Foreword

HarP: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation. A standard of reference from a global working group

This special issue of *Alzheimer’s & Dementia* marks the completion of an initiative kick-started as long as 6 years ago. At the time, hippocampal atrophy was regarded by International Working Group criteria as one of the biomarkers for the early diagnosis of Alzheimer’s disease (AD) [1], academic memory clinics were pioneering its use in real life diagnostic studies [2–4], and clinical trials of disease modifiers were starting to use hippocampal atrophy rates as a secondary outcome measure [5]. Widely different measurement protocols prevented the comparison of diagnostic accuracy and biologic drug efficacy. Standard operating procedures were clearly needed—an effort greatly facilitated by the availability of ADNI (Alzheimer’s Disease Neuroimaging Initiative) harmonized image acquisition parameters and procedures [6].

The initiative was kicked off at a feasibility workshop organized by the Alzheimer’s Association in Chicago in 2008 where ADNI and European Alzheimer’s Disease Consortium key members took part, and experts in imaging biomarkers. A survey was set out to identify the 12 most frequently used protocols for hippocampal segmentation in the Alzheimer’s literature and differences in image treatment procedures and anatomical landmarks (Fig. 1), a mandatory step to develop a harmonized protocol [7]. In an exercise reminiscent of a LEGO block game, the preliminary phase did a virtual break down of the hippocampi resulting from the aforementioned protocols in a finite number of three-dimensional (3D)-units summarizing their entire anatomical variability. Biometric features of the 3D-units were then empirically quantitated (e.g. measurement stability, contribution to Alzheimer’s-associated atrophy) and fed to a panel of world experts, including the developers of the 12 originally selected protocols, who were charged of coming out with a unique and harmonized segmentation protocol. Thanks to a Delphi procedure adapted to accommodate quantitative information, it took experts five rounds to converge onto a definitive version (the harmonized protocol—HarP).

Five expert researchers on hippocampal segmentation (“master tracers”) were then asked to segment 40 representative hippocampi taken from the ADNI database following the HarP, that would be used as the standard of truth of any ensuing procedure (so-called “benchmark labels”). Fourteen tracers coming from 12 imaging laboratories from eight countries in three continents which had not been exposed to the development of the HarP were asked to segment another set of 40 hippocampi representative of the ADNI dataset, trained and qualified to segment following the HarP on an ad hoc web-based environment, and asked to re-trace the same ADNI hippocampi following the HarP. An appropriately balanced design allowed to test the concurrent validity of the HarP versus local protocols, and compare the error variance of hippocampal volume estimates due to the HarP with other sources of error. Finally, HarP hippocampal volumes were validated versus pathological findings in a sample of brains where both high-resolution structural magnetic resonance imaging and a post-mortem examination were available, and publicly available HarP labels were expanded to a large set of 270 ADNI hippocampi to allow the training of automated segmentation algorithms based on machine learning technology.

Importantly, the HarP is the result of the concerted effort of many minds (Fig. 2). The working group met twice a year for the past 5 years and at each meeting the project was fine-tuned and its experimental design continuously improved thanks to input from participants. An off-workplan expansion of the number of segmented hippocampi was required by automated segmentation algorithm developers, and duly carried out. A large and representative set of certified hippocampal labels obtained with the HarP is now publicly available in the web that can be used to train and qualify human tracers and automated algorithms.

Thanks to the HarP, it is now possible to directly compare the segmentation accuracy of the many automated

1552-5260/$ - see front matter © 2015 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalz.2014.05.1761
algorithms that have been and are currently being developed worldwide. Hippocampal atrophy might enter the diagnostic routine of persons with cognitive disturbances in the same way as today we use serum glycaemia for diabetes or erythrocyte sedimentation rate for inflammatory diseases. The effect of different disease modifying drugs on hippocampal atrophy will be directly comparable with a unified metric—of course if one will ever prove effective in the first place.

What next? Clearly, the future of hippocampal volume measurement stays with valid and appropriately certified automated procedures. The web-based environment that human tracers used for training and certification has been released for general use, and will allow algorithm developers test the performance of their products as a preliminary step before submission to scientific journals or regulatory agencies. The Alzheimer’s Association is planning the development of a certification procedure for automated hippocampal segmentation algorithms based on the HarP as the standard of truth.

Low hippocampal volume has been qualified by the European Medicine Agency for the purpose of enrichment in AD clinical trials at the predementia stage [8], and a similar application is currently being reviewed in the United States by the Federal Drugs Administration. The qualification of hippocampal atrophy rates or other structural marker of disease progression as a surrogate outcome in clinical trials of disease modifiers will represent a major advancement for the development of effective drugs—the ultimate aim that scientists are working for, that physicians need for their interventions to be more meaningful, and that patients and families have been longing for decades.

Acknowledgments

The European Alzheimer’s Disease Consortium (EADC)-Alzheimer’s Disease Neuroimaging Initiative (ADNI) Harmonized Protocol for manual hippocampal segmentation (HarP) was funded by (1) a starting grant by Wyeth (now part of the Pfizer group) and Lilly; (2) a major grant from the Alzheimer’s Association; and (3) an “expansion” grant by the Alzheimer’s Association (IIRG-10-174022), BioClinica, Ixico Ltd., Brain Image Analysis LLC, Roche, Synarc, and True Positive Medical Devices Inc.

All materials pertinent to the HarP including benchmark and certified hippocampal labels, slide kits, and videos can be found at www.hippocampal-protocol.net.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jalz.2014.05.1761.

Giovanni B. Frisonia,b,*
aLaboratory of Neuroimaging of Ageing, Department of Psychiatry and Department of Internal Medicine Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
bLaboratory of Neuroimaging and Alzheimer’s Disease Epidemiology, IRCCS San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
*Corresponding author. Tel.: +41-22-3722980; Fax: +41-22-3016634.
E-mail address: giovanni.frisoni@gmail.com

Clifford R. Jackc
Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA

References

