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Abstract

This article introduces a new approach in brain connectomics aimed at characterizing the temporal spread in the
brain of pathologies like Alzheimer’s disease (AD). The main instrument is the development of ‘‘directed pro-
gression networks’’ (DPNets), wherein one constructs directed edges between nodes based on (weakly) inferred
directions of the temporal spreading of the pathology. This stands in contrast to many previously studied brain
networks where edges represent correlations, physical connections, or functional progressions. In addition, this is
one of a few studies showing the value of using directed networks in the study of AD. This article focuses on the
construction of DPNets for AD using longitudinal cortical thickness measurements from magnetic resonance im-
aging data. The network properties are then characterized, providing new insights into AD progression, as well as
novel markers for differentiating normal cognition (NC) and AD at the group level. It also demonstrates the im-
portant role of nodal variations for network classification (i.e., the significance of standard deviations, not just
mean values of nodal properties). Finally, the DPNets are utilized to classify subjects based on their global net-
work measures using a variety of data-mining methodologies. In contrast to most brain networks, these DPNets
do not show high clustering and small-world properties.
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Introduction

The analysis of brain networks derived in vivo from
medical imaging technology, often called connectomics

(Sporns, 2010; Sporns et al., 2005), has led to new under-
standings and approaches to the study of the brain and
many neurological disorders. In addition to elucidating the
global connectivity of the brain, network analysis has also
provided a new set of imaging markers of disordered brains’
connections that differ significantly from purely structural
characteristics (Bullmore and Sporns, 2009). In almost all
of these studies, the nodes of the networks correspond to dif-
ferent brain regions, whereas the edges attempt to capture re-
lationships between these regions. For example, in functional
networks (constructed from fMRI, EEG, and MEG), edges

typically represent a dynamical correlation between two
brain regions, whereas in structural networks [constructed
from diffusion magnetic resonance imaging (MRI) tracto-
graphy], the edges capture the physical connections between
the regions. Cortical thickness networks are an interesting
mix, as they are based on structural data but are akin to func-
tional networks as their edges are typically based on correla-
tions between regions (He et al., 2007).

In this article, we consider a new class of networks, directed
progression networks (DPNets), which are closely related to
cortical thickness networks, but instead of trying to capture
correlations, DPNets attempt to capture temporal progression
of a brain disease. The idea of using networks to capture the
spreading of a disease through a population is well known
from the study of infectious diseases (Anderson et al., 1992),
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but here, we are considering a network model for the temporal
progression of a disease within an individual brain. In addition
to providing a new method in connectomics, the DPNets stud-
ied here also provide one of the few uses of general directed
networks in Alzheimer’s disease (AD), that is, where the
edges between network nodes have a sense of direction.

Most brain networks studied to date have been predomi-
nantly undirected. In structural networks, this arises from
technological limitations and the fact that diffusion MRI
only detects the orientation of an axon bundle and not the di-
rection of transmission. In functional networks, simple corre-
lations are undirected, but there has been much research
devoted to capturing directionality from causation, using
tools such as Granger causality (Brovelli et al., 2004), and re-
cent progress is developing this into a viable tool (Deshpande
and Hu, 2012). An alternative approach constructs Bayesian
networks that capture the dependency structure of the nodes
(Huang et al., 2013; Li et al., 2013; Zhou et al., 2013).

The extension to directed networks also requires certain
modifications to standard network analysis measures. Some
measures, such as characteristic path length (CPL), are easily
extended by simply considering directed paths; however,
others such as clustering coefficient are more complex in
the directed case (Fagiolo, 2007; Rubinov and Sporns,
2010). In addition, the interpretation of CPL is complicated
by the lack of directed paths between many pairs of nodes
in these directed networks.

Our new approach starts by building upon and combining
the ideas behind Granger causality with recent work on the
construction of cortical thickness networks (He et al.,
2007). We then focus on the ability of DPNets to capture
prominent statistical features of abnormal cortical changes
in AD. Regional cortical thinning has been a consistent find-
ing in MRI studies of dementias, such as AD and frontotem-
poral lobar degeneration (Du et al., 2007; Richards, 2009;
Rosen et al., 2002). Moreover, the pattern of regional prop-
agation of cortical thinning seems to differ characteristically
between different types of dementias (Du et al., 2007), sug-
gesting that the spread of cortical thinning over time follows
a systematic course in each disease. We postulate that the re-
lationships between regional changes in cortical thinning—
as measured using serial MRI—can be used to establish
directed edges in a network that potentially provides a signa-
ture of progressive brain damage. This construction is also an
attempt to model recent discoveries suggesting ‘‘prion-like’’
propagation of misfolded amyloid-beta proteins in AD, per-
haps along axonal tracts (de Calignon et al., 2012; Eisele
et al., 2010; Moreno-Gonzalez and Soto, 2011), although
our methods are not dependent on any specific theory of dis-
ease propagation.

Whereas previous studies have looked at correlations in
the rates of cortical thinning between regions to create un-
directed edges, we focus on the time progression of these
correlations from an initial time period to a later time pe-
riod, thereby creating directed edges for DPNets. In this
scenario, an edge from node A to node B implies that
node A was initially ‘‘infected’’ and then spread its ‘‘infec-
tion’’ to node B in the following period. This is imple-
mented by computing the similarity between the rate of
thinning for node A in the initial period with the rate of
thinning of node B in the following period, thereby captur-
ing the time progression of thinning rates. In this article, we

consider the simplest implementation of this idea, relying
only on three sequential thickness measurements. Given
the many statistical (and biological) uncertainties in the cor-
tical thickness measurements, we do not claim that individ-
ual edges are reliable; however, by using the statistical
power of studying entire networks, we are able to obtain
statistically significant properties of these networks that
can be used for separating the groups, for example, normal
cognition (NC) from AD patients, and also prove effective
even at the individual level for the classification of AD ver-
sus NC. More sophisticated DPNet constructions using lon-
ger timeframes or more precise data would likely improve
these results significantly, but even the base case studied
here with only three temporal thickness measurements yields
significant results.

Materials and Methods

Subjects

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI).1 Data from 255 subjects were included, who had
(1) 1.5 T MRI scans taken at least every other year for a
total of three scans, (2) successful evaluations of their
MRIs using Freesurfer software version 4.4 (Fischl, 2012;
Reuter et al., 2012), and (3) a diagnosis over 3 years consis-
tent with either AD or stable NC. Subjects were excluded if
their diagnosis was stable mild cognitive impairment (MCI),
MCI conversion to AD, or if their diagnosis reverted over 3
years, for example, reversion from MCI to NC or AD to
MCI. The final sample consisted of 39 AD and 97 NC pa-
tients. A summary of the demographic and clinical data of
the subjects is listed in Table 1.

ADNI standard image acquisition and Freesurfer processing
have been described in detail previously (Jack et al., 2008;
Reuter et al., 2012). Briefly, the acquisition consisted of T1-
weighted MRI scans, using a sagittal volumetric magnetization-
prepared rapid gradient-echo sequence, with an echo time
(TE) of 4 msec, repetition time (TR) of 9 msec, flip angle
of 8�, and acquisition matrix size of 256 · 256 · 166 in
the x-, y-, and z-dimensions with a nominal voxel size of

1The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and nonprofit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University of
California San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50
sites across the United States and Canada. The initial goal of ADNI
was to recruit 800 adults, aged 55–90 years, to participate in the
research, *200 cognitive normal older individuals to be followed
for 3 years, 400 people with MCI to be followed for 3 years, and
200 people with early AD to be followed for 2 years. For up-to-date
information, see www.adni-info.org.
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0.94 · 0.94 · 1.2 mm. A designated center assessed image
quality and corrected the data for system-specific image ar-
tifacts (Fischl, 2012). Cortical thickness in Freesurfer is es-
timated by computing the shortest distance from each point
on the gray/white matter surface to the pial surface and vice
versa and averaging the results. Furthermore, in Freesurfer
version 4.4, the confounding effect of intrasubject morpho-
logical variability is reduced by using a longitudinal work-
flow that estimates brain morphometry measurements
unbiased with respect to any time point in each subjects’
longitudinal MRI data. This is achieved by building first a
template image from all time points as an unbiased prior
distribution for each subject before computing morphomet-
ric deformations for all time points.

Connectome reconstruction

Previous connectome work in AD has considered thick-
ness correlations between regions, using cross-sectional or
longitudinal MRI. For cross-sectional data, previous research
constructed a ‘‘consensus network’’ for the group by finding
cross-sectional correlation in thicknesses between brain re-
gions (He et al., 2007, 2008, 2009), allowing construction
from a single temporal measurement. However, to compare
thicknesses among different subjects, this procedure required
normalization by personal characteristics, such as age and
gender (Barnes et al., 2010; Sowell et al., 2007), as this af-
fects baseline thicknesses, complicating the process. For lon-
gitudinal data, personalized (by subject) networks have been
constructed using temporal correlations between regions (Li
et al., 2012), which we discuss below.

In this project, we considered a modified version of the lat-
ter construction, motivated by, but not relying on, emerging
data of prion-like propagation of misfolded amyloid-beta pro-
teins in AD, wherein we constructed personalized DPNets for
each patient. For simplicity, we consider measurements taken
at three timepoints with 2-year intervals between them and
then compute the thinning rate for the ‘‘early’’ period (thick-
ness change between timepoint 1 and 2) and the ‘‘late’’ period
(thickness change between timepoint 2 and 3). Note that by
thinning rate we mean the factor by which the thickness is de-
creased, for example, a thinning rate of 2 corresponds to a

halving of the thickness in one period (2 years); one could
also use the inverse of this, but it would not significantly affect
our results as we are only considering similarities between
rates in the network construction. One could ideally use
more timepoints; however, in practice, this would reduce the
set of subjects and also introduce complications in comparing
subjects with different numbers of timepoints, so three time-
points seemed a good compromise for this initial study. We
then compute the similarities between these rates, as opposed
to the raw thickness used in earlier articles, thereby mitigating
the need to remove individual biases toward initial cortical
thickness. To infer spatial propagation we compute the simi-
larity between the thinning rate of the early period of one re-
gion and the thinning rate for the late period of a second
region, thereby constructing a directed (spatiotemporal) simi-
larity from the first region to the second for all pairs of regions.
This procedure captures both the temporal and spatial spread
of the ‘‘infectious agents’’ by allowing time for transmission
between brain regions. We consider the matrix of these di-
rected similarities over all pairs of nodes to construct di-
rected similarity matrices, one for each subject; however,
unless there is thinning during the early period (a thinning
rate > 1), we set that similarity to 0, capturing the requirement
that only ‘‘infected’’ nodes (ones which are thinning) can
‘‘transmit’’ the disease. We denote these ‘‘infectious’’ similar-
ity (ISIM) matrices.

While the lack of thinning over time may be surprising
(Hogstrom et al., 2013; Lemaitre et al., 2012), such nodes
are common in the data, arising in about 39% of the nodes
for NC and 27% of the time for AD. This can be explained
by the significant probability that a node which does not ap-
preciably thin will actually appear to thicken in the data due
to measurement error and biological variation, for example,
inflammation.

It is informative to compare our directed procedure with Li
et al.’s (2012) undirected approach. They construct a matrix
that is analogous to our ISIM matrices using undirected cor-
relations. Specifically, given a set of thickness measurements
for a pair of regions of interests (ROIs) (nodes), Li and col-
leagues directly compute the (statistical) correlation between
the two vectors of thicknesses. The key difference is that
their edges capture the degree to which they change thick-
ness in unison, while ours captures the degree to which
one ROIs thinning precedes the second ROIs thinning.
(Note that there are additional differences between our con-
struction and theirs including the choice of ROIs and the
method for computing thicknesses.)

Each node is 1 of the 88 standard Freesurfer ROIs so the
ISIM matrices are 88 by 88, with zeros on the diagonals (con-
sistent with the idea of the spread of ‘‘infection’’). This also
leads to networks without self-edges from a node to itself,
which is standard practice in most brain network analyses
(Bullmore and Sporns, 2009).

For example, in Figure 1, we consider three ROIs,
denoted node 1, node 2, and node 3. Node 1 has thick-
ness = 5 at timepoint 1, thickness = 3 at timepoint 2, and
thickness = 1 at timepoint 3, so its thinning rates are
RE = 5/3 = 1.67 in the early period and RL = 3/1 = 3 in the
late period. Note that since node 1 is thinning between time-
point 1 and 2, it is possibly ‘‘infected’’ and may spread its
infection to other nodes. A similar calculation shows that
node 2 is not thinning in the early period (its rate is

Table 1. Group Demographics and Clinical Summary

NC AD p-Valuea

n 97 39
% Male 48 55 0.12
APOE e4 carriers (%) 33 51 < 0.001

Baseline
Age (years) 75.4 – 5 74.5 – 6 0.21
ADAS-Cog11b 5.6 – 2 18.1 – 6 < 0.001

% Annual changec

ADAS-Cog11 �8 – 80 42 – 34 < 0.001

ap-Values indicate effects across groups using ANOVA or Fisher
exact test (for categorical variables, e.g., male and APOE).

bAlzheimer’s Disease Assessment Scale-cognitive subscale with
11 items (Mohs et al., 1997); total score ranging from 0 to 70; larger
scores indicating greater impairment.

c% Annual change is expressed relative to baseline in percent.
AD, Alzheimer’s disease; ANOVA, analysis of variance; APOE,

Apoliprotein E; NC, normal cognition.
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0.75 < 1) but is thinning in the later period (at rate 2.0 > 1)
and is therefore a candidate ‘‘target’’ of the infection.
When we compute the directed similarity between node 1
and node 2, we simply compute the similarity of the thin-
ning in the early period for node 1, 1.67, and the late period
of node 2, 2.0, which is given by 1�(1.67�2.0)2 = 0.89, a
relatively high similarity. This will eventually lead to a di-
rected edge from node 1 to node 2 as there is a statistical
signal of possible propagation from node 1 to node 2.
Clearly, this is not proof of such propagation and no single
edge should be taken as more than a potential signal of
transmission. However, our results below suggest that all
these directed edges do in fact provide statistical signifi-
cance in the aggregate when fully analyzed.

Note that the above calculation is not symmetric in the two
nodes. If we repeat the calculation for node 2 to node 1, we
get 1�(0.75�3)2 =�4.06, which is an extremely low simi-
larity. Next consider the calculation from 2 to node 3 for
which there is a high similarity, 1�(0.8�0.75)2 = 0.975,
which one might think could lead to an edge. However, if
we think of edges as suggesting propagation of an infectious
agent, not just a similarity, then the lack of thinning in the
early period for node 2 makes this an unlikely path of trans-
mission. To capture this, we construct the ISIM-directed sim-
ilarities with the requirement that the initial node must be
thinning, that is, the thinning rate must be > 1 and thus set
the directed similarity to zero so as not to create an edge
from node 2 to node 3 in the final network.

The ‘‘similarity matrices’’ (ISIM) are then thresholded to
create DPNets using an individualized threshold for each
similarity matrix (i.e., for each subject) to generate a directed
network with a fixed average outdegree of 10, that is, on av-
erage each node has 10 outgoing edges. (See Fig. 2 for the
heatmap of the network before and after thresholding and
note the ‘‘banded structure’’ arising from our requirement
that the source node be thinning in the early period.) Thus,
given an 88 · 88 ISIM matrix, we generate a network with
88 nodes, with a directed edge from node i to a different
node j if the value of the i, j’th element of the matrix exceeds
a specific value, where the cutoff value depends on the spe-
cific matrix.

For comparison purposes, we will also consider the undi-
rected network that we construct by symmetrizing the ISIM
matrix (i.e., adding the matrix and its transpose to create a
symmetric matrix), which leads to an undirected graph
using the binarization method discussed above.

The choice of 10 as the average outdegree was chosen to
be consistent with other studies [which have shown that this
approximate degree of density is usually the most informa-
tive, e.g., Hayasaka, and Laurienti (2010)] and also generates
networks that are both sparse (where only about 10% of the
potential edges exist) and connected (where there exist paths
from any node to any other). As a check for bias using 10 out-
degree, we have repeated the analysis with a variety of aver-
age outdegrees ranging from 6 to 15 and found substantially
similar results.

FIG. 1. Illustrative directed progression
network construction. The top shows cortical
thicknesses at times T1, T2, and T3, whereas
the bottom left shows the early (year 1–3)
and late (year 3–5) thinning rates, RE and RL.
Bottom right shows the infectious similarity
(ISIM) matrix and above it is the induced
network with an average outdegree of 1
(edges arise from three highest values in the
matrix). Note that the ISIM value for box
(2, 3) is 0 since node 2 did not thin in the
early period and that element would have been
large (0.9975) without the restriction. How-
ever, node 2 does thin in the late period and
there exists an edge from node 1 to node 2.
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Network measures

We will consider several standard network measures: nodal
degrees (DEG), indegree (INDEG) and outdegree (OUTDEG),
the size of the giant component (GIANT), characteristic
path length (CPL), global efficiency (GEFF), local clustering
coefficient (CLUST), ordinary small-worldness, using CPL
(SW-CPL), efficiency based small-worldness (SW-GEFF), and
modularity (MOD). We briefly review these below (see Rubinov
and Sporns [2010] for a more detailed discussion).

For an undirected network, DEG is simply the number of
edges that touch that node, but for a directed network, one
typically considers both the OUTDEG, the number of di-
rected edges beginning at a node, and INDEG, the number
of edges ending at our node. Given our interpretation of a
DPNet as modeling the spread of a disease, a node with
high OUTDEG is spreading the infection, while one with
high INDEG is being infected from many sources, so it
makes sense to consider these two notions of degree sepa-
rately. Note also that since INDEG and OUTDEG are de-
fined for each node in the network, it is natural to consider
the mean values of these quantities. However, in addition
to these simple averages, we will find it highly fruitful to
also consider the variations in these values, such as their
standard deviations (over the nodes in a single network).

We also consider the GIANT measure, which is the size of
the largest connected component in the undirected case and
the size of the largest strongly connected component in the
directed case, which is often significantly smaller. Recall
that the strongly connected component is the largest set of
nodes so that there is a directed path between every pair of
nodes in that set.

In undirected networks, the CPL is the average shortest path
length between pairs of nodes, while in the directed case, one
only allows directed paths. However, in the directed case, it
often arises that there is no directed path between many pairs
of nodes, which leads to an infinite (or undefined) CPL. Thus,
we only compute the CPL for the giant component. An alterna-
tive measure is the GEFF that computes the average of the in-
verse shortest path lengths. This has the desirable property that
infinite paths simply add 0 to the sum of inverse path lengths
and do not require restricting to the giant component.

Additionally in the undirected case, CLUST is the fraction
of pairs of neighbors of a node that have an edge between
them; however, in the directed case, one uses the fraction
of possible edges between the neighbors of the node and
the formula is more complex than in the undirected case

(Fagiolo, 2007). Here again, we will consider not only the
average of CLUST but also its standard deviation.

The ratio of CLUST to CPL is known as the ‘‘raw’’ small-
worldness (SW) and captures an important structural aspect
of a network (Watts and Strogatz, 1998). To gauge the signif-
icance of the SW, one typically considers the ‘‘normalized’’
SW, which is the ratio of the raw SW of the networks to the
raw SW of matched random degree-distributed (DD) net-
works, which are discussed below. However, since the
CPL is not necessarily a completely satisfactory measure
in directed networks when the graph is not strongly con-
nected—the giant component does not contain all of the
nodes—we consider an alternative measure small-worldness
(SW-GEFF), which uses the inverse of the global efficiency
in place of the CPL. Thus, the raw SW-GEFF is the product
of the global efficiency and the clustering coefficient and the
normalized SW-GEFF is the ratio of the raw SW-GEFFs of
the network and its matched random (DD) network.

Finally, we consider the MOD that captures the extent to
which the network can be decomposed into smaller well-
defined subnetworks.

Statistical methods

To assess the statistical significance of between-group
comparisons of the network metrics, a nonparametric permu-
tation testing procedure was used. For each measure, the
class labels (NC and AD) were randomly reassigned between
group pairs and t-values were computed for each relabeling,
for a total of 5000 permutations, to approximate a t-statistic.
P-Values were calculated based on this distribution of t-values
obtained from the permutations.

We also compared the directed network metrics with those
of random networks chosen to match the probabilistic struc-
ture of the observed DPNets using DD random networks
(Erd}os and Rényi, 1960; Newman et al., 2001). This is useful
to understand the aspects of the networks that are not arising
from degree distribution, such as the relevance of the SW
measure. For each subject’s network, an associated DD net-
work was constructed by choosing random edges while
maintaining the indegree and outdegree of every node. For
example, if all nodes in the subject’s DPNet had the same de-
gree, then the matched DD network would too, while if out-
degrees varied by node, the matched DD would vary exactly
in the same manner. To compute the matched DD network,
we note that the standard ‘‘double edge swap’’ algorithm
in which a pair of edges are chosen at random and then

FIG. 2. Heatmap for sample ISIM matrix
(left) and its respective network (right)
obtained by thresholding with an average
degree of 10 as in our analysis. Note the lack
of symmetry along the main diagonal, which
would arise in undirected networks. Also
note the horizontal bands corresponding to
nodes that did not thin in the early period.
Color images available online at www
.liebertpub.com/brain
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crossed (Newman et al., 2001) is not sufficient to fully ran-
domize. In addition, one must also randomly reverse the orien-
tation of directed triangles (Berger and Müller-Hannemann,
2010), for example, if we have a triangle a/b/c/a,
then one randomly reverses the orientation to get c/b/
a/c. This procedure, as described in detail in Berger and
Müller-Hannemann (2010), was repeated 1000 times to cre-
ate a randomized DD matched network. (The randomness
of this procedure was validated using standard statistical
tests.)

For the classification of individual subjects, we considered
a variety of algorithms that are available on the Orange data
mining system (Demšar et al., 2013), including the Naive
Bayes Classifier, Support Vector Machines, Classification
Trees, and Neural Network Learner and their Bagging and
Boosting variants. We also applied several of the built-in fea-
ture selection algorithms as well as a brute force selection al-
gorithm, which we wrote in the Orange scripting language.
This algorithm tried all combinations of five or fewer fea-
tures, using the various classification algorithms. Since the
populations were of different sizes, the majority classifier
was unfairly effective when using the classification accuracy
as the measure of fit. To remove this bias, we optimized the
classifiers on the area under the receiver operator character-
istics curve (AUC) metric, which was computed using 10-
fold cross-validation. We compared these results with
those obtained using other classifier scores and obtained
very similar results. Below we report both the AUC metric
and the classification accuracies (broken out into false posi-
tives and false negatives to provide further insight).

Results

Network measures

Our first result stands in contrast to most other connec-
tome results: we find no evidence of small-world structure
(Fig. 3). In fact both definitions of SW lead to similar re-
sults, normalized SW measures that are < 1. For the ordinary
measure, this result is not statistically significant, but for the

perhaps more reliable measure based on global efficiency, it
is significant at the 5% level for both NC and AD. While
small-world networks typically have slightly larger CPL
than their random counterparts, the opposite holds for
DPNets, which have a lower CPL than the reference net-
works. The GEFF is smaller for the DPNets, but these differ-
ences are small and not statistically significant at the 5%
level. However, the clustering coefficients for the DPNets
are smaller than the matched random ones. For the NC sub-
jects, this decrease has a p-value of about 3% and for the AD
subjects about 7%.

We also find moderate but statistically significant levels of
modularity, an increase of about 80% over the random DD
networks. Finally, we note that the giant components are
comparable in size to those in the matched random DD net-
works, containing between 30% and 50% of the nodes.

Group level analysis

For the directed networks at the group level, most network
measures have a statistically significant difference between
the AD group and the NC group. For SW-CPL, we have an
(uncorrected) p < 5%, which is not significant when corrected
for multiple comparisons (Bonferroni), while for all other
measures, we have (Bonferroni-corrected) p < 5% (except
for p < 7% for the standard deviation of indegree). Thus,
we see that the directed network measures distinguish well
between AD and NC, at the group level (Table 2).

The AD subjects have decreased CLUST and increased
CPL over the NC subjects. Combining these, one observes
a decrease in SW-CPL for the AD subjects. They also have
decreased SW-GEFF, due to the decreased clustering even
though the GEFF has significantly increased. One also ob-
serves increased modularity in the AD subjects and a de-
creased variability in INDEG and OUTDEG. The AD
subjects also have significantly increased giant components.

For comparison, the undirected networks, derived by sym-
metrizing the ISIM matrices, also do a good job of distinguish-
ing the AD group from the NC group. In fact, all of the
undirected measures have (Bonferroni-corrected) p-values
of < 2% except for the CPL, which is not statistically signifi-
cant (both corrected and uncorrected).

Classification

The best classification between NC and AD (by AUC)
using exhaustive search with at most five features was
achieved using Naive Bayes, which was slightly superior
to the SVM classifier and significantly better than Classifica-
tion Trees, Neural Networks, and their Bagging and Boosting
variants. It used the features: CPL, MOD, GIANT, and the
standard deviation of INDEG. It attained an AUC of 0.87,
a false-positive rate of 9% and a false-negative rate of
15%. However, many combinations of features attain ap-
proximately the same level of accuracy.

For example, we can replace CPL or MOD with CLUST in
the above classifier and suffer < 2% loss in AUC. In addition,
we found that the SVM classifier produced only slightly
worse results than the Naive Bayes, whereas the other classi-
fiers were typically inferior. Interestingly, all of the five best
classifiers (Table 3) use the size of the giant component, the
top 4 use the standard deviation of the INDEG, and all use at
least one out of MOD, CPL, and CLUST.

Table 2. Group Means for Directed Network

Measures for ISIM and Uncorrected

p-Values of Nonparametric t-Tests

Measure NC AD p-Value

CLUST (AVG) 0.246 0.203 0.005
CPL 1.694 1.944 < 0.001
GEFF 0.228 0.295 < 0.001
SW-O 0.939 0.895 0.052
SW-E 0.937 0.898 < 0.001
MOD 0.227 0.256 0.005
INDEG (SDev) 9.206 8.207 0.007
OUTDEG (SDev) 11.344 9.12 < 0.001
CLUGT (SDev) 0.143 0.109 < 0.001
GIANT 0.348 0.517 < 0.001

Note that all are significant at the 5% level when Bonferroni cor-
rected, except for the standard deviation of indegree, which is only
significant at the 7% level when Bonferroni corrected. Note that
the average indegree and outdegree is set to 10 for all networks,
so these values are not shown. However, their standard deviations
are shown, for example, INDEG (SDev).

ISIM, infectious similarity.
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The use of more sophisticated feature selection tech-
niques, which potentially consider all features, did not pro-
duce noticeably better results (below the noise level of the
cross-validation procedure). Thus, we believe that the classi-
fication results above, in addition to providing insight, are
nearly optimal and the addition of more sophisticated tech-
niques would be unlikely to significantly improve our results.

If the directness of the network is ignored and one simply
uses an undirected network the classification accuracy sub-
stantially declines. In this case, the best classifier simply
uses both the standard deviations of INDEG and OUTDEG
and attains an AUC of 0.77. In addition, the false-positive
rate goes up to 20% and the false negative to 18%. Thus,
we see value of directed measures compared to undirected
ones in classification.

Discussion

Our primary finding is that a surprisingly simple DPNet
construction procedure that uses cortical thickness measure-
ments from just three timepoints has proven capable of pro-
ducing reliable networks that not only can separate AD
patients from NCs but can also classify individual subjects.
In contrast, previous work has required either large numbers
of subjects to compute average correlations or a larger num-
ber of timepoints for each subject. In addition, we see that di-
rected edges can outperform undirected ones, which to our
knowledge is the first demonstration of the utility (as op-
posed to the feasibility) of directed networks in connectom-
ics research.

Network measures

Our first result, the lack of SW in our DPNets, illustrates
the inherent differences between DPNets and other connec-
tomic approaches. Small-world networks are ubiquitous in
many areas of science and social science (Watts and Strogatz,
1998) and seem to arise in most studies of connectomes (Bas-
sett and Bullmore, 2006; Sporns and Honey, 2006), including
those on AD (He et al., 2007; Sanz-Arigata et al., 2010; Stam
et al., 2007). However, we find clear evidence that our
DPNets are not small-world networks, stemming from the
fact that they have lower clustering coefficients than compa-
rable random (DD) networks. Perhaps this is not surprising as
DPNets are modeling the spread of a disorder in the brain but
are not directly involved with computation, as are standard
connectomes. Thus, while SW appears to be important for ef-
ficient computation (Sporns and Honey, 2006), there is no a
priori reason for high clustering coefficients in networks
mapping the spread of a disorder within the brain.

While small-world networks typically have slightly larger
CPL than their random counterparts, the DPNets show the
opposite tendency, although this is likely driven by the de-
crease size in their giant components. The GEFF results
are consistent with typical small-world networks, but these
differences are small and not statistically significant at the
5% level. However, the key factor in understanding the
SW is the lack of a significant increase in clustering coeffi-
cients for the DPNets compared to the random ones. Whereas
these often increase by a factor of 2 or more, for the DPNets,
they actually decrease.

Table 3. AUC and Feature Sets for the Five Best Classifiers

Classifier rank AUC Features used

1 0.867 GIANT IDEG (SDev) MOD CPL x
2 0.864 GIANT IDEG (SDev) MOD x CLUST
3 0.861 GIANT IDEG (SDev) MOD x x
4 0.860 GIANT IDEG (SDev) x CPL CLUST
5 0.858 GIANT x MOD CPL x

AUC, area under the receiver operator characteristics curve.

FIG. 3. Normalized measures for normal
cognition (NC) and Alzheimer’s disease
(AD). These are the ratios of the measure
values for NC and AD to their matched ran-
domized degree-distributed (DD) network. A
ratio of 1 implies that the two values are the
same. Solid bars indicate statistically signif-
icant differences between the AD (or NC)
network and its randomized counterpart, that
is, a Bonferroni-corrected p-value of < 5%.
Color images available online at www
.liebertpub.com/brain
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Another important property of DPNets is the size of their
giant component, which are similar to those of their matched
random counterparts and typically contain less than half of
the nodes. This affects the analysis and interpretation of
the other measures. For example, if a giant component is
small, then it is likely that the CPLs, which are only com-
puted over the giant component, will also be small. This con-
trasts with undirected connectomes in which the giant
component typically contains most of the nodes, avoiding
these difficulties. For example, in the undirected networks
studied in this article, the giant components typically contain
more than 90% of the nodes. This appears to arise because
the requirement of strong connectedness in directed net-
works is much more stringent than ordinary connectedness.

Group level analysis

Our initial results supply several insights into the temporal
progression of AD in the brain, since unlike most networks
previously studied in connectomics, DPNets are based on
temporal spread. Our first result is that for most measures
that we considered the difference between the AD group
and the NC group is statistically significant even after cor-
recting for multiple comparisons.

The AD subjects have lower clustering, suggestive of the
spreading of the disease. They also have increased CPL, but
this appears to be driven by an increase in the size of the giant
component. Since it is likely that the giant component con-
tains much of the range of disease spread, this could be an
indication of the greater number of nodes that have been
infected in the AD subjects. The GEFF is more reliable
and shows an increase in the AD subjects, which is also con-
sistent with the spreading interpretation. One also observes
increased modularity in the AD subjects, perhaps indicating
an increase in disease structure. The idea of modularity being
important in brain disorders has been seen before in studies
of AD (Chen et al., 2008).

The observed decreased variability in INDEG and OUT-
DEG for the AD subjects is consistent with a possible in-
crease in the number of diseased nodes, that is, when there
are few diseased nodes (as in the NC subjects) those will
have high outdegrees, since the other (uninfected) nodes do
not have many outgoing edges.

Classification

Interestingly, all of the best five classifiers (Table 3) use
the size of the GIANT, the top four use the standard devia-
tion of the INDEG, and most also use at least one out of
MOD, CPL, and CLUST. The importance and interpreta-
tion of these as signals of disease spread was discussed in
the previous section. We note that the use of the variation
by nodes (not merely average values), while discussed qual-
itatively and analyzed for scientific insights, has not been
widely utilized for classification, and our findings that
nodal variations in AD are important for classification
might suggest the use of nodal variability could have
wider applicability in connectomics.

In a sense, our classification results are not competitive
with Li et al. (2012), who attained over 95% accuracy; how-
ever, they used much more information in their classification.
Not only did Li et al. (2012) use five timepoints and over 200
features, but perhaps even more importantly, they used the

raw thinning data directly in their discriminant analysis,
which allowed their algorithm to use locational information
about which specific region was thinning.

Thus, by comparison, our results seem remarkably robust
considering that they were based on a minimalist model that
used values of only four global measures, and no local or re-
gional information, for a DPNet based on only three temporal
MRIs. In addition, by fixing the average degree, we have es-
sentially removed the average thinning rate for the subjects,
which is likely the single most valuable feature for classifica-
tion. (For reference, the average nodal thinning rate in our
data is about 0.5%/year for NC and 1.5%/year for AD.)
Thus, the demonstrated classification ability of even a
noisy feature-limited network like that used here shows the
utility and promise of this new DPNet-based approach. In ad-
dition, one would expect additional improvements in accu-
racy with the inclusion of more timepoints, locational
information, and basic structural measures, such as the aver-
age thinning rate over all nodes.

We also showed that the directed information improves
classification accuracy significantly in comparison to using
undirected information.

Directions for future work and concluding remarks

As we have shown, directed network measures of DPNets
can characterize AD at the group level as well as classify
subjects at the individual level; additional tests and exten-
sions of our DPNet constructions would certainly be valu-
able, such as correlating the edges of the DPNet with the
known properties of disease spread in AD or using more
timepoints to compute similarities for constructing DPNets.

For example, when there are k > 3 timepoints, there are
many possible extensions. The simplest would be to consider
an r unit time delay model in which we take the vector of the
first k�1 rates from the initial node and cross-correlate that
with the vector of the last k�1 rates from the final node, com-
paring time t in the initial to time t + r in the final for
t = 1.k�r. This could require choosing r from biologi-
cal considerations based on disease progression or opti-
mizing over r to find the delay that yields the highest
cross-correlation. In addition to constructing an interesting
DPNet, the resulting value of r would have empirical inter-
est. On could also use more sophisticated Markov Chain
thinning model to find the correlation and delay time compu-
tationally either individually for pairs of nodes or by optimiz-
ing over all nodes simultaneously to find the optimal network
that ‘‘explains the time-delayed similarities.’’

Importantly, we note that our methods can be directly ap-
plied to any neurodegenerative disease since DPNets could
capture the progression of the neurodegeneration, which
varies by disease. For example, progressive supranuclear
palsy, corticobasal degeneration, and frontotemporal demen-
tia each has distinct patterns of degeneration (Dickson et al.,
2011; Hartikainen et al., 2012; Schofield et al., 2011). In ad-
dition, one could apply DPNets to other brain disorders in
which it is possible to identify the progression, even those
that do not involve cortical thinning but are primarily charac-
terized by changes in white matter, such as multiple sclero-
sis. At the opposite end of the clinical spectrum, one could
also implement these ideas for MRI studies of altered brain
development in childhood and adolescence. Although the
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requirement of at least three serial imaging scans for DPNets
construction may seem a high barrier from a practical perspec-
tive, it should be judged in the context of information that tem-
poral disease spread can potentially provide for clinical
decisions. In particular, DPNets may offer a unique approach
for predicting individual trajectories of neurodegenerative pro-
gression that could improve individualized clinical planning.

When considering potential directions for future work, it is
important to recognize some of the limitations of the present
study: Since AD was not confirmed by autopsy, the exact
contribution of AD pathology to variations in network mea-
sures remains unclear. A limited clinical ability to identify
incipient AD in the NC group over the 2-year follow-up
may have skewed the network measure distributions of
these two groups. One technical limitation of the present
study is that by analyzing anatomical regions to keep compu-
tations tractable, we implicitly made the assumption of a ho-
mogenous propagation of thinning with each region. A finer
analysis of cortical thinning, for example, voxel-by-voxel,
may modify the results.

In summary, directed connectomics of DPNets based on
cortical thickness measurements have shown strong promise
in the study of AD, and, as a novel methodology, construc-
tion of DPNets may be useful when extended to other neuro-
degenerative diseases.
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Demšar J, Curk T, Erjavec A, Gorup Č, Ho�cevar T, Milutinovi�c
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