hilbert space. An Element of V ∗ is called a momentum. Hence
for any momentum m ∈ V ∗ there is some v ∈ V such that Km = v and
K−1v = m.

An optimal solution to (1) specifies a geodesic, which is uniquely determined
by its initial velocity v0(x), or equivalently, its initial momentum m0(x). mt for
all t, and hence vt and φt, can then be determined by solving the co-adjoint
equation [6]: (∂/∂t)mt = −ad∗

V mt = −(Dv)Tmt − Dmtv − div(v)mt, where D
denotes the Jacobian operator and div(.) the divergence operator. If the initial
momentum is assumed to be proportional to the template image gradient, that
is m0(x) = p0(x)∇I0(x) for some scalar field p0, the adjoint equation can be
separated into a disjoint system of differential equations for I0,t and pt respec-
tively [12], where I0,t = I0◦φ−1

t . Considering these equations and the gradient of
(1) with respect to vt, we arrive at a system of partial differential equations that
completely specifies φt given initial conditions I0 and p0 (� denotes convolution):

⎧⎪⎨
⎪⎩

(∂/∂t)p + ∇ · (pv) = 0
(∂/∂t)I + ∇I · v = 0
(∂/∂t)v + K � ∇Ip = 0

(2)

With this in mind, (1) is replaced with a functional of the initial momentum
exclusively:

E(p0, I0, I1) = 〈p0∇I0,K � p0∇I0〉L2 + ‖I0,1 − I1‖2L2
(3)

and optimization proceeds within V ∗ only. In order to optimize (3) by gradient
descent, we need the gradient of (3) with respect to p0, subject to the geodesic
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shooting constraints (2). This naturally gives way to an optimal control prob-
lem. Time dependent Lagrange multipliers p̂t, Î0,t, and v̂t enable us to write an
augmented functional for (3) incorporating the constraints (2):

Ẽ(p0, I0, I1) = E +
∫ 1

0

〈p̂t, (∂/∂t)p + ∇ · (pv)〉dt +
∫ 1

0

〈Î0,t, (∂/∂t)I + ∇I · v〉dt +
∫ 1

0

〈v̂t, (∂/∂t)v + K � ∇Ip〉dt

(4)

The first variation of (4) gives the gradient of (3) subject to (2):

∇p0E = ∇I0 · K � p0∇I0 − p̂0 (5)

where p̂0 is specified by a system of partial differential equations solved backward
in time termed the adjoint system:

⎧⎪⎨
⎪⎩

(∂/∂t)p̂ + ∇p̂ · v − ∇I · K � v̂ = 0
(∂/∂t)Î + ∇ · (Iv) + ∇ · pK � v̂ = 0
(∂/∂t)v̂ + Î∇I − p∇p̂ = 0

(6)

with initial conditions Î1 = I1−I0,1 and p̂1 = 0. The gradient descent proceeds by
solving the system (2) forward in time to acquire pt, I0,1, and vt for a sufficiently
dense sampling of t ∈ [0, 1], then solving (6) backward in time to acquire p̂0. p0
is then updated with (5), and the process is repeated until convergence.

Group-wise Similarity Prior: We consider the case where we are given N lon-
gitudinal image pairs Ii0, I

i
1 ∈ L2(Ω,R), i ∈ [1, 2, ..., N ], all taken approximately

the same time interval apart. We take Ω to be the unit cube with periodic bound-
ary conditions, and the time interval to be [0, 1]. Additionally, we are given N
transformations ψi mapping the initial images Ii0 to a Minimal Deformation
Template (MDT) coordinate system, that is, Ik0 ◦ ψk ∼ Ij0 ◦ ψj for all k and j.
To consider all N registrations simultaneously with no modification to the geo-
desic shooting approach, we could write Ẽtot =

∑N
i=1 Ẽi where Ẽi is eq. (3) for

the ith image pair. The first variation of Ẽtot with respect to an initial momen-
tum pi0 will only include terms for the ith pair, that is, the N transformations
are decoupled. However, we would like the N transformations to explore the
space of diffeomorphisms as a group. We couple them by considering equations
of the form:

Ẽtot = αG(p1, p2, ..., pN ) +
N∑
i=1

Ẽi (7)

G(.) is intended to enforce some criteria that we may think all pi0 must satisfy.
In this paper, we consider longitudinal studies where all N image pairs come
from patients in the same diagnostic group, where a predictable distribution of
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volume change is known to occur. Because V ∗ is a Hilbert space, we can calcu-
late statistical moments in this space in an ordinary manner, being careful to
spatially normalize the pi0 to a MDT coordinate system using coadjoint trans-
port [15]. First, let pmdt,i

0 = |Dψi|pi0 ◦ ψi, be the ith initial momentum in the
MDT coordinate system. Let pmdt,avg

0 = (1/N)
∑N

i=1 pmdt,i
0 be the sample aver-

age initial momentum in MDT coordinates. Let pmdt,cen,i
0 = pmdt,i

0 − pmdt,avg
0

be the mean centered initial momentum for image pair i in MDT coordinates,
and let A = [pmdt,cen,1

0 , pmdt,cen,2
0 , ..., pmdt,cen,N

0 ]T be the mean centered design
matrix for all initial momenta in MDT coordinates. We take G(.) to be:

G(p1, p2, ..., pN ) = Trace(AAT ) =
N∑
i=1

‖pmdt,i
0 − pmdt,avg

0 ‖2L2
(8)

the trace of the sample inner-product matrix for p0.
First we consider the rightmost form of (8). We see that this term maintains

a group-wise average of the initial momentum, and requires that all momenta
be close to this average. This is similar to hierarchical latent variable models
that maintain a group-wise representation of the data and constrain updates to
predictions to be similar to this representation.

Now consider the middle form of (8). The covariance matrix ATA has the
same eigenvalues as the inner-product matrix AAT . Covariance matrices are
symmetric positive-definite, and therefore have all real non-negative eigenval-
ues. Finally, the trace of a matrix is invariant to rotation. So, considering the
canonical form of ATA, we see that Trace(AAT ) =

∑N
i=1 λi where λi is the

ith eigenvalue of the sample covariance matrix. Each λi is a measurement of
the magnitude of the corresponding principal axis of the covariance. Hence, by
minimizing

∑N
i=1 λi, we are compressing the covariance about the mean.

To minimize (8) we need to consider the contribution of G(.) to the gradi-
ent (5). In our implementation, pmdt,avg

0 is considered to be constant during any
given iteration (see section on gradient descent strategy). Hence, the gradient
of G(p1, p2, ..., pN ) with respect to pk0 for some k in MDT coordinates is simply
found to be:

∇pk
0
G(p1, p2, ..., pN ) = 2α(pmdt,k

0 − pmdt,avg
0 ) (9)

to put this back into individual coordinates, we compose with the appropriate
inverse transformation:

∇pk
0
G(p1, p2, ..., pN ) = 2α|D(ψk)−1|(pmdt,k

0 − pmdt,avg
0 ) ◦ (ψk)−1 (10)

and so the complete gradient of (7) with respect to an initial momentum pk0 in
the coordinate system for the kth template image is the sum of Eqs. (5) and (10).
The result is that for every update of pk0 it is pulled in such a way as to map Ik0
to Ik1 by (5), but it is also held close to the group representation of p0 by (10).

Gradient Descent Algorithms for Optimization of (7): We now consider
optimizing (7) with respect to each pi0 one at a time. Multiple strategies are
available for the order in which we update the pi0. The most rigorous update
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would be to use the maximum amount of information possible at each update.
That is, for the (l + 1)st update of the kth momentum, pavg0 in (10) equals
(1/n)

∑k−1
i=1 pi,l+1

0 ◦ψi +(1/n)
∑N

i=k pi,l0 ◦ψi. This approach requires the N regis-
trations to be done in series for every iteration and is exceedingly costly in both
time and memory.

An alternative is use (1/n)
∑N

i=1 pi,l0 ◦ ψi for pavg0 for all N at the (l + 1)st
iteration. This way, for a given iteration, the N pi,l0 can be updated in parallel.
Subsequently, each pair shares its updated value pi,l+1

0 to compute pavg,l+1
0 =

(1/n)
∑N

i=1 pi,l+1
0 ◦ψi to be used in the (l+2)nd iteration. We used this strategy

to compute the results presented in the next section.

3 Results

Experimental Setup: We downloaded screening, 1 year follow up, and 2 year
follow up 1.5 Tesla T1-weighted images for 57 participants in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). All 57 participants had been diagnosed
with Alzheimer’s Disease (AD) prior to the acquisition of their screening image.
The population consisted of 32 males mean age 75.91±7.85 years and 25 females
mean age 75.08 ± 8.15 years. This was the maximum number of individuals we
could download from the ADNI 1 cohort that were in the AD group and had
screening, year 1, and year 2 follow up images available. All images were cor-
rected for geometric distortion and bias in the static field with GradWarp and N3
before downloading as part of the ADNI preprocessing protocol. Subsequent to
downloading, the images were linearly registered to the ICBM template and skull
stripped using ROBEX [3]. Transformations ψi mapping the template images Ii0
into a MDT coordinate system were computed using a preexisting implementa-
tion of [14].

We used a multi-resolution approach for 50, 30, 20, and 5 iterations at 643,
803, 963, and 1283 resolutions respectively to register the screening images to
the year 1 follow up images. We used the second strategy described in the above
section to optimize (7) with respect to the initial momenta for the 57 pairs. To
test the influence of the group-wise term G(.), we ran the algorithm over a range
of values for α including 0.0 (control), 0.01, 0.025, 0.05, 0.075, 0.1, and 0.5. After
completion, we computed and compared the average and variance of the initial
momenta for each value of α. We then solved the system (2) over the interval
[0, 2], which in this case represents 2 years, and compared the computed image
I0,2 to the year 2 follow up images for all values of α.

Mean and Variance Images: Coronal slices for the final mean and variance of
the initial momenta are shown in Fig. 1 for all values of α. As α increases, both
the mean and variance become smaller in magnitude, however the variance falls
off at a much faster pace. The primary features of the mean image, including the
change in the ventricles and temporal lobes, remain the strongest with increasing
α, while individual features fade away with increasing group-wise influence.
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Fig. 1. Mean and variance images for different values of α. Top: Mean images, Bottom:
Variance images, Columns correspond to α values from left to right: 0.0, 0.01, 0.025,
0.05, 0.075, 0.1, and 0.5.

The Sum of Squared Difference During Registration: The initial sum of
squared difference (SSD) between the screening and year 1 image was retained
and used to normalize the SSD at every iteration. This normalized SSD was
summed over all 57 image pairs. The results for all values of α are shown in
Fig. 2. Clearly, as α increases the total normalized SSD increases for every iter-
ation, which is expected considering the forms of Eqs. (7) and (10). As alpha
increases, exact matching to the target is compromised for more coherence with
the group-wise representation. The spikes occur where the resolution changes in
the multi-scale registration approach.

Prediction of Year 2 Images from Initial Momenta: The momenta learned
for all values of α were integrated from [0, 2], representing a 2 year period, and the
screening images were transformed with the resulting diffeomorphisms. These
images were quantitatively compared to actual year 2 follow up acquisitions.
The SSD between the year 2 prediction and actual year 2 image, normalized
by its value for α = 0.0, is presented in Fig. 3. A value less than one indicates
the prediction at a particular α level is closer by SSD than the prediction for
α = 0.0. Clearly, for many images the prediction improves with increasing α.
These images are those for which the true, unobserved, initial momenta lies
closer to the group-wise mean. For some images, the prediction becomes worse
with increasing α. These images are those for which the true, unobserved, initial
momenta does not lie closer to the group-wise mean. An immediate extension of
this work to address this issue is to modify (8) to allow for multiple subgroup-
wise representations and/or to accommodate outliers.

We performed a one-sided student’s t-test to determine if the SSD for pre-
dictions with α not equal to zero were significantly different from those with α
equal to zero. All values of α except α = 0.5 have significantly different SSD
values (at a standard significance level of p = 0.05) for their predictions. The
relevant values are presented in Table 1.

Prediction of Year 2 Images from Average Momenta: The average mome-
ntum for all α in MDT coordinates was transformed into individual coordinates
for the ith image pair using coadjoint transport through (ψi)−1. The resulting
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Fig. 2. Normalized SSD throughout optimization for all values of α. The Spikes occur
when the resolution changes.

average momenta in individual coordinates were integrated over [0, 2], represent-
ing a 2 year period. The screening images were transformed with the resulting
diffeomorphisms and the resulting images were compared to the actual year 2
acquisitions. The results are presented in Fig. 4.

We performed a one-sided student’s t-test to determine if the SSD for pre-
dictions from the average momenta with α not equal to zero were significantly
different from those with α equal to zero. All values of α have significantly differ-
ent SSD values (at a standard significance level of p = 0.05) for their predictions.
The relevant values are presented in Table 2.

Table 1. t-test results comparing all α not equal to zero with α = 0 for SSD between
year 2 prediction and acquired year 2 image. μ is the average difference between SSD
values for α = 0 and α �= 0, σ is the standard deviation, T is the t-statistic, and p is
the p-value. Recall, there were 57 image pairs. Significant results are bold.

α 0.001 0.005 0.01 0.025 0.05 0.075 0.1 0.5

μ 13.70 70.21 120.51 222.10 287.75 306.79 324.23 157.03

σ 52.25 143.67 278.01 586.49 953.82 1177.70 1335.04 2066.4

T 1.98 3.70 3.27 2.86 2.28 1.97 1.83 0.57

p .026 .00025 .00092 .003 .013 0.027 0.036 0.29



754 G.M. Fleishman et al.

Fig. 3. SSD between year 2 images predicted by integration of initial momenta and
actual year 2 image acquisitions for all 57 image pairs and all ln(α) values. The red
stars represent the mean.

Fig. 4. SSD between year 2 images predicted by integration of average momenta and
actual year 2 image acquisitions for all 57 image pairs and all ln(α) values. The red
stars represent the mean.
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4 Discussion

The first feature of the above presented methods and results to discuss is the
obvious compromise between exact image pair matching and group-wise con-
sistency represented by the parameter α. Figure 2 demonstrates the sensitivity
of the exact image matching to this parameter. It’s interesting to note that
the solution trajectory over iterations is very similar in shape for all values of
α, though we get less exact matching as α increases as expected. Figure 3 and
Table 1 demonstrate the potential advantage to group-wise consistency in learn-
ing momenta that more accurately reflect the unobserved long term change.
Figure 3 and Table 1 both suggest that there are some values of α that strike a
potentially desirable compromise between exact image matching and improved
prediction of long term change.

Of course, for some images, the momenta learned with coupling are worse
predictors of long term change. As mentioned previously, one avenue to address
this is to allow multiple sub-group representations and assign each image pair to
the sub-group representation that best approximates it. One interesting question
that arises is what is the optimal number of sub-groups for a given population?
Additionally, what differences will the sub-group representations encode in them
after convergence? Alternatively, the mean is sensitive to outliers, and we could
consider replacing the group representation with a different statistic more robust
to such variation.

The proposed work has made no effort to normalize temporal misalignment
in disease progression across patients. The experimental results suggest that
AD disease progression is sufficiently similar at different stages of the disease
for group level information to be applicable to individual trajectory estimation.
However, this may not be the case for other populations such as the Mild Cogni-
tively Impaired (MCI) or other Neurodegenerative disorders with less well char-
acterized structural changes. Hence, explicit modeling of temporal misalignment
in age and disease progression as done in [9] may improve results.

It is important to mention that momenta learned with this technique should
not be naively used for statistical tests. We have explicitly minimized the trace
covariance of these momenta, so any voxel-wise statistics computed from them

Table 2. t-test results comparing all α not equal to zero with α = 0 for SSD between
year 2 prediction from average momenta and acquired year 2 image. μ is the average
difference between SSD values for α = 0 and α! = 0, σ is the standard deviation, T is
the t-statistic, p is the p-value. Recall, there were 57 image pairs. Significant results
are bold.

α 0.001 0.005 0.01 0.025 0.05 0.075 0.1 0.5

μ 10.91 46.26 81.55 148.97 203.29 230.76 246.85 259.22

σ 9.04 37.91 67.28 127.07 179.47 207.67 224.56 249.41

T 9.11 9.21 9.15 8.85 8.55 8.39 8.30 7.85

p 2.22e-12 1.53e-12 1.92e-12 5.89e-12 1.82e-11 3.34e-11 4.69e-11 2.59e-10
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are biased [11]. This issue can be compensated for by determining the null
distribution for a particular statistic and establishing significance relative to
this learned distribution. However, non-statistical inference applications such as
momenta or change map atlas construction and shooting of individual templates
via the learned momenta are not affected by this problem.

5 Conclusions

We have presented a mathematical framework for coupling the registration of
N image pairs in the geodesic shooting approach for the optimization of the
LDDMM energy functional. Individual registrations are coupled by maintaining
a group-wise representation of their initial momenta and constraining updates to
stay close to this representation. This is an explicit minimization of the variance
of the initial momenta in the Lie algebra for the space of diffeomorphisms spec-
ified by the choice of metric K. This establishes a trade-off between exact image
matching for individual image pairs and group-wise consistency. We’ve shown
that increasing group-wise consistency can improve the prediction of long term
change encoded within individual momenta. Finally, we have described some of
the strengths and weaknesses of our initial choice for the coupling term G(.) and
suggested methods to address those weaknesses.

References
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