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ABSTRACT

Patients with Alzheimer’s disease and other brain disorders often show a similar spatial 
distribution of volume change throughout the brain over time,1, 2 but this information is not 
yet used in registration algorithms to refine the quantification of change. Here, we develop 
a mathematical basis to incorporate that prior information into a longitudinal structural 
neuroimaging study. We modify the canonical minimization problem for non-linear 
registration to include a term that couples a collection of registrations together to enforce 
group similarity. More specifically, throughout the computation we maintain a group-level 
representation of the transformations and constrain updates to individual transformations to 
be similar to this representation. The derivations necessary to produce the Euler-Lagrange 
equations for the coupling term are presented and a gradient descent algorithm based on 
the formulation was implemented. We demonstrate using 57 longitudinal image pairs from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) that longitudinal registration with 
such a groupwise coupling prior is more robust to noise in estimating change, suggesting 
such change maps may have several important applications.

Keywords: Nonlinear registration, groupwise registration, longitudinal registration, Bayesian
registration, Tensor Based Morphometry, ADNI

1. INTRODUCTION

In longitudinal neuroimaging studies, non-linear image registration is often used to quantify
the spatial distribution of volume change experienced by the brain over time.3 In such a
setting, we are given two images of the same brain acquired at different times and we wish
to compute a mapping between them that reveals where tissue has contracted or expanded.
To make this notion mathematically precise, take R(x), T (x) ∈ L2(Ω,R) to be finite scalar
valued images over the domain Ω ⊂ Rd; further suppose R(x) and T (x) are images of the
same brain acquired at different times. The problem of non-linear image registration is then
typically formulated as follows: find a transformation φ : Ω → Ω on the coordinate system
x such that∗:

D[R, T (φ)] + βS[φ] = min (1)

∗We will often suppress the positional dependence of transformations and images to make the
notation more compact
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Figure 1. Demonstration of groupwise coupling for improved model estimation in the presence of
noise

Here, D : L2(Ω, R)×L2(Ω, R) → R is an appropriate image similarity function that measures 
how well matched two images are, and hence assesses the likelihood that the transformation φ 
is a suitable one. Although there are some specific biological situations where the assumption 
may be violated (e.g., neoplastic growth), for our current application we assume that 
transformations that reflect actual biological change are bijective and smooth, so the
function S : φ → R is a regularizer/smoother on an appropriate set of transformations φ.
Finally β is a scalar that regulates the relative importance between image matching and
the smoothness of φ as regulated by S. Given an approximate solution to (1), the spatial
distribution of tissue change can be estimated from the Jacobian determinant of the trans-
formation, or (less commonly) other metrics derived from the local deformation or strain
tensor. This method is often termed tensor-based morphometry (TBM).4

In a longitudinal study with n individuals, we are given a collection of such image pairs:
R0, T0, ..., Rn−1, Tn−1 and we wish to find transformations φ0, ..., φn−1 such that:

n−1∑
i=0

D[Ri, Ti[φi]] + βS[φi] = min (2)

Each term in this sum can be minimized independently and the task is simply a concate-
nation of n separate registrations presenting no new challenges. However, consider the
addition of a term P : φn → R to measure some aspect of the collection of transformations
φ0, ..., φn−1 as a whole, producing the objective:

αP[φ0, ..., φn−1] +
n−1∑
i=0

D[Ri, Ti[φi]] + βS[φi] = min (3)

for some scalar α. The construction of each φi is no longer independent of the others, and
the individual registrations must share information to acheive a minimum.

Suppose the imagesR0, ..., Rn−1 were acquired before the same event or process occurred
in the n different subjects and images T0, ..., Tn−1 were acquired after. It is reasonable
to expect the transformations φ0, ..., φn−1 to share some characteristics. Performing the
registrations independently does not take advantage of knowledge that can be learned by
observing similarity amongst the group. We incorporate P in this work to account for our
prior knowledge that the images have undergone transformations generated from the same
or similar processes.
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To further motivate the use of such a prior, consider the example presented in Figure 1.
In Figure 1A, the two red dots represent the unobserved ground truth values of two points in
a 2 dimensional independent/dependent variable system. If we assume the model is linear,
the optimal linear regression between the two points is the red line passing through both
points. The blue dots correspond to noisy measurements of these variables. We attempt to
estimate the parameters of the model from the noisy measurements and find the blue line,
which clearly differs from the unobserved ground truth. For values of t (the independent
variable) close to the observations, the difference dy1 between the ground truth model and
the estimated model may be small. However, for values of t further from the observations,
the difference dy2 will grow substantially. Unfortunately, this is often the situation in
longitudinal neuroimaging: we wish to predict the trajectory of a brain’s growth and shape
change from only two noisy observations acquired temporally close together. In clinical trial
design, or to assess treatment effects in an individual, there is often a desire to begin to
estimate brain changes at the soonest possible follow-up interval, when changes are harder
to estimate.

Figure 1B demonstrates the use of a groupwise similarity prior. Again, the red dots
represent the unobserved ground truth values of two points in a linear system, and the dotted
red line represents the optimal linear prediction. We make five separate noisy observations of
the system (the blue dots), and wish to interpolate between each of the five pairs separately
(the dotted blue lines). If we take the average of these models (the green dots and line), and
shrink each model toward it, in this case, all the estimated models will approach the ground
truth model. Predictions made from these improved individual models will be closer to the
ground truth values at distant time points than predictions made from the original estimates.
Here, the average estimated model (in green) serves as the groupwise representation, and we
couple the estimation of the individual models by enforcing they be similar to their average.

Other works have incorporated cross-sectional or group level information into individual
computations to improve sensitivity and group level consistency. In Pennec et al.,5 the
authors suggest computing statistics of the Hencky strain tensor of the transformation from
a training data set of multiple registration pairs. In a second round of registrations, the
strain tensor is constrained by the previously computed statistics. Our method differs in
that the group level information is determined from the data itself during registration in
an empirical Bayes fashion, eliminating the need for a training set and multiple rounds of
registration.

A groupwise similarity prior was also used more recently in Liu et al.6 for the 
determination of resting state networks in fMRI analysis. In this work, the authors propose 
using a hierarchical Markov Random Field (hMRF) to cluster voxels into functional networks 
in fMRI analysis. The upper level of the hierarchy is an average representation of the resting 
state network across the population. Edges connecting this upper level to the individual 
fields represent a constraint that individual networks should be similar to the group level 
representation. Similar to our work, the group level representation and individual networks 
are simultaneously estimated in an iterative fashion. However, their work is formulated in 
a discrete setting and for a different data modality.
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2. METHODS

2.1 Mathematical Formulation

Here, we propose P in (3) be a measurement of the disagreement among the patterns
of tissue change determined by the transformations φ0, ..., φn−1. If we want to compare
volumetric change maps, we have to do it in a common coordinate system. So along with
the images Ri and Ti, we assume we’re given transformations ψi such that Tj(ψj) ∼ Tk(ψk)
for all j, k ∈ [0, 1, ..., n−1]. This is achieved by computing a Minimal Deformation Template
(MDT) for the initial time point images Ti prior to longitudinal registration using established
techniques.

First, let Jmdtφi
(x) = Jφi

(ψi(x)) be the Jacobian matrix of transformation φi at position

x in the common coordinate system, and let log( det[Jmdtφi
(x)] ) be its log determinant. We

take the sample mean of these to be µ(x) = (1/n)
∑n−1
i=0 log( det[Jmdtφi

(x)] ), and use it to cen-

ter the log Jacobian determinants: log( det[Jmdtφi
(x)] )cen = log( det[Jmdtφi

(x)] )−µ(x) Next,

let X be a uniform grid sampling of the domain Ω ⊂ Rd and ai = log( det[Jmdtφi
(X)] )cen be

a column vector of the mean centered log Jacobian determinant in the common coordinate
system evaluated at all spatial positions in X. Finally, we define the mean centered design
matrix of the log Jacobian determinant in the common coordinate system to be:

A = [a0, a1, ..., an−1]T (4)

and choose for P in (3):
P[φ0, ..., φn−1] = Trace(AAT ) (5)

Note that (1/n)ATA is the sample covariance matrix7 for the log( det[Jmdtφi
(X)] )cen.

Sample covariance matrices are symmetric positive semi-definite, and thus have a canonical
representation ATA = V ΛV T for unitary/rotation matrix V and diagonal matrix Λ.7 The
columns of V are the eigenvectors, or principal axes, of the covariance and the elements of Λ
are the corresponding eigenvalues, λi. Because ATA is symmetric positive semi-definite, the
λi are real and non-negative. Each λi is a measure of the magnitude of the corresponding
principal axis. Finally, the inner-product matrix AAT has the same non-zero eigenvalues as
ATA.7

The trace of a matrix is invariant to rotation, hence Trace(AAT ) = Trace(Λ) =
∑n−1
i=0 λi.

From this point of view, we see that minimizing (5) minimizes the magnitude of the prin-
cipal axes of the covariance. That is, (5) is a scalar measure of the spread of the ai, and
minimizing it compresses the log Jacobian determinant images about their mean. We also
have Trace(AAT ) =

∑n−1
i=0 ‖ log( det[Jmdtφi

(X)] )cen − µ(X)‖2. From this point of view, we
can say that throughout the computation of the φi, we maintain a group representation of
the volumetric change in the brain, µ(X), and constrain individual volumetric change maps
to be similar to it.

To simplify notation, we return to the continuous setting and omit positional dependence
of transformations and images. To optimize (3) using (5), we make use of the gradient:

∇φk
P1 = −∇ · [(log( det[Jmdtφk

] )− µ)J−1
φk

] (6)

in a gradient descent strategy detailed below. The derivation of (6) from (5) is presented in 
the appendix. This gradient is proportional to the distance between the log Jacobian 
determinant for the transformation we wish to update and the mean log Jacobian 
determinant
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across the data set. Hence, when this distance is large, this term more forcefully pushes the
transformation in the direction of the average log Jacobian determinant image. Note also
that this gradient is in the MDT coordinate system and must be composed with ψ−1

k before
it can be used to update φk.

2.2 Algorithm Formulation

Denote the Euler-Lagrange equations corresponding to P, D, and S as p, d, and s respectively. 
Optimization of (3) with respect to the φi is done iteratively by gradient descent. One 
approach to this optimization is to solve:

s[φl+1
k ] =

1

β
d[φlk] +

α

β
p[φl+1

0 , ..., φl+1
k−1, φ

l
k, φ

l
k+1, ..., φ

l
n−1] (7)

for φl+1
k . Here, d and p apply forces to the template image: d in a direction that registers

the template to the reference image and p such that the log Jacobian determinant of the
transformation is pushed toward its average. α and β control the compromise between these
two forces, representing individual matching accuracy and group level consistency. Finally,
s regularizes or smooths this force field.

In (7), the φi are updated one at a time, taking advantage of the maximum amount of
information available at all times. This approach is exceedingly time consuming. A more
tractable approach is to solve:

s[φl+1
k ] =

1

β
d[φlk] +

α

β
p[φl0, ..., φ

l
k−1, φ

l
k, φ

l
k+1, ..., φ

l
n−1] (8)

in parallel for all n image pairs holding the average µ fixed, then update µ using all of the
φl+1
i for use in the next iteration. We used this method in our experiments.

Finally, for S we use the elastic potential energy, the EL equations for which are the
Navier-Lame equations for linear elasticity:

s[φ] = µ∇2u+ (λ+ µ)∇(∇ · u) (9)

for lame constants λ and µ, which control the relative contributions of the Laplacian and
gradient of divergence terms. u is the displacement vector component of φ(x) = x+ u(x).

For D we used the cross correlation (CC). Let µ(I) be the intensity average for image I.
Then v1 =

∫
Ω

[T (φ) − µ(T )]2dx is the intensity variance of T, v2 =
∫

Ω
[R − µ(R)]2dx is the

intensity variance of R, and v1,2 =
∫

Ω
[R− µ(R)][T (φ)− µ(T )]dx is the intensity covariance

of images R and T, assuming Ω is the unit cube. The CC is then:

D[R, T (φ)] =
v2

1,2

v1v2
(10)

This formula ranges from 0 to 1 and equals 1 if the statistically normalized images are
perfectly aligned, hence we attempt to maximize rather than minimize it. The EL equations
of the CC are:8

d[R, T (φ)] =
2(Rv1v2v1,2 − T (φ)v2

1,2v2)

(v1v2)2
∇T (φ) (11)
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2.3 Experimental Formulation

We downloaded screening and 1 year follow up 1.5 Tesla T1-weighted images for 57 
participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). All 57 participants 
had been diagnosed with Alzheimer’s Disease (AD) prior to the acquisition of their screening 
image. The population consisted of 32 men of mean age 75.91 +/- 7.85 years and 25 women, 
with mean age 75.08 +/- 8.15 years. This was the maximum number of individuals we could 
download from the ADNI 1 cohort who were in the AD group and had screening, year 1, 
and year 2 follow up images available. All images were corrected for geometric distortion 
and bias in the static field with GradWarp and N3 before downloading as part of the ADNI 
preprocessing protocol.9 Subsequent to downloading, the images were linearly registered 
to the ICBM template and skull stripped using ROBEX.10 Transformations ψi mapping 
the template images Ti into a MDT coordinate system were computed using a preexisting 
implementation of the registration method in Yanovsky et al.11

A second set of images was created by adding isotropic Gaussian noise to every voxel
within the skull stripped mask of the initial 57 image pairs. The average standard deviation
in intensity of the original images was 0.164. We used 0.082 for the standard deviation of
the Gaussian noise, which made for an artificial SNR of 4 for the noisy image set. Both the
initial and noisy image sets were registered for 100 iterations using (8) with β = 1 and α ∈
{0, 25, 50, 75, 100, 150, 200}. If Jα is the Jacobian determinant map for the transformation
of a given image pair from the initial no noise added images at a given value of α, then let
Jnzα be the corresponding Jacobian determinant map for the images with noise added. We
computed:

SSD =

∫
Ω

(Jα − Jnzα )2dx (12)

for all image pairs and values of α. We hypothesized that as α increased, the SSD would
decrease. That is, as the 57 image pairs shared more information during registration, their
sensitivity to noise in the estimation of change would decrease.

3. RESULTS

The total cross-correlation (CC) throughout optimization summed over all 57 image pairs
for all tested values of α are presented in Figure 2. Figure 2A shows the values for the initial
image set, and figure 2B shows the values for the noisy image set. The algorithm succeeds
in improving the CC for all values of α. As α increases the final CC value decreases. This is
entirely consistent with expectations as we have compromised exact matching for groupwise
consistency. The final CC values are lower for the noisy image set, indicating that exact
matching is harder in the presence of this substantial noise.

A coronal cross-section of the mean and variance of the Jacobian determinant images in
MDT coordinates for all values of α are shown in Figure 3. Figure 3A shows the statistics for
the initial image set, and Figure 3B shows the statistics for the noisy image set. The mean
images are in the top rows of A and B, and the variance images are in the bottom rows. α
increases from left to right, the first column corresponding to α = 0 and subsequent columns
to α equaling 25, 50, 75, 100, 150, and 200 respectively. The left colorbars correspond to
the mean images, the right colorbars correspond to the variance images.

Proc. of SPIE Vol. 9413  94130X-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/26/2015 Terms of Use: http://spiedl.org/terms



A
56.2

No additional noise

56.1 -

56.0

C

° 55.9

55.8

ú

55.7

55.6

5
20 40 60

Iteration

a=0
a=25
a=50
a = 75

a=100
a=150
a=200

100

B
54.0

C

Artificial SNR of 4

53.5 -

53.0

a 52.5

ó 52.0

ú

51.5

51.0 -

5
20 40 60

Iteration

- a=0
- a=25
- a=50- a=75
- a=100
- a=150- a = 200

100

A

11.012

1 01n

1.008

1.006

1.004

1.002

1.000

0.998

Nn aAAifinnal nni_¢c

10.996

B
1.012

1.010

1.008

1.006

1.004

1.002

1.000

0.998

0.996

Artificial SNR of 4

11

10.0009

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

0.00048

0.00042

0.00036

0.00030

0.00024

0.00018

0.00012

0.00006

0.00000

Figure 2. Total Cross Correlation for all 57 image pairs throughout optimization. A: the initial
image set, B: with additional Gaussian noise. Note the different scales for A and B.

Figure 3. Statistics of Jacobian determinant maps. Columns from left to right correspond to α
equals 0, 25, 50, 75, 100, 150, and 200 respectively. The top row of both A and B are the mean
images and the bottom row of both A and B are the variance images. The left colorbars are for the
mean images, the right colorbars are for the variance images.

The algorithm successfully minimizes the variance of the Jacobian determinant maps
at every voxel as α increases. We also see that the variance at many voxels increases
somewhat under noisy conditions relative to the original data set, as perfect matching is
more challenging in the presence of noise. The averages are consistent across α values,
however have slightly more defined regions and smaller magnitude as α increases.
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Figure 4. SSD between Jacobian maps learned under noisy and initial conditions for all α values

Figure 4. Each blue dot corresponds to one image pair registered at the corresponding α
value. Most voxels in a Jacobian determinant image are very close to 1.0, so small differences
such as 0.05 often correspond to clinically relevant differences in volumetric change in brain
tissue (a 5 percent tissue loss would also be important to detect). There is a visibly clear
reduction in this SSD as α increases.

To test if the reduction in SSD values with increasing α was due to chance, a one-sided
Student’s t-test was performed between the α = 0 data and the data sets for all other
α values respectively. The results are presented in Table 1. The improvement in Jacobian
determinant map estimation in the presence of noise was statistically significant for all values
of α with p-values less than 1e-8.

α 25 50 75 100 150 200

µ 0.27 0.48 0.69 0.86 1.12 1.38

σ 0.32 0.55 0.77 0.95 1.23 1.43

T 6.36 6.65 6.78 6.80 6.83 6.90

p 2e-8 6.5e-9 4e-9 3.7e-9 3.3e-9 2.5e-9
Table 1. t-test results for the improvement in estimation of Jacobian determinant maps under noisy
conditions; significant results are bold.

Finally, the results of calculating (12) for all image pairs at all α levels are shown in
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4. DISCUSSION

First we address the reduction in final cross-correlation value with increasing α. This is
expected, as we compromise the exact matching of the template to the reference image in
favor of some level of groupwise consistency among the log Jacobian determinant maps.
In our model, this is the appropriate thing to do, as an exact matching between template
and reference images would have registered not only the anatomy, but whatever noise was
corrupting it as well. We hypothesized that most of the CC lost due to the groupwise
consistency term was overfitting to the noise in the images. Figure 4 and Table 1 suggest
this hypothesis was reasonable and warrant its further exploration.

Considering the results in Figure 4 and Table 1, we interpret the change in the mean
Jacobian determinant images with α, presented in Figure 3, as an enrichment for change
caused by actual biological processes present in most of the 57 image pairs. The slight
reduction in magnitude may be due to the loss of components of the transformation that
were solely due to noise. Also, the boundaries of anatomy are somewhat more clear in the
mean images corresponding to increased α, so those images may be a better measure of
biological change.

It is very important to mention that Jacobian determinant maps estimated using this
method should only be used for voxel-based analysis studies with extreme care. Equation (5)
intentionally minimizes the variance in the log Jacobian determinant values at every voxel,
and statistics dependent on that variance are biased.12 It is still possible to use Jacobian
determinant maps learned in this way, if one empirically determines the null distribution
of the variance values, and uses it to correct any statistics for the bias. However, the most
obvious applications for registration via this method lie elsewhere.

The most immediate extension of the work is to put the registration framework into the
diffeomorphic setting.13,14 In that case, for each image pair we truly estimate a geodesic on a
manifold of diffeomorphisms (specified by the choice of metric) that ideally passes trough the
identity and a transformation that perfectly matches the template to the reference image.
In that case, our example presented in figure 1 is even more applicable, as we are estimating
the “slope” of the geodesic, given by the initial momentum. In that case, predictions for
future unobserved time points can be made by shooting the geodesic given by the estimated
momentum further in time. For predictions far in time from the initial data, the accuracy
of the momentum estimation is very important, as shown in Figure 1. This method may
make such predictions more accurate and clinically useful, and ease the inference of clinically
relevant information from data collected sooner or closer together in time.

Finally, there is a close connection between the proposed method and empirical Bayes
(EB) methods.15 In EB methods, we know the form of a prior distribution over our model
parameters, but we do not know the parameters for the prior itself. Those parameters
are instead estimated from the data, and the estimated prior is then used to constrain the
fitting of individual models. In such methods, the prior estimation is independent of the
model fitting. In our case, we have assumed there is a prior distribution for log Jacobian
determinant maps (or momenta in the diffeomorphic setting) for the images we are working
with. We would like to constrain the estimation of our Jacobian determinant maps with this
prior, but we do not have an explicit representation of it. In lieu of having a given prior, we
use the average log Jacobian determinant map, and constrain the estimation of individual
log Jacobian maps to be similar to it. Future work will explore the connection between the
proposed method and the EB framework.
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5. CONCLUSIONS

We demonstrated a mathematical framework to couple the registration of N longitudinal
image pairs. We hypothesized that by sharing information, the estimation of Jacobian
determinant maps would be less prone to over fitting due to noise. We conducted an
experiment, the results of which support that hypothesis and suggest further investigation
into groupwise methods and priors for longitudinal registration.
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7. APPENDIX

Derivation of equation (6): We take the first variation of (5) w.r.t. the kth transforma-
tion φk:

∂

∂ε

∣∣∣∣
ε=0

P[φ0, ..., φk + εh, ..., φn−1] =
∂

∂ε

∣∣∣∣
ε=0

Trace(AAT ) =

∂

∂ε

∣∣∣∣
ε=0

n−1∑
i=0

∫
Ω

[log(det(Jmdtφi
))− 1

n

n−1∑
j=0

log(det(Jmdtφj
))︸ ︷︷ ︸

µ

]2

︸ ︷︷ ︸
C

dx

∂

∂ε

∣∣∣∣
ε=0

n−1∑
i=0

∫
Ω

[C]2dx =

n−1∑
i=0

∫
Ω

2C
∂

∂ε

∣∣∣∣
ε=0

Cdx (13)

∂

∂ε

∣∣∣∣
ε=0

C =
∂

∂ε

∣∣∣∣
ε=0

[log(det(Jmdtφi
))− µ] =

∂

∂ε

∣∣∣∣
ε=0

log(det(Jmdtφi
)) +

∂

∂ε

∣∣∣∣
ε=0

µ (14)

∂

∂ε

∣∣∣∣
ε=0

µ =
∂

∂ε

∣∣∣∣
ε=0

1

n

n−1∑
j=0

log(det(Jmdtφj
)) = (15)

1

n

1

det(Jmdtφk
)

det(Jmdtφk
) Trace[Jmdt

φ−1
k

Jh] =
1

n
Trace[Jmdt

φ−1
k

Jh] (16)
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If i = k, then:

∂

∂ε

∣∣∣∣
ε=0

log(det(Jmdtφi
)) = Trace[Jmdt

φ−1
k

Jh] (17)

If i 6= k, then:

∂

∂ε

∣∣∣∣
ε=0

log(det(Jmdtφi
)) = 0

Substituting (16) and (17) back into (14) and in turn substituting the result into (13),
we get:
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∂ε

∣∣∣∣
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Trace(AAT ) =
−1

n

n−1∑
i=0,i¬k

∫
Ω

2C Trace[Jmdt
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∫
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φ−1
k

Jh]dx
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n
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i=0

∫
Ω

2C Trace[Jmdt
φ−1
k

Jh]dx+

∫
Ω

2Ck Trace[Jmdt
φ−1
k

Jh]dx

Here, we require the multidimensional integration by parts formula:

∫
Ω

∇u · v dΩ =

∫
Γ

u(v · n) dΓ−
∫

Ω

u∇ · v dΩ (18)

where Γ is the boundary of Ω and n is the outward normal. In this case,

∇u = Jh =⇒ u = h

v =
−1

n

n−1∑
i=0

2CJmdt
φ−1
k

+ 2CJmdt
φ−1
k

we enforce the transformation to be zero on Γ, making the first term on the right hand side
of (18) equal to zero. Given that u = h, the Euler-Lagrange equations we seek are −∇ · v:

−∇ · v = −∇ ·
[
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]
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]
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