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Group analysis of neuroimaging data is a vital tool for identifying anatomical and functional variations related to
diseases aswell as normal biological processes. The analyses are oftenperformedon a large number of highly cor-
related measurements using a relatively smaller number of samples. Despite the correlation structure, the most
widely used approach is to analyze the data using univariatemethods followed bypost-hoc corrections that try to
account for the data's multivariate nature. Although widely used, this approach may fail to recover from the ad-
verse effects of the initial analysis when local effects are not strong. Multivariate pattern analysis (MVPA) is a
powerful alternative to the univariate approach for identifying relevant variations. Jointly analyzing all the mea-
sures, MVPA techniques can detect global effects even when individual local effects are too weak to detect with
univariate analysis. Current approaches are successful in identifying variations that yield highly predictive and
compact models. However, they suffer from lessened sensitivity and instabilities in identification of relevant var-
iations. Furthermore, current methods' user-defined parameters are often unintuitive and difficult to determine.
In this article, we propose a novel MVPAmethod for group analysis of high-dimensional data that overcomes the
drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a
“knock-out” strategy and the Random Forest algorithm. In evaluations with synthetic datasets the proposed
method achieved substantially higher sensitivity and accuracy than the state-of-the-art MVPA methods, and
outperformed theunivariate approachwhen the effect size is low. In experimentswith real datasets the proposed
method identified regions beyond the univariate approach, while other MVPA methods failed to replicate the
univariate results. More importantly, in a reproducibility study with the well-known ADNI dataset the proposed
method yielded higher stability and power than the univariate approach.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In the study of psychiatric disorders and neurological diseases one of
the fundamental questions is: which regions of the brain does the con-
dition affect? This question is common in many neuroimaging studies,
and the approach to answer it is to statistically analyze images acquired
from a cohort of subjects to detect anatomical (and/or functional) vari-
ations related to the condition. The statistical analysis, referred to as
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group analysis, is often performed on densely extracted anatomical
measurements, such as cortical thicknessmaps or graymatter densities.
Such sets of measurements have a complex correlation structure none
the least due to the spatial organization of the anatomical locations
they are extracted from. Statistical methods that can leverage the corre-
lation structure to improve the power of group analysis are of great in-
terest. To this end, this article proposes a novel multivariate method
that overcomes the major limitations of current algorithms.

The most commonly used statistical tool to identify group effects
is still mass-univariate analysis (Friston et al., 1994; Ashburner and
Friston, 2000). Univariate analysis tests each measurement indepen-
dently for its statistical relationship with the condition of interest.
Although useful and intuitive, univariate analysis ignores the corre-
lation structure in the data. Hence, for problems with a very high
number of measurements, which is typical for neuroimaging, the
multiple comparison problem becomes critical. Univariate analysis
results frequently do not survive family-wise error control such as
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Bonferroni correction (Bonferroni, 1935), and if the affected regions
are small, they might not even survive false-discovery rate control
(Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003). To ac-
count for this, post-processing techniques such as Worsley et al.
(1996), Andrade et al. (2001), Hagler et al. (2006), and Smith and
Nichols (2009) attempt to integrate the multivariate information
by assuming that “real” effects would be visible in larger spatial
neighborhoods. However, these post-hoc corrections are applied to
the results of the initial univariate analysis and hence propagate its
adverse effects.

The natural way to analyze a set ofmeasurements that has a correla-
tion structure is to analyze the measurements jointly. Multivariate pat-
tern analysis (MVPA) techniques provide the means to do this. Each
measurement is considered as a feature, and detecting condition-
related variation is formulated as identifying the subset of features
that are useful in predicting the condition. In contrast to the theory of
univariate analysis, multivariate analysis for neuroimaging is still an ac-
tive field of research. Researchers have proposed a variety of techniques
borrowing ideas from themachine learning literature (DeMartino et al.,
2008), (Mourao-Miranda et al., 2005; Kriegeskorte et al., 2006; Menze
et al., 2009; Sabuncu and Van Leemput, 2012; Langs et al., 2011; Yama-
shita et al., 2008; Gaonkar and Davatzikos, 2012; Rondina et al., 2014)
(We refer the reader to the recent review (Mwangi et al., 2014) for a
more complete list.). However, direct applications of these methods
have one major drawback. Most of the above methods aim to identify
the set of features that yields the highest prediction accuracy, but not
necessarily the complete set of relevant features with which the condi-
tion of interest can be predicted. As a consequence, the detection results
of current MVPA methods are often not exhaustive nor reproducible
(Rasmussen et al., 2012), and typically differ substantially from the re-
gions detected by univariate analysis.

In this article we propose a new method within the MVPA frame-
work that aims to explicitly identify all the relevant features, i.e. all
the measurements that display condition-related variation and hence
have the ability to predict the condition or effect. The main principle
of ourmethod relies on the observation that for any learning algorithm,
if the identified set of relevant features is not exhaustive, the learning al-
gorithm would still have been able to predict the label if these features
were absent in the first place (Konukoglu et al., 2013a). Based on this
observation we build an iterative algorithm, where the main idea is to
iteratively detect and knock-out sets of relevant features using a learning
method. The main advantage of this approach compared to existing lit-
erature is that it is designed to construct an exhaustive set of relevant
features and not directly maximize the prediction accuracy. This is con-
trary to most previous feature selection techniques in the machine
learning literature. The proposed method is a wrapper algorithm that
encapsulates a predictive method, which is chosen to be the Random
Forest algorithm (Amit and Geman, 1997; Breiman, 2001). The design
of the wrapper is such that it iterates around the predictive model, iter-
atively taking out the detected relevant features, until the predictive
model is statistically not better than random guessing. We also take ad-
vantage of the recent developments in the theory of feature selection of
Random Forest (Konukoglu and Ganz, 2014). These advancements
allow us to make the tuning parameters of our algorithm intuitive, a
characteristic missing in other MVPA methods.

We tested the proposedmethod on both synthetic and real datasets,
and compared the results with other MVPA algorithms as well as uni-
variate analysis. In the experiments with synthetic datasets we evaluat-
ed the performance of all algorithms by comparing the relevant feature
sets identified by each algorithmwith the ground truth sets using DICE
score and sensitivity. Additionally, we also evaluated the quality of the
identified sets in a condition-prediction experiment. In the real data ex-
periments, we qualitatively compared identified features for different
algorithms on four different datasets (one included in the main article
and three in the supplementary materials). Furthermore, we studied
the reproducibility of feature identification using the proposed method
and the univariate analysis on the ADNI dataset. Lastly, the proposed
knock-out strategy is a generic wrapper algorithm with which any
MVPA method can be used. To illustrate the advantages of using Ran-
dom Forests, we experimented with using LASSO (Tibshirani, 1996)
within the knock-out strategy.

The rest of the article is structured as follows. We first present an
overview of the related work on multivariate methods in Section 2.
Next, we detail the proposed algorithm in Section 3. Additionally,we in-
troduce a multiple comparison correction technique for it in Section 5.
Then, we describe our experimental methodology in Section 6, present
the results in Section 7 and discuss them. We conclude the article in
Section 8.
2. Related work on multivariate methods

Earlier multivariate methods in neuroimaging focused mainly on
applications in functional magnetic resonance imaging (fMRI) and pos-
itron emission tomography (PET). The most popular amongst these are
partial least square correlations (McIntosh et al., 1996; McIntosh and
Lobaugh, 2004), (Krishnan et al., 2011), canonical variant analysis
(Friston, 1997), (Friston et al., 1995) and multivariate linear modeling
(Worsley et al., 1997). The common idea is to use linear dimensionality
reduction to find the directions in the feature space that show the
highest correlationwith the condition. Eachmeasurement gets assigned
a weight indicating its contribution to the strength of the correlation
with the condition, relative to the other measurements. Although
higher weights suggest stronger condition-related effects, it is not obvi-
ous how to set a threshold to separate affected from non-affected re-
gions. Bootstrapping (Krishnan et al., 2011) can provide a partial
solution to this by quantifying the stability of weights, but it does not
mitigate the relative assignment problem.

More recent work on multivariate analysis focused on the MVPA
framework. These methods identify concrete sets of measurements,
referred to as relevant features, instead of assigning relative weights.
MVPA techniques, can be coarsely divided into local (Kriegeskorte
et al., 2006; Zhang and Davatzikos, 2011) and global approaches(De
Martino et al., 2008), (Mourao-Miranda et al., 2005; Yamashita et al.,
2008; Sabuncu and Van Leemput, 2012; Langs et al., 2011; Rondina
et al., 2014; Menze et al., 2009; Gaonkar and Davatzikos, 2012; Ras-
mussen et al., 2012; Rondina et al., 2013; Haufe et al., 2014;
Konukoglu et al., 2013a). Local techniques extend univariate analysis
by taking into account the neighborhood of a feature when detecting
its relevance to the condition. While the statistical analyses are mul-
tivariate, based on Mahalanobis distance in (Kriegeskorte et al.,
2006) and optimal filtering through nonnegative discriminative pro-
jection in (Zhang and Davatzikos, 2011), they are confined to small
neighborhoods around each feature location. Although both ap-
proaches are interesting, they only explore local relationships and
do not account for long distance spatially distributed patterns.

Global MVPA approaches take into account the entire set of mea-
surements at once and are able to capture spatially distributed patterns.
However, the main problem with current predictive modeling ap-
proaches is that they aim to identify the subset of features that yields
the highest prediction accuracy. The remaining features get discarded,
even though they might include features that are also informative.
This strategy might be ideal to derive accurate and compact predictive
models, however it does not guarantee feature exhaustivity nor repro-
ducibility. But both of these aspects are important for detecting
condition-related anatomical variations. This point has also been
made by Rasmussen et al. in Rasmussen et al. (2012) and Rodina et al.
in Rondina et al. (2013). In fact, in Rasmussen et al. (2012) the authors
even demonstrated a trade-off between reproducibility and prediction
accuracy, thoughwithout providing a solution.We believe this problem
is the main reason why current predictive models do not produce re-
sults that are comparable to univariate analysis.
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Specific classes of MVPA algorithms have certain additional
drawbacks. One of these is inherent to the models that adopt
“sparsity” in their feature selection strategy. The models proposed
in Tibshirani (1996), Tipping (2000), Bi et al. (2003), Yamashita
et al. (2008), and Sabuncu and Van Leemput (2012) aim to create
small and predictive models, where it is assumed a-priori that the
number of relevant features will be small. However, it is not obvious
why this assumption should hold, since it is not clear how different
conditions affect the brain. On the contrary, well-studied conditions,
such as aging, have been shown to affect almost the entire brain
(Pfefferbaum et al., 1994; Good et al., 2002). For otherMVPA algorithms
that adopt the ranking strategy, such as the works using Random Forest
(Breiman, 2001; Langs et al., 2011; Menze et al., 2009) or recursive
feature elimination (Guyon et al., 2002), the main problem is how to
set internal thresholds. The underlying principle in these methods is to
rank features based on their importance, somewhat similar to the earlier
multivariate algorithms. To distinguish relevant from non-relevant fea-
tures a threshold on the ranking is determined. Although the choice of
thresholds in these models has a huge influence on the results, they
are often adjusted based on heuristic considerations or with the aim to
maximize prediction accuracy.

There have been attempts to tackle some of the issues by
Meinshausen and Bühlmann (2010), Rasmussen et al. (2012),
Rondina et al. (2014), Rondina et al. (2013), Haufe et al. (2014),
and Yourganov et al. (2014), but none of these algorithms could
ameliorate all problems. While Stability Selection(Meinshausen
and Bühlmann, 2010) offers an elegant solution to the problem of
the stability of the selected features through random subsampling
of the samples, it still does not aim to detect the entire set of relevant
features and uses internal parameters that are not easy to set. While
Meinshausen provides a bound on the expected number of falsely se-
lected variables in relation to the threshold for feature selection, this
does not make the threshold to be easily chosen in practice. If one
changes the threshold one arrives at a different number of selected
features. Rondina et al. in Rondina et al. (2014) and Rondina et al.
(2013) modified the Stability Selection algorithm by subsampling
also in feature space for increased stability and to detect more ex-
haustive sets of relevant features. However, their method still does
not explicitly aim to detect all relevant features and employs internal
parameters that are not easily interpretable and set. Haufe et al. in
Haufe et al. (2014) claim that relevant features extracted using pre-
dictive models cannot be interpreted directly, but a corresponding
forward model can be constructed and interpreted. The drawback
of this strategy relies on the fact that the relevant features are initial-
ly identified by a predictive model. Hence, the method inherits the
drawbacks of the predictive model it uses.

In addition to the application ofmachine learningmethods in neuro-
imaging, feature selection has also been extensively studied in the bio-
informatics literature (Saeys et al., 2007; Awada et al., 2012). Within
this literature, recent works that focus on high-dimensional problems
with correlated features, such as sparse linear discriminant analysis
(LDA) (Clemmensen et al., 2011) and shrinkage discriminant analysis
(Ahdesmaki et al., 2010), are particularly relevant for neuroimaging
studies. These methods are based on different regularized forms of
LDA and depending on the regularization type, they can achieve high
stability in feature selection.

Our method differs from previous works in one important way: it
explicitly aims to detect all the relevant features, not just the ones
that produce the highest accuracy and not just the ones that will
yield high stability. We achieve this by using an iterative knock-out
strategy. The idea of knocking-out relevant features was first used
by Haxby et al. in Haxby et al. (2001), where the authors studied
the ventral temporal cortex and its fMRI response to different object
categories. Haxby et al. examined whether regions that responded
maximally to a certain object category can provide enough informa-
tion to recognize another category. To this end, they removed
regions that maximally respond to one object category and tested
the predictive power of the remaining regions. Indeed the accuracy
in object identification only dropped slightly when maximal regions
were excluded. Carlson et al. picked up the same methodology for
fMRI analysis in Carlson et al. (2003). To understand whether the
same or different cortical regions are utilized in recognizing different
object categories, the authors trained a different predictivemodel for
each category, removed the relevant features detected by one model
from the data and re-built the other models on the remaining data.
They interpreted the drop in accuracy after removal of the first
model components as a sign that similar regions are being used to
recognize different objects. In Konukoglu et al. (2013a) we applied
the same methodology for analyzing disease related variations of
cortical thickness. We tested whether regions that are identified as
relevant represent an exhaustive set for different predictive model-
ing methods.

The second point where our algorithm differs from the previous
works is the learning method it uses. More specifically, in Konukoglu
and Ganz (2014) we have shown that the threshold that separates rel-
evant from non-relevant features in the Random Forest algorithm can
be determined so as to limit false positive rates. Our algorithm leverages
on this advancement to set its internal parameters. As a result, its tuning
parameters have intuitive meanings, unlike the ranking approaches or
the works based on Stability Selection.

3. The algorithm

The proposed algorithm is based on the MVPA framework and it
adopts its formulation. The data extracted from a cohort of N subjects
is represented with a feature matrix X ∈ℝd × N and a label vector y=
[y1, …, yN]T. Columns of the feature matrix correspond to individual
subjects' feature vectors x ∈ℝd, where each component is ameasure-
ment and d is the total number of measurements. In the discussion of
the algorithm we remain agnostic to the type of measurements. We
only assume features of different subjects are already in spatial cor-
respondence, i.e. the i th feature of every individual refers to the
same location in a common coordinate system, and the features are
possibly extracted from locations that have a spatial structure, e.g.
cortical thickness or gray matter density maps. Components of the
label vector represent individual subjects' conditions. Depending
on the condition, labels can be categorical (e.g. diagnosis), discrete
(e.g. cognitive assessment scores) or continuous (e.g. age). In this ar-
ticle we only focus on the binary (categorical with two categories)
and continuous labels, however the introduced concepts apply to
other types of problems with minor modifications. We also denote
by F ¼ f f 1;…; f d F

g⊂f1;…;dg a set of feature indices and by XF;�∈
ℝd F�N the feature matrix composed of only the features in F. Lastly,
in the text we refer to features with their indices, e.g. f th component
in x is referred to as feature f and its value is given by xf.

The core principle of our method comes from the observation that if
a relevant feature set detected by a predictive model is not exhaustive,
then when we remove these features from the entire set the model
would still be able to predict the condition using the remaining ones
(Konukoglu et al., 2013a). The prediction accuracy might drop, howev-
er, it would still be significantly better than random guessing. The only
two conditions where the prediction accuracy would be similar to ran-
domguessing are eitherwhen there are nomore relevant features in the
remaining feature set or when the predictive model is no longer able to
use the information in the remaining features. Based on this one can at
least extract algorithm-specific exhaustive relevant feature sets. Motivated
by this observation,we construct an iterative algorithmwith the follow-
ing three components:

(1) Predictive modeling
(2) Statistical test
(3) Knock-out
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Fig. 1 presents a flow-chart representation of the overall algorithm.
The algorithm starts by feeding the cohort's data (i.e. X and y) to the
predictive modeling component, which learns a model to predict the
label using the features, computes an estimate of the learned model's
generalization accuracy ρ and identifies a set of relevant features f
that are important for prediction. The algorithm then applies the statis-
tical test to determinewhether the estimated prediction accuracy is sta-
tistically significantly better than randomguessing. If this is the case, the
algorithm proceeds to the “Knock-Out” component. Here, the relevant
set f is removed from the entire set of features, i.e. F= F\f, a new reduced

feature matrix is constructed, i.e. X̂ ¼ XF;�, and the knocked-out feature
set f is stored in FR = FR ∪ f. The whole process is now repeated with
the reduced features and iterated until the predictions are no longer sta-
tistically significantly better than random, atwhich point FR is the union
of all knocked-out feature sets and is the final estimate of the algorithm.

The overall structure of the algorithm resembles the wrapper-type
feature selection algorithms (Guyon et al., 2002) and in particular the
backward feature selection. The main difference here is our method
prunes out the relevant features while previous methods pruned out
non-relevant ones. This makes our algorithm suitable for detecting all
condition-related variations. In the followingwe describe each of the al-
gorithmic components in more detail.
Fig. 1.A schematic overview of the proposed algorithm consisting of the predictivemodel, a stat
for training and testing purposes.
3.1. Predictive modeling with random forests

The predictivemodeling component learns amodel, estimates a pre-
diction accuracy ρ and identifies a subset of relevant features f⊂ F based

onX ̂ and FR. To achieve this, it uses the Random Forest (RF) algorithm in
a cross-validation scheme. We start by explaining the cross-validation
scheme and provide details on the RF algorithm afterwards.
3.1.1. The cross-validation strategy
A cross-validation scheme is essential to compute unbiased

estimates of prediction accuracy and to avoid overfitting when iden-
tifying f. The proposed algorithm uses multiple randomized K-fold
cross-validation experiments for this purpose. Each K-fold experiment
computes a separate ρ(i) and f(i)⊂ F, where i is the experiment index,
and results from different experiments are aggregated to compute
the overall ρ and f. Computation in each experiment also follows a
similar process. To compute ρ(i) and f(i), every fold in the experiment
computes separate estimates ρk

(i) and fk(i) ⊂ F, where k is the fold
index, and these estimates are aggregated.

A single K-fold cross validation experiment splits the samples in
the data into K different partitions and performs K training/testing
procedures, i.e. folds. In each fold, K − 1 partitions are assigned as
istical test and a knock-outwrapper. Note that always independent datasets are being used
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the training dataset and are used to construct the predictive model.
The remaining partition, the test dataset, is used to evaluate it. Let
us denote the training dataset for the k th fold of the i th experiment

with X̂ðiÞ
tr;k and ytr,k(i) . In the training procedure X ̂ðiÞ

tr;k and ytr,k(i) are used
to construct a RF so as to predict the labels using features. Once the
RF is constructed, it is used to compute label predictions for the

test samples of the fold, y ̂
ðiÞ
te;k, using their features in X̂ðiÞ

te;k. At the end
of all the K-folds, each sample in the dataset gets exactly one predic-
tion, which we compare with the real label of the sample to estimate
the prediction accuracy. For the sake of ease of explanation we pro-
vide the details on how an RF is constructed and how predictions
are computed separately in Section 4.0.1.

The computation method for the prediction accuracy depends
on the type of label. For binary labels the prediction problem is a
classification problem and the proposed algorithm computes the
classification accuracy using

ρ ið Þ ¼
XN
j¼1

1 ŷ ið Þ
j ¼ yj

� �
=N;

where the index j goes over the samples and 1(⋅) is the indicator
function. For continuous labels the problem is a regression problem
and the proposed algorithm computes the accuracy using the
Pearson's correlation coefficient (Pearson and Lee, 1896):

ρ ið Þ ¼
XN

j¼1
ŷ ið Þ
j −ŷ

ið Þ� �
yj−y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
ŷ ið Þ
j −ŷ

ið Þ� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
yj−y

� �2
r ;

where ŷ
i
and y are the sample means of ŷ

i
and y. In both cases N is

again the number of samples.
In addition to the label predictions, each fold in a K-fold experiment

also computes a set of relevant features fk(i) ∈ F. The proposed algorithm
combines fk(i) coming from different folds, and later from different ex-
periments, using a generalized intersection procedure, which is a spatial
relaxation of the usual set intersection.

4. Generalized intersection

Since the training set in each fold is different than the others, the
identified relevant sets will have differences. In the ideal case these
differences will be small. Truly relevant features should appear in
all fk(i) and false positives are likely to vary. So, the intersection of
these sets, i.e. fint(i) = ∩ k = 1

K fk(i) = { fj| fj ∈ fk(i) ∀ k ∈ [1, …, K]}, is a nat-
ural way to aggregate the results. However, in the real world these
sets can differ substantially. Features in neuroimaging often have a
correlation structure that results in a redundancy of information in
neighboring measurements. It is very likely that two features extracted
from neighboring locations would not appear in the same relevant set
together. The learning algorithm would use one and discard the other
because having both does not bring an additional advantage for better
prediction. As a result, direct intersection of all fk(i) could result in an
empty set. In order to combine different fk(i)'s a relaxation on the set in-
tersection is necessary. To this end the most common approach is to
count the number of folds each feature appears in as relevant and
then threshold this count. Undesirably, determination of such a thresh-
old relies on some ad-hoc decisions (such as setting the expected aver-
age number of selected variables in the case of Stability Selection
(Meinshausen and Bühlmann, 2010)).

Here we propose an alternative relaxation, called generalized inter-
section, that uses one important domain knowledge about neuroimag-
ing data: the spatial organization of the locations the features are
extracted from. Generalized intersection takes into account the fact
that features extracted from neighboring locations can appear in differ-
ent folds within the same K-fold experiment and even be identified as
relevant in different iterations of the algorithm. Focusing on the first
case, let us assume the feature fj is identified as relevant in fk '

(i), and is
extracted from the point pj in the common coordinate system. The gen-
eralized intersection allows fj to appear in the “intersection” of fk(i) for all
k, if for every k there exists at least one feature coming from the spatial
neighborhood of pj in fk(i). Mathematically, this can be described as

\^ K

k¼1 f
ið Þ
k ¼ f jj∃ k s:t: f j ∈ f ið Þ

k and∀k∃l ∈N j Cð Þs:t: f l ∈ f ið Þ
k

n o
;

where N jðCÞ ¼ fljdðp j;plÞbCg is the set of measurement locations
neighboring pj and the distance d(pj, pl) is the spatial distance between
the points. In case of volumetric measurements the distance simply be-
comes the Euclidean distance, i.e. d(pj, pl) = ‖pj − pl‖2. In case of
surface-based measurements d(⋅,⋅) is taken as the distance on the sur-
face. Lastly, if the features do not have an underlying spatial organiza-
tion, then the generalized intersection reduces to the usual set
intersection with d(pj, pl) = C if i ≠ j and 0 if i = j.

The parameter C, the size of the neighborhood, sets the extent of the
spatial relaxation. For C=0 the generalized intersection reduces to the
usual set intersection with no relaxation. Larger C will allow features
that are farther apart to be allowed in the intersection set. The underly-
ing assumption is that features taken at distances smaller than C are
highly correlated. The main advantage of the generalized intersection
over the countingmethods is that the relaxation parameter C has a spa-
tial meaning. It is conceptually very similar to the size of the smoothing
kernel used in univariatemethods and users can set this parameterwith
the same geometric considerations.

Just as features from neighboring locations can appear in different
folds, they can also be identified as relevant in different iterations of
the proposed algorithm. Specifically, considering fj, the features coming
fromN jðCÞ could already have been identified as relevant and knocked-
out in the previous iterations of the algorithm. In this case these features
would appear in FR. The fact that a feature extracted from N jðCÞ is
already in FR highly suggests that fj is also relevant. We encode this in
the generalized intersection by adding a second term

\^ K

k¼1 f
ið Þ
k ≜ f jj∃ ks:t: f j ∈ f ið Þ

k and ∀k∃l ∈N j Cð Þs:t: f l ∈ f ið Þ
k

n o

∪ f jj∃ks:t: f j ∈ f ið Þ
k and ∃l ∈N j Cð Þs:t: f l∈FR

n o
:

ð1Þ

By including the already knocked out features in the generalized in-
tersectionwe attempt tomake the knock-out procedure independent of
the order of the knock-outs, butwe are aware that the generalized inter-
section will not prevent an order-dependence in the presence of a com-
plex correlation structure.

To combine the relevant sets estimated in different folds, the pro-

posed algorithm uses the generalized intersection fðiÞ ¼ \^ K

k¼1 f
ðiÞ
k and

to combine the accuracy estimates it either uses the classification accura-
cy or Pearson's correlation coefficient given earlier. Once ρ(i) and f(i) for
all randomized K-fold experiments are determined, aggregating them is
straightforward. For the accuracy estimates, the proposed algorithmuses
the mean values

ρ ¼ 1
M

XM
i¼1

ρ ið Þ

and for the relevant feature sets it uses the generalized intersection

f ¼ \^ M

i¼1 f
ið Þ
;

whereM indicates the number of K-fold experiments.



136 M. Ganz et al. / NeuroImage 122 (2015) 131–148
4.0.1. Random forests and selection frequency
The learning method in the predictive modeling component is the

Random Forest (RF) algorithm (Amit and Geman, 1997; Breiman,
2001), which has been shown to be useful in many vision and medical
image analysis tasks (Criminisi et al., 2012). In the proposed algorithm,
we use RF to learn a mapping between the features and the labels using

the training dataset ðX̂ðiÞ
tr;k; y

ðiÞ
tr;kÞ, and later use the learned mapping to

compute label predictions Ŷte,k
(i) based on the features X̂

ðiÞ
te;k. In particular

we use the RF variant proposed in Konukoglu et al. (2013b), the
neighbourhood approximation forests, as this algorithm can be applied
to both continuous and categorical labels without any modification. For
the details on how a forest is learned and how it is used to perform pre-
dictions we refer the reader to Konukoglu et al. (2013b) as well as to
other RF literature (Amit and Geman, 1997; Breiman, 2001).

During the learning process the RF identifies a set of relevant
features fk(i) that are “important” for prediction. The feature selection
mechanism in RF is based on quantifying the contribution of each fea-
ture in the learned forest. Various importance measures can be used
for this purpose, such as Gini importance and permutation importance
(Strobl et al., 2007), and each of thesemeasures can be used to rank fea-
tures based on their importance. To identify a set of relevant features one
has to determine a threshold on this ranking that will separate relevant
from non relevant features. As we have noted earlier, determining such
a threshold is not a trivial task. Fortunately, for themost basic importance
measure, feature selection frequency, it is actually possible to determine a
threshold and construct a set of relevant features in a principled way.

Selection frequency is the number of times a feature is used in the
forest across all the nodes. In Konukoglu and Ganz (2014) we intro-
duced a method for determining thresholds for the selection frequency
to separate relevant from non-relevant features taking into account the
basic parameters of the learned forest, such as the number of trees. The
threshold is determined based on a tuning parameter α ∈ (0, 1), which
is the desired limit on the expected fraction of non-relevant features
that will exceed the threshold and be falsely identified as relevant, i.e.
the expected false positive rate. The proposed algorithmuses themethod
described in Konukoglu and Ganz (2014) to determine fk(i) ⊂ F and
keeps α as a tuning parameter of the current system.

4.1. Statistical test

The statistical test formulates the stopping criteria in the overall al-
gorithm. The iterations stop when the prediction accuracy estimate ρ
is no longer significantly higher than the accuracy of a random predic-
tor. This case suggests that either there are no more features that
show condition related variation, or the learning method can no longer
take advantage of the remaining relevant features. For the binary classi-
fication problem we employ the one-sided binomial test (Pereira and
Botvinick, 2011)with the sample sizeN. We note that the effective sam-
ples size in the randomized K-fold cross validation would be smaller
than N, however, determination of the effective size is not a trivial
task and for large sample sizes the binomial test is a decent approxima-
tion. For the continuous regression problemwe use a one sided t-test on
the Pearson's correlation coefficient to test the significance of the pre-
diction accuracy. We would like to note that other types of statistical
tests, such as permutation testing, can also be used within the proposed
algorithm.

4.2. Knock-out

At each iteration the identified set of relevant features f are removed,

or “knocked-out”, from X̂. This is simply done through the updates F=

F\f and X̂ ¼ XF;� , where \ is the set difference. The algorithm then re-
iterates to detect the remaining relevant features in the reduced matrix

X̂. Here, since the relevant features of the previous iterations are no
longer available, the algorithm is forced to use the remaining features
and identify new subsets of relevant features amongst them. The fea-
tures that are knocked-out at each iteration are stored in the set FR =
FR ∪ f, which at the end of the iterations is the final result of the
algorithm.

4.3. Tuning parameters

The proposed algorithm has two tuning parameters on its own and
also inherits the tuning parameters of the predictive model Random
Forest. In this section we summarize these parameters and try to pro-
vide the intuition for setting them.

The main parameters of the Random Forest algorithm are the
number of trees, maximum tree depth, stopping criteria, subsam-
pling ratio of samples (bagging) and number of randomly chosen
features used per node optimization. For a detailed explanation of
the effects of these parameters on the Random Forest training and
prediction performance, we refer the reader to Breiman (2001),
Breiman and Adele (2008) and Criminisi et al. (2012). Very coarse
guidelines for setting these parameters are: (i) more trees is always
better, it improves robustness, (ii) one sound approach to set the
maximum tree depth is to limit the minimum number of samples
each leaf is allowed to have, (iii) lower subsample ratios will con-
struct more uncorrelated trees which will improve the generaliza-
tion power of the Random Forest and produce less false positive
detections, however, this ratio should also be large enough so that
every tree sees a large number of samples and (iv) Breiman and Cut-
ler in Breiman and Adele (2008) suggest setting the number of fea-
tures used per node optimization to

ffiffiffi
d

p
noting that the influence of

this parameter to final prediction performance is very small in a

large range around
ffiffiffi
d

p
.

The two tuning parameters of the proposed model are α ∈ [0, 1],
the expected false positive rate in each fk(i), and C ∈ℝ+, the relaxation
parameter in the generalized intersection. The α is similar in behav-
ior to the voxel-wise significance levels in univariate analysis. Small-
er α values will result in highly specific tests while lowering the
sensitivity. Larger α values will yield higher sensitivity values
sacrificing specificity. In our experiments we found values in the
range [0.01, 0.05] to provide a good compromise. The C parameter
is similar in behavior to the size of the smoothing kernel used in uni-
variate analysis. Larger C values correspond to assumption that dis-
tant features are supposed to be correlated. As a result, features
extracted from points at a certain distance will influence each other
during the intersection process. As C gets smaller, the generalized in-
tersection becomes stricter, encoding our belief that the spatial
structure extends to shorter distances. As a result, only features
that are close in space will influence each other. The value of C can
be defined in terms of actual distances in space or in terms of discrete
distances depending on the discretization of the anatomical mea-
surements. In the experiments we provide results with different C
values to provide some basic intuition regarding the role of this
parameter.

4.4. About false positives and false negatives

The proposed algorithm is designed to minimize false positives as
well as false negatives in the relevant feature identification process. In
this last part we summarize these properties to provide a complete pic-
ture. The design of the algorithm dictates that the knock-out iterations
will continue until prediction is no longer possible. This aims to reduce
the false negatives. For minimizing the number of false positives the
proposed method uses both the feature selection mechanisms of Ran-
dom Forests and the generalized intersection. First, the generalized in-
tersection aims to lower the false positives by eliminating features
that are selected in one fold of cross-validation but not the others.
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Then throughα the number of false positives in each fk(i) is limited. Final-
ly, the cluster-wise correction aims to reduce the false positives once
again.

Thisway a large portion of the false positives can be eliminated. But a
small portion of the false positives will survive the generalized intersec-
tion. These features are the “relevant” irrelevants. The feature selection
literature (John et al., 1994) distinguishes between two classes of rele-
vant features:

1 The relevant features that are truly related to the task at hand, regres-
sion or classification, regardless of the sample size of the data, i.e. they
persist as the number of samples S → ∞.

2 The “irrelevant” relevant features that get only identified as relevant
because for the finite samples at hand they separate the data better
than random.

Naturally, the number of the latter type of relevant features de-
creases as the number of samples increases. However, for finite samples,
there might be features that display strong spurious correlations to the
label. We would like to emphasize that these “irrelevant” relevants will
be detected as truly relevant features and subsequent neuroscientific
and biological interpretations need to take that into account.

5. Correction for multiple comparisons problem with cluster-wise
analysis

One important aspect in statistical analysis of image-derived
measurements is the problem of multiple comparison. In univariate
analysis for instance, each measurement is tested independently
and therefore, the probability of false positive detections increases
with each test. The naive way to correct for this is to control the
family-wise error using a Bonferroni correction (Bonferroni, 1935).
This correction, however, does not take into account the correlation
between measurements and as a result it can underestimate the
size of the real effect. Clusterwise correction (Worsley et al., 1996;
Andrade et al., 2001; Hagler et al., 2006) is an alternative to
Bonferroni correction that takes into account the spatial correlations
between measurements to some extent.

While the multiple comparison problem has not received much
attention in the MVPA literature, it is also an issue for the multivari-
ate predictive models. In particular, on a given finite dataset, the
chances of building a statistically significant predictive model
under the null hypothesis, i.e. there is no statistical relationship be-
tween the labels and the features, increases as the number of fea-
tures increases. In these cases, MVPA methods may falsely identify
features as relevant. Considering the large number of measurements
and small number of samples in usual neuroimaging studies, the
multiple comparison problem for MVPA is an important issue. In
this article we adopt a cluster-wise correction to tackle the multiple
comparison problem.

The underlying idea in the clusterwise analysis for univariate tests
(Worsley et al., 1996), (Andrade et al., 2001; Hagler et al., 2006) is
that true effects form large clusters, i.e. contiguous regions covering
multiple neighboring measurement sites. Therefore, truly relevant fea-
ture sets are expected to come from large clusters while false positives
are expected to arise from individual sites or smaller clusters. Based
on this reasoning the cluster-wise analysis estimates the distribution
of maximum cluster size detected when the null hypothesis is true.
This distribution is then used to assess the significance of the clusters
detected in the real data. Here, we use the same strategy to perform
multiple testing correction for the proposed method. However, we
need to build an appropriate strategy to compute the null distribution.

To determine the null distribution of maximum cluster size in uni-
variate analysis the usual approaches are using random field theory
(Worsley et al., 1996), permutation tests (Nichols and Holmes, 2002)
or Monte-Carlo simulations (Hagler et al., 2006). In random field theory
and simulation techniques, the underlying assumption is that false
positives are due to smoothed noise, which fits the imaging process
and pre-processing for functional MRI and PET. In group analysis of
structural images however, the noise might not be the main source of
false positives. Instead, we believe the false positives are mostly due to
the high-dimensionality of the data and the small sample sizes. As a re-
sult, false positives can form clusters larger than the effects of smooth-
ing alone. Permutation tests would be much more appropriate for
such situations. However, permutations have to be repeated for every
single analysis and no pre-computation is possible. Considering the
computational cost of the iterative scheme proposed here, we believe
a strategy that allows for pre-computations is more appropriate for
the proposed algorithm.

We compute the null distribution of maximum cluster size using a
Monte-Carlo simulation technique based on synthetic data generation.
The underlying idea is to synthetically generate multiple datasets from
a probabilistic model that has the same first and second order statistical
properties as real data observed from a control population. As a result,
the generated data has the same correlation structure between features
as the observed data. To each sample we then randomly assign labels,
which ensures there is no relationship between features and the labels.
The proposed algorithm is then applied to all the generated datasets and
relevant sets of features are detected for each dataset independently.
Each resulting set is then analyzed by connected-component analysis
and the size of the largest cluster is recorded. The largest cluster sizes
form a histogram, which approximates the real null distribution. The
significance assessment is performed similar to the technique in
Hagler et al. (2006). The clusters detected in the real data are compared
in size with the null distribution. The fraction of the maximum clusters
computed under the null distribution is defined as the significance level
for the clusters detected in the real data. Belowwe describe the synthet-
ic data generation to complete the discussion.

5.1. Synthetic data generation

Our synthetic data generation is based on building a multivariate
Gaussian model such that it has the same mean, variance and spatial
correlation structure as the sample estimates obtained from real data
observed from a control population. Let us indicate such a dataset
with ~X ∈ℝd�N , where N is the number of samples and d is the number
of measurements. As before, we assume that the data is pre-processed
and mapped to a common coordinate system. All we have to do is to
construct a Gaussianmodel that has the samemean and covariancema-
trix as ~X. We set the mean of the multivariate Gaussian model as the

sample mean of the observed data μX ¼ ∑
S

i¼1
=~X�;i=S, where X⋅,i denotes

the i th column of X. As for the covariance matrix, since the number of
measurements is much higher than the number of samples we cannot
directly use the sample covariance matrix in a multivariate Gaussian
model. Instead, we use the singular value decomposition (SVD). For
this we first demean the data from the control population, i.e. X�;i ¼
~X�;i−μX , and then decompose X with SVD, i.e. X = UΣVT. Based on
the SVD components we define the probabilistic model for synthetic
data generation as

x ¼ UΣvþ μX ; v∝N 0; IN=Nð Þ; v ∈ℝN ; x ∈ℝd; ð2Þ

where IN is the identity matrix of size N × N. It is easy to verify that the
mean and covariance matrix for x is the same as the sample mean and
sample covariance matrix of ~X. To generate a synthetic data, we simply
sample the v vector, whose components are identically and indepen-
dently distributed, and transform it using the equation given above.
The maps created using Eq. (2) represent the “control” anatomy, and
its variation is attributed to the variation of the normal anatomy.
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6. Experiments

We evaluated the proposed algorithm with experiments on both
synthetic and real datasets. In all the experiments, we applied the pro-
posed tool to identify the relevant feature sets with respect to
experiment-specific conditions. The identified feature sets are evaluat-
ed either using ground truth information, for the synthetic datasets, or
by virtue of comparisons with the findings in the literature and with
other methods, for the real datasets. We compared our algorithm with
a multitude of state-of-the-art MVPA methods as well as with mass-
univariate analysis. This section presents details on the experimental
data, evaluationmethodology, the parameter setup for the proposed al-
gorithm and the other techniques we compared our method with. We
present the results and the discussions in the following section.

6.1. Data

In all the experiments we focus on cortical thickness and its local
variations due to different conditions. Cortical gray matter thickness
maps can be extracted fromhumans using in-vivo T1-weightedmagnet-
ic resonance images (MRI). For all the datasets we used the FreeSurfer
software suite (https://freesurfer.nmr.mgh.harvard.edu) (Fischl, 2012)
to compute subject-specific models of the cortical surface (Dale et al.,
1999; Fischl et al., 1999a) and measure thickness across the entire cor-
tical mantle (Fischl and Dale, 2000) based on T1-weighted MRI. The
FreeSurfer software extracted measurements at about 100 k locations
from each hemisphere for each subject. Subject-specific thickness
maps were then transferred to a common coordinate system and
resampled, via a surface-based nonlinear registration procedure
(Fischl et al., 1999b). This common coordinate system has multiple tri-
angulated surface mesh representations with different resolutions, i.e.
different number of vertices, for both hemispheres. We constrained
our experiments to the left-hemisphere and the discretization that con-
sists of 10,242 vertices (the fsaverage5 representation). The reason we
choose the fsaverage5 representation is simply to lessen the computa-
tional burden. In the experiments the feature vector for each subject is
composed of the cortical thicknessmeasurements at these 10,242 verti-
ces on the common reference frame. Since the measurement sites are
located on the cortical surface, it is clear that they have a spatial struc-
ture that induces correlation structure on the measurements.

We start by describing the real datasets and then provide details on
the synthetic datasets.

6.1.1. OASIS
The first real dataset is the publicly available cross-sectional Open-

Access Series of Imaging Studies (OASIS, oasis-brains.org) (Marcus
et al., 2007). The OASIS dataset provides T1-weighted MRI collected
from a cohort of 416 subjects with ages ranging between 18 and 96.
Among these 416 subjects, 100 subjects with ages over 60 have been
clinically diagnosed with very mild to moderate Alzheimer's disease
(AD). The remaining 315 subjects were non-demented and did not
have symptoms of any cognitive or mental disorders at the time of ac-
quisition. This cohort of 315 subjects represent a great resource to
study the effects of “healthy” aging on the brain anatomy. We analyzed
these 315 subjects to detect aging-related local variations in cortical
thickness, a well documented phenomenon (Salat et al., 2004). In the
analysis the labels were set as the subjects' ages (continuous variable).

6.1.2. ADNI
In the second experimentwe used the publicly available Alzheimer's

Disease Neuroimaging Initiative (ADNI) dataset (Mueller et al., 2005;
Jack et al., 2008). Data used in the preparation of this article were ob-
tained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) da-
tabase (adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations,
as a $60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California-San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date, these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI, and peo-
ple with early AD. The follow-up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally re-
cruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.

In our analysis we used a subset of the ADNI data that consists of
T1-weighted MRI from 145 AD patients, and an age and sex-matched
group of 145 controls. The analysis focused on detecting AD related
anatomical variations in cortical thickness, which is also a well doc-
umented phenomenon (Baron et al., 2001; Lerch et al., 2005; Lerch
et al., 2008). In the experiment the labels were set as Alzheimer's dis-
ease diagnosis (AD or control) represented as binary variables (0 for
control and 1 for AD).

6.1.3. MCIC
In the third experiment we used the MIND Clinical Imaging Consor-

tium (MCIC) Collection, which is a shared repository of multi-modal,
multi-site brain image data from a clinical investigation of schizophre-
nia (SCZ) (Gollub et al., 2013). The dataset consists of a comprehensive
clinical characterization and raw T1-weighted, functional and diffusion-
weighted MRI of 331 schizophrenia patients and controls. The effects of
SCZ on brain anatomy is a less well documented phenomenon than
healthy aging or AD, which might be due to the variations in the disor-
der itself. Nevertheless, recent research has shown that SCZ has a signif-
icant effect on the cortical thickness using the same dataset we used
here (Ehrlich et al., 2014). We analyzed a subset of 75 patients and 75
age and sexmatchedhealthy controls to detect the SCZ related local var-
iations in cortical thickness. Similar to the experiments on the ADNI
dataset, the labels are set as the disease diagnosis represented with bi-
nary variables.

6.1.4. COBRE
In the last experiment on real data we used another dataset on

schizophrenia: The Center for Biomedical Research Excellence (COBRE)
(T. C. for Biomedical Research Excellence, 2014) dataset (http://
fcon_1000.projects.nitrc.org/indi/retro/cobre.html). The complete
COBRE dataset consists of T1-weighted and functional MRI from 72
patients with SCZ and 75 healthy controls (ages ranging from 18 to
65 in each group). We used a subset of 50 patients and 50 age and
sex matched healthy controls, where patients were identified by
the COBRE phenotypic key. As in the MCIC dataset, we analyzed the
cohort to detect SCZ related changes in cortical thickness. Similar
to the MCIC dataset, the labels for each case represent the diagnosis
with a binary variable.

6.1.5. Synthetic data
In addition to the real datasets, we performed experiments on

synthetically generated datasets, where the advantage is the

https://freesurfer.nmr.mgh.harvard.edu
http://www.adni-info.org
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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knowledge of the ground truth. The condition-related variations in
synthetic datasets are hand crafted and therefore, the true sets of rel-
evant features are known. This allows for a quantitative evaluation
and comparison of the proposed algorithm with other state-of-the-
art methods. For each dataset, we synthetically generated thickness
maps for a control and a patient group, where the effect of the dis-
ease is simulated to be local cortical atrophy at a pre-specified region
of interest (ROI). For the control group, we used the method de-
scribed in Section 5.1, where we used the thickness maps obtained
from the OASIS dataset as the generating sample set ~X. For the thick-
ness maps of the patient population, we simulated local cortical atro-
phy (cortical thinning) of various degrees. To this end we introduced
ROI-based atrophy in the data generation process, where cortical
thickness measurements in the ROIs are decreased on average across
the population. The thickness values outside the ROIs were drawn
from the same distribution as the control population. To encode the
disease related cortical atrophy we used the following formulation

x ¼ UΣvþ μX ∘ 1−ξ Rð Þ; ð3Þ

where ∘ is the element-wise product, ξ ∈ [0, 1] is the effect size and R
is the ROI mask, i.e. a vector of size F in which the components corre-
sponding to the region of interest are 1 and the rest is 0. Fig. 2 shows
the ROIs we used in the experiments.

We constructed four synthetic datasets each composed of 50 con-
trols and 50 patients, so altogether of 100 samples. The control
groups were constructed the same way for each dataset. The patient
groups on the other hand had different ξ values and ROIs. The ξ value
for datasets 1 and 3 was ξ= 0.085 and for dataset 2 and 4 it was ξ=
0.115. The first and second dataset are constructed based on ROI1
shown in Fig. 2. The third and fourth synthetic datasets are based
on ROI2 in the same figure. This corresponds to a signal-to-noise
ratio (SNR) of 0.56 ± 0.05 for dataset 1, 0.75 ± 0.08 for dataset 2,
0.55 ± 0.08 for dataset 3 and 0.72 ± 0.12 for dataset 4. The SNR
was calculated as the mean over the point-wise differences between
the healthy and diseased divided by the standard deviation inside
the ROI. Examples of synthesized thickness maps for each of the
four datasets both from the control and the patient groups can also
be seen in Fig. 2. Similar to the ADNI, MCIC and COBRE datasets, the
labels are set to be disease diagnosis represented with binary vari-
ables, i.e. 0 for the control group and 1 for the patients.

Additionally, we created two different sample sets for each synthetic
dataset, a training and a testing dataset, each consisting of 100 samples.
In each experiment, the first sample set was used to perform feature
Fig. 2. Synthetic dataset: The two different regions of interests (ROIs) used for construction of th
generated cortical thicknessmaps from the control and case groups are shown in the remaining
face of the left hemisphere of the common coordinate system. In gray we show the gyral patter
quite difficult to discern the difference between synthetic thickness maps of a healthy and a di
selection and optimize algorithmic parameters. For LASSO, Sparse SVC
and Elastic Net, we then used the optimal parameters to train the algo-
rithms on the first sample set and evaluated the prediction accuracy on
the second sample set. For RFE-SVC, Random Forests and the proposed
method, after feature selection we trained the algorithms on the first
sample set using only the selected features and then again evaluated
the prediction accuracy on the second sample set.

6.2. Algorithms for comparison

To provide an empirical comparisons with the state-of-the-art we
used the following different methods in our analysis in addition to the
proposed one:

1 Mass-univariate analysis with generalized linear models (Friston
et al., 1994), (Ashburner and Friston, 2000) (Univariate)

2 LASSO (Tibshirani, 1996)
3 Elastic Net (Zou and Hastie, 2005)
4 Sparse logistic regression (Yamashita et al., 2008) (Sparse LR)
5 Sparse support vector classification (Bi et al., 2003) (Sparse SVC)
6 Random Forest with Gini Contrast (Langs et al., 2011) (RF Gini)
7 Stability Selection based on LASSO (Meinshausen and Bühlmann,

2010) (StabSel)
8 Recursive feature selection (Guyon et al., 2002) with support vector

regression or classification (RFE)
9 Shrinkage linear discriminant analysis (Ahdesmaki et al., 2010)

(SLDA)
10 Regression analysis by Mahalanobis-decorrelation (Zuber and

Strimmer, 2011) (CARS)
11 Shrinkage diagonal discriminant analysis (Ahdesmaki et al., 2010)

(SDDA)

Our pool of comparison methods includes representatives of a va-
riety of important types of algorithms: linear, nonlinear, univariate,
multivariate, sparse, ranking-based. In all the methods except the
mass-univariate analysis, we either optimized the algorithmic pa-
rameters for highest prediction accuracy, as conventional, or if such
an optimization was impossible we ran the algorithm with different
parameter settings. This was the case for the following algorithms:
RF Gini, StabSel, RFE, SLDA, SDDA and CARS. Both RF Gini and StabSel
assign an importance measure to features for which determining a
threshold is not trivial, but the measures can be used to rank the fea-
tures. So, using these measures we ranked the features and used
three different thresholds such that the top 15%, 50% and 85% of
the features would be identified as relevant, respectively. The
e synthetic datasets are shown in yellow in the left most column. Examples of synthetically
columns. The regions and the simulated thicknessmaps are overlayed on the inflated sur-
ns, where dark gray areas are sulci and light gray areas are gyri. We note that it is visually
seased sample.
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features that got 0 importance measure were not taken into account
in this computation. RFE is an iterative algorithm that can also be
used to rank features based on which iteration they get pruned out.
Features that survive all iterations would have the top rank and
those that get pruned out in the first iteration would get the last.
As the other algorithms, it is not trivial to determine a threshold in
this ranking. So, we used three different rankings where the features
that had higher ranks than 1, 5 and 10 were identified as relevant, re-
spectively. SLDA and SDDA compute correlation-adjusted t-scores, and
CARS computes correlation-adjusted marginal correlation scores for
each feature. In all of these algorithms the resulting scores are argued
to be accurate variable importance measures. Therefore, they can be
used to rank features. More importantly, authors in Ahdesmaki et al.
(2010) and Zuber and Strimmer (2011) provide details on how to
threshold the variable importance measures by limiting the false dis-
covery rate (FDR). In our experiments we used this strategy and used
three different FDR thresholds, namely FDR b 0.8, FDR b 0.2 and
FDR b 0.05. The first two limits are the values suggested by the authors
in the respective articles.

For the experiments with univariate analysis, we first smoothed the
individual cortical thickness maps using a smoothing kernel with 5mm
full-width-half-maximum on the common coordinate system. From the
smoothed maps, we first computed the uncorrected maps using the
Freesurfer software suite and thresholded these at p ≤ 0.05, 0.01 and
0.001. These results are presented with the acronym “Univariate”. We
then performed two different corrections for multiple comparisons on
the raw univariate maps. We applied family-wise error correction
using Bonferroni's method (Bonferroni, 1935) and cluster-wise correc-
tion using the Monte Carlo simulations described in Hagler et al.
(2006) with two different parameter settings: (voxel-wise threshold,
cluster-wise threshold) = (0.01,0.01) and (0.001,0.001), which are
common parameter settings used in various studies. These results are
presented with the acronyms “Bonferroni” and “CWC” in the results
section.

Lastly, we also experimented using another MVPA method within
the knock-out algorithm instead of Random Forest. For this we used
LASSO and refer to the resultingmethod as LASSO-KO in the results sec-
tion. The tuning parameters for the LASSO component was set so as to
maximize the prediction accuracy. The only tuning parameter that
remained to be determined in LASSO-KO was C, which is used in the
generalized intersection.We experimented using three different values,
C=3, 5, 7mm. As the distance d(⋅,⋅) in the generalized intersection we
used the distance on the cortical surface, which can be computed using
the triangulated mesh.

We used the “scikit-learn” python package (Pedregosa et al., 2011)
and “sda” and “care” R packages (Ahdesmaki et al., 2010; Zuber and
Strimmer, 2011) to implement all the competing state-of-the-art
methods. The univariate analysis and the corresponding cluster-wise-
correction was performed as implemented in the Freesurfer software
suite (https://freesurfer.nmr.mgh.harvard.edu).

6.3. Parameter settings for the proposed method

As discussed in Section 4.3 the proposed method has two parame-
ters on its own and also inherits the parameters of the Random Forest
algorithm. In all the experiments we used one set of parameters for
the Random Forest algorithm. We set the number of trees to 500, num-
ber of minimum samples per leaf node to 10, subsampling ratio of the
samples to 0.5 and the number of features used per node to 500. Addi-
tionally, for the forest variant we have used, the neighboring approxi-
mation forests, we needed to define the number of closest neighbors
that will be used during predictions. This number indicates the number
of samples that will be identified by the forest and used to predict the
label of the test sample.We set this number to 15 for all the experiments
based on the analysis given in Konukoglu et al. (2013b). We note that
different parameter settings are also possible and we have set these
parameters based on experience. Readers who are familiar with the
Random Forest algorithm can use the parameter settings they prefer.

As for the tuning parameters of the proposed model, α and C, we
have performed a sensitivity analysis with α = 0.01, 0.05 and C =
3 − 10 mm and provided its results in the supplementary material.
Based on this analysis we present experimental results for all our data
with α = 0.01 and C = 5 mm and 7 mm. We also applied the multiple
comparisons correction step explained in Section 5 to correct the results
obtained using the proposed method. As cluster-wise thresholds we
experimented with 0.01 and 0.05.

6.4. Performance assessment

In the synthetic experiments we quantitatively assessed the perfor-
mance of different algorithms. We compared the estimated relevant
feature sets with the ground truth relevant features using sensitivity
and DICE scores. We define the sensitivity s as

s ¼ TP
TPþ FN

ð4Þ

and the Dice score d

d ¼ 2TP
TPþ FNþ FP

; ð5Þ

where TP stands for true positive (algorithm correctly identifies a fea-
ture as relevant), FP for false positive (algorithm identifies the feature
as relevant while it is not), TN for true negative (algorithm correctly
identifies a feature as non-relevant) and FN for false negative (algorithm
identifies the feature as non-relevant while in reality it is relevant). We
do not choose to present specificity values (given by TN

TNþFP) because due
to TN≫ FP they will always be very close to 1 and hence, it is not a dis-
criminating measure for algorithm comparison in our case.

In case of the real data we can not measure the feature retrieval per-
formance because the ground truth features are not available. Instead,
we provide visual results and qualitatively compare the results fromdif-
ferent methods as well as with the findings in the literature.

6.5. Reproducibility study

In addition to the performance evaluation on the synthetic and real
datasets, we also tested the reproducibility of the proposed method
and compared it to univariate tests. To this end, we chose one of the
two lager data sets, the ADNI data set, and randomly subsampled it to
create ten data sets each consisting of a group of 50 AD patients and
an age and sex-matched group of 50 controls. We then performed uni-
variate analysis as well as ran the proposed method on all the smaller
subsets in the same fashion as was done on the entire data set.

We evaluated the reproducibility of the proposed method and the
univariate tests based on two criteria. First, for each featurewe comput-
ed the number of subsampled datasets where it gets identified as rele-
vant. The ideal algorithm would be able to identify the same features
in all the subsets. Second, we compared the relevant feature sets identi-
fied using the subsampled datasetswith the sets identified using the en-
tire dataset. This evaluation aims to display the effect of dataset size on
the power of the algorithm.

7. Results and discussion

In the following we present the results of our experiments and dis-
cuss them.We start with the experiments on the four synthetic datasets
and then move on to the four real datasets. Finally, we present the out-
come of our reproducibility study, describe the computational complex-
ity of the proposed method and state its limitations.

https://freesurfer.nmr.mgh.harvard.edu
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7.1. Synthetic datasets

We use the acronyms given in Section 6.2 to refer to different algo-
rithms and the acronym “NAF-KO” to refer to the proposed method.
We summarize the results in Fig. 3 where we plot only the results of
the best performing parameter settings for all the MVPA methods and
the univariate techniques. Detailed results can be seen in the supple-
mentarymaterial providedwith this article. For the proposed algorithm
the figure displays the results obtained with α=0.01, C=5, 7mm and
a cluster-wise threshold of 0.05. Those parameters were chosen based
on a sensitivity analysis provided in the supplementarymaterial. Differ-
ent graphs plot the results obtained in different datasets. In each graph
the dashed vertical line separates uncorrected techniques from the ones
corrected for multiple comparison.

Observing the results in Fig. 3, we note that the proposed method
outperformed other MVPA methods in terms of DICE score across the
board. This suggests that the proposed method indeed detects impor-
tant features and not just adds more. In terms of sensitivity RFE, SLDA
and SDDA yielded scores comparable to those of the proposed method.
For RFE, the high sensitivity came at the expense of a substantial de-
crease in DICE score. The two algorithms specifically developed for
high-dimensional correlated data, namely SLDA and SDDA, both
achieved relatively high sensitivity as well as a relatively good Dice
score in the synthetic datasets. Their performance was slightly lower
than NAF-KO with and without cluster-wise correction in terms of fea-
ture retrieval.

The univariate analysis without correction achieved similar sensitiv-
ity scores as the proposedmethod on the second and third datasets and
slightly lower values on the first and fourth dataset. The DICE scores of
the uncorrected univariate analysis were substantially lower than the
sensitivities indicating the weak specificity of uncorrected analysis.

We note that performances between datasets varied. The difference
between the first (third) dataset and the second (fourth) dataset was
due to the difference in the simulated effect sizes, ξ = 0.085 and ξ =
0.115. Smaller effect size naturally resulted in a more difficult problem.
The difference between thefirst pair and the second pair of datasetswas
due to the location. ROI1 had a larger variability in the normal anatomy.
This characteristic was inherited by the simulated data making the first
pair of datasets slightly more challenging than the second one.

The cluster-wise correction improved the DICE scores of both the
univariate analysis and the proposed method. The Bonferroni cor-
rection on the other hand, being very strict, over-penalized the uni-
variate analysis and resulted in very low sensitivity and DICE score.
We observe that on the second dataset the univariate analysis with
cluster-wise correction achieved the highest sensitivity and DICE
scores (for the parameter setting (0.01, 0.01)). The proposed
method's results were also comparable to these results. For the
first, third and fourth dataset on the other hand, the proposed meth-
od yielded higher DICE and sensitivity scores. This suggests that the
multivariate analysis might be more advantegeous for smaller effect
sizes and overall more difficult problems.

Furthermore, comparing LASSO-KO and NAF-KO we notice the
advantages of using Random Forest within the proposed algorithm.
The main drawback of LASSO-KO compared to NAF-KO arises from
the sparsity of LASSO. Being sparse, LASSO aims to select very few
but very discriminative features. When such strong features are
present in the feature set, the algorithm can pick them up in any
cross-validation fold and as such these features survive the intersec-
tion. However, when the feature set contains many but not very dis-
criminative features, then LASSO might select different features in
every fold and these features might not survive the intersection.
This is the behavior we observe for LASSO-KO. The fact that the accu-
racy of LASSO-KO increased with increasing C also provides evidence
for this behavior.

Lastly, we also present an analysis of the testing accuracy of the se-
lected features on independently constructed test datasets in Fig. 4 as
well as in a table in the supplementary material. We observe that
NAF-KO and other MVPA algorithms achieved very similar accuracies
on all four datasets. The increase in feature selection accuracy did not
translate into an increase in prediction accuracy. This result is not very
surprising since we expect predictive models to select highly predictive
features and discard any features that do not add to the prediction capa-
bility. As a result, the final model, although not accurate in feature re-
trieval, is still highly predictive. NAF-KO on the other hand, achieved
both of these goals. It identified the relevant features withmuch higher
accuracy while retaining good prediction capabilities.

7.2. Real data

Wepresent the results on the real datasets in Figs. 5 and 6. Fig. 5 dis-
plays the relevant feature sets detected by different MVPA methods on
theOASIS dataset—i.e. features displaying age related variation. The fea-
tures are plotted on the inflated surface of the left hemisphere of a com-
mon coordinate system (fsaverage5). We present the medial and the
lateral views of the same surface in each image. On the surfaces, in
gray levels we show the gyral patterns of the common coordinate sys-
tem, where dark areas are sulci and light areas are gyri. The detected
features, or more precisely the anatomical locations the relevant fea-
tures are extracted from, are indicated with yellow. Under each image
we denote the correspondingMVPAmethod and the parameter setting.
In the last row we present the features detected with the proposed
method.We applied the clusterwise correction on these results, howev-
er, it did not make any difference. For succinctness of discussion we
show the results from other MVPA methods only on the OASIS dataset.
Results obtained on the other datasets display similar behavior and they
can be found in the supplementary material.

In Fig. 6, we show the univariate analyses results on all four real
datasets together with the detection results of the proposed method.
For all the datasets, in the first rows, we show the uncorrected uni-
variate p-value maps (simply thresholded at 0.01) followed by the
results of three different multiple comparisons correction methods:
the Bonferroni and the two cluster-wise corrections, for which the
voxel-wise and cluster-wise parameters are indicated inside parenthe-
ses in that order. The univariate results are color coded in the following
way. Blue indicates negative correlation with the condition, while yel-
low and red indicate positive correlation. Light blue and yellow indicate
a stronger effect, i.e. more significant p-values, than darker colors.

In the second rows we show the locations detected by the proposed
method for twodifferent parameter settings, whichwere selected based
on their performance in the synthetic experiments. The parameter set-
tings are indicated under each figure as (α, C). We present the results
for the other parameter settings in the supplementary materials. The
first two figures show the raw detection results without multiple com-
parisons correction for all the datasets. In the ADNI and OASIS datasets
the multiple comparison correction did not change the results because
the detected regions were large. Instead, in the third and fourth figures,
we show accuracymaps, which at each vertex display the prediction ac-
curacy Random Forest achieved in the iteration the feature for that ver-
tex was knocked-out. In the figures yellow indicates the highest
accuracy and dark red the lowest. The accuracy maps can be thought
of as effect-size maps and they are comparable to the univariate maps
but without distinction between positive and negative correlations.

In the MCIC and COBRE datasets the detected clusters were smaller
and the multiple comparisons correction method of Section 5 pruned
out some of the clusters. The third and fourth figures for the MCIC and
COBRE datasets show the results after correction the results with a
cluster-wise correction threshold of 0.05 (indicated under the corre-
sponding images as the third value inside parentheses). The surviving
clusters are shown in red. In the supplementary material we also pro-
vide the results for a cluster-wise threshold of 0.01.We do not show ac-
curacy maps for the MCIC and COBRE datasets because for these the
proposed method took at most 1 iteration of knock-out to stop.
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Fig. 3. The sensitivity and Dice overlap on the four synthetic datasets for the best parameter combination of each algorithm.Methods that correct for themultiple comparison problem are
on the right side of the dashed line. In each experiment, the training sample set set was used to perform feature selection and optimize algorithmic parameters. A full list of all results is
provided in the supplementary material.
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In Fig. 5 we observe that the difference between the proposedmeth-
od and the other MVPA algorithms is striking. While NAF-KO identified
almost all surface measurements of cortical thickness as relevant, the
other algorithms produce much sparser relevant feature sets. LASSO,
Elastic Net and RF-Gini all identified the most predictive features and
discarded the rest. This behavior is as expected since all these methods
aim to maximize prediction accuracy without any consideration for
stability nor exhaustivity. Stability Selection, RFE and CARS yielded
larger relevant feature sets for certain user-defined thresholds but
also showed very large variation with respect to the thresholds. Nu-
merous previous studies (Pfefferbaum et al., 1994; Good et al., 2002;
Resnick et al., 2003; Terribilli et al., 2011) have analyzed the correla-
tion between gray matter density and aging. Some have reported a
global and linear relation (Pfefferbaum et al., 1994; Good et al., 2002)
while others have described non-linear effects (Resnick et al., 2003;
Terribilli et al., 2011). But regardless of the linearity of the effect, the
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literature seem to suggest that the aging effect covers the entire cerebral
cortex. In light of these previous studies, NAF-KO's results seem biolog-
ically more plausible than the maps produced by the other algorithms.

Contrary to the MVPAmethods, the mass-univariate analysis on the
OASIS dataset, shown in Fig. 6(a), identified a much larger relevant fea-
ture set. Identified regions largely survived cluster-wise correction for
multiple comparison as well. We note that the accuracy maps of NAF-
KO and the correlation strength pattern that appeared in univariate
analyses showed great similarities. This is not particularly surprising,
since highly correlated regions also make good features for predictions.

Similar to aging, the effect of Alzheimer's disease (AD) is also wide
spread throughout the brain. AD's effect on the cortical thickness has
been documented in numerous studies (Baron et al., 2001; Lerch et al.,
2005; Lerch et al., 2008). Changes have been reported in several differ-
ent regions among them themedialtemporal and tempoparietal regions
as well as the posterior cingulate and precuneus in Baron et al. (2001)
and in another publication temporal, orbitofrontal and parietal regions
(Lerch et al., 2008). In Fig. 6(b) we observe that NAF-KO detected a
very large relevant feature set in the ADNI dataset. Univariate analysis
also detected large regions affected by AD. As in the OASIS dataset, the
accuracy maps and the correlation strength maps computed using uni-
variate analyses showed similar patterns. In fact, both of these maps
showed similarities with thewell-known Braak staging of AD described
in Braak and Braak (1991). In the NAF-KO accuracy maps, the values
were the highest in areas related to Braak stage A, such as entorhinal
cortex and other basal portions of neocortex, anddecreased as it spreads
all over neocortex as also described in Braak stages B and C.

One important point to note is that in both datasets, OASIS and
ADNI, the proposed method detected larger regions than the univar-
iate analyses. The difference was more prominent in the ADNI
dataset. This behavior is actually similar to what we have seen in
the synthetic datasets. The univariate analysis may have missed re-
gions that have smaller effect sizes. Indeed, comparing the regions
identified by CWC (0.001,0.001) with the accuracy maps obtained
with NAF-KO, we see that the identified regions corresponded to
the areas of high prediction accuracy. One common approach to im-
prove the sensitivity of univariate analyses is to use larger smoothing
kernels. We refer the reader to the supplementary material for fur-
ther analyses on this point.

The results for the COBRE and MCIC datasets showed a different be-
havior. Previous studies on the relation of cortical thickness and schizo-
phrenia have shown cortical atrophy in SCZ patients (Nesvåg et al.,
2008; Goldman et al., 2009; Schultz et al., 2010; Ehrlich et al., 2014;
Tully et al., 2014). The effects were localized (Ehrlich et al., 2014),
(Tully et al., 2014), contrary to wide-spread effects seen in aging and
AD. In particular, the work of Ehrlich et al. (2014) also used the MCIC
dataset in their analyses. Fig. 2 of their supplementary material shows
the statistical maps of cortical thickness displaying regions of reduced
thickness in schizophrenia patients compared to healthy controls and
the regions are most pronounced in the frontal lobe, temporal cortex,
inferior parietal lobe, and occipital cortex.

Observing the results shown in Figs. 6(c) and (d),we can see that the
relevant feature maps detected using the proposedmethod in theMCIC
and COBRE datasets are muchmore localized compared to the results
on ADNI and OASIS datasets. We observe some overlap between the
regions identified by the univariate analyses and the proposedmeth-
od. Only very few regions survived the multiple comparison correc-
tion for both methods. The proposed method detected larger
regions as expected. Once again, this might have been due to the
fact that univariate analysis can miss affected regions if the effect-
size is small. Larger smoothing kernels may ameliorate this issue
(see the supplementary materials for further analyses), at the cost
of reducing the ability to localize effects, and removing effects with
small spatial extents.

Another interesting point to note is that in both MCIC and COBRE
datasets the detected regions were distributed across the hemisphere.
These distributed patterns are examples that motivate global MVPA ap-
proaches as opposed to local approaches. By using the entire set of fea-
tures all at once, global approaches are able to detect such patterns even
though individual local regions by themselves may not display a strong
correlation with the condition.

If we compare the results for MCIC (Fig. 6(c)) to the areas of signifi-
cant group differences in cortical thickness between healthy controls
and SCZ subjects identified in Ehrlich et al. (2014) (Fig. 2 in their supple-
mentary material), we can see a large overlap of the regions identified
by NAF-KO and Ehrlich et al. We note that Ehrlich et al. used a larger
smoothing kernel in their analyses.

Finally, comparing the regions detected in the MCIC and
COBRE datasets we see that NAF-KO with the parameter settings
(0.01, 5 mm, 0.05) yielded some overlap. However, there were
also regions that mismatched. This may have been due to the var-
iation of the disease in schizophrenia as well as due to the small
sample sizes in these datasets.

7.3. Reproducibility study

In the reproducibility study the identified relevant feature sets var-
ied across the 10 different random subsets of the ADNI dataset for
both the proposed method and the univariate tests. This variation is
due to the difference in samples between the subsets and is not surpris-
ing. We quantified the variations for the different methods and provide
the results in Fig. 7.

In Fig. 7(a), we display sum-maps, where at each vertex we indicate
the number of subsets in which the feature at that vertex was identified



Fig. 5. Relevant feature maps for different MVPAmethods detected on the OASIS dataset. Results are overlayed on the inflated surface of the left hemisphere of a common coordinate sys-
tem (fsaverage5) inmedial and lateral views. In graywe show the gyral pattern of the common coordinate system,where dark gray areas are sulci and light gray areas are gyri. The yellow
regions are the relevant feature locations identified by each model. Underneath each image we detail which algorithm and which parameter settings were used.
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as relevant. A value of ten indicates that the feature has been chosen in all
the subsets and a value of one that it has been chosen in only one. In the
first row,we show the results of univariate analysiswith cluster-wise cor-
rections, for which the voxel-wise and cluster-wise parameters are indi-
cated inside parentheses in that order. In the second row we show the
results of the proposed method with two different parameter settings,
whichwere selected based on their performance on the synthetic ex-
periments. The results for the proposed method were also corrected
for multiple comparison using the cluster wise threshold of 0.05. The
parameter settings are indicated under each figure as (α, C, cwt).

In Fig. 7(b) we plot the relationship between the relevant feature
sets identified using the subsampled datasets and the entire dataset.
Specifically, we calculated the ratio of the number of relevant features
identified in each subsampled dataset to the same number obtained
using the entire dataset. The figure shows the box-plot where we plot
the 10 ratios for each of the four different analyses (two different pa-
rameter settings for both the univariate and NAF-KO) as jittered points
together with their mean and 95% confidence intervals for the mean.
We performed paired two-sided t-tests between the univariate and
NAF-KO results, where ⋆ : p b 0.05, ⋆⋆ : p b 0.01 and ⋆⋆⋆ : p b 0.001.

The results in Fig. 7(a) and (b) show that overall NAF-KO demonstrat-
ed a higher reproducibility than univariate tests. In Fig. 7(a) NAF-KO re-
sults display much larger regions with high sums (N7) than the
univariate results. Specifically, we note that the sizes of the regions that
got identified in all of the subsampled datasets (regions with sum 10)
are substantially larger for NAF-KO results than univariate analysis. This



Fig. 6. Comparison of univariate analyses and NAF-KO. In each dataset, the first rows show univariate results uncorrected and corrected for multiple comparisons using Bonferroni and a
cluster-wise technique with two different parameter settings. The second rows display NAF-KO relevant feature results for two different (α, C) settings along with their accuracy maps
(ADNI and OASIS) or corrected for multiple comparisons (MCIC and COBRE), where the cluster-wise correction threshold is set as 0.05.
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indicates that the proposed algorithmwasmore consistent across the dif-
ferent subsampled datasets. Moreover, the sum maps for NAF-KO were
also consistent with the relevant features and accuracy maps identified
using the entire ADNI dataset shown in Fig. 6(b). Lastly, the box-plot in
Fig. 7(b) shows that the proposed method also retained a significantly
higher percentage of the relevant features thatwere detected in the entire
dataset in the ten random subsamples compared to the univariate tests.
This suggest that the proposed algorithmmay havemore power for iden-
tifying relevant features in smaller data sets than univariate tests.

7.4. Computational complexity

The computational complexity of the proposed method is similar to
other wrapper-type algorithms, such as recursive feature elimination.
The computational bottleneck is the prediction-modelling component.
In order to have a reliable accuracy estimate and set of selected features,
we chose to perform 10 randomized 5 fold cross-validation experi-
ments in each iteration. To speed up the computations one can use a
computationally lighter estimation scheme, such as a single 5 fold
cross-validation experiment, however, we would like to point out that
this might come at the expense of decreasing accuracy.

In the current system we used C++ to implement the learning
algorithm and Python to implement the knock-out iterations around
the learning method. The exact execution time depends on the num-
ber of samples, number of features and how many iterations the al-
gorithm will run for, which is not known a-priori. To provide some
examples, on our synthetic dataset, which has 100 samples and
10,242 features, each iteration takes 15 min and most experiments



Fig. 7. Reproducibility of relevant features for random subsamples of ADNI (a):We display sum-mapswhere each vertex indicates the number of subsampled datasets the corresponding
featurewas identified as relevant in. A value of ten indicates the feature has been chosen in all random subsets, a value of one that it has been chosen in only one of the ten subsamples. The
first row shows the results for univariate analysis withmultiple comparisons correctionwith the cluster-wise technique for two different parameter settings. The second rows display the
results for NAF-KOwithmultiple comparisons correction using the cluster-wise technique of Section 5. Two different parameter settings are shown for eachmethod. NAF-KO demonstrat-
ed higher reproducibility across different random subsets. (b): We show the percentage of the original relevant feature set, which was identified using the entire dataset, that univariate
analysis and NAF-KO were able to identify using the subsampled datasets. Stars indicate significant difference after paired two-sided t-tests, where ⋆ : p b 0.05, ⋆⋆ : p b 0.01 and ⋆⋆⋆ : p b

0.001.
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finished with only 2 iterations, while a few lasted for 3 iterations. So
the longest experiment took 45 min to finish. On our largest dataset,
which has 315 samples and 10,242 features, each iteration took
25 min and the longest experiment took 11 iterations to finish, total-
ling up to 4 and a half hours. All the computations were performed
on a single 64-bit Intel Xeon CPU running at 3.20 GHz with 7 Gb
memory. The computations, in particular the 10 randomized 5 fold
cross-validation experiments, can be fully parallelized and one may
divide the computation times by almost 50.
7.5. Limitations

In general one of the limitations of MVPA algorithms compared to
conventional univariate analysis is that MVPA methods are more com-
plicated. This has been a barrier for many users unfamiliar with the un-
derlyingmachine learning literature. But in recent yearsmost algorithm
developers make their software available for use and hence MVPA
methods have become more accessible.

Comparing different MVPA algorithms with regard to usability we
find that NAF-KO is notmore complicated to use than Stability Selection
(Meinshausen and Bühlmann, 2010) or recursive feature selection. And
while itmay seem that standard classification algorithms such as LASSO,
Elastic Net or sparse support vector classification are easier to use, they
also require cross-validation to set their internal parameters optimally.
Regarding the limitations of using Random Forest as the underlying
classifier compared to LASSO or support vector machines inside the
knock-out framework, Random Forest seems to clearly outperform
LASSO and has in general been extremely successful as a general pur-
pose classification and regression method.

When compared to the computational complexity of univariate
analysis or standard classification algorithms, the proposed method is
obviously more demanding. However, we would like to point out that
the increased reproducibility suggested by our experimentsmight justi-
fy the computationally more demanding nature of the method.

Finally, we would like to emphasize that by their nature, multi-
variate analyses cannot provide the same localized interpretation
as univariate analysis. Multivariate methods jointly analyze a set of
predictors and compute a statistical relationship between the condi-
tion and the entire set. The strength of the statistical relationship can
only be attributed to the set as a whole rather than to the individual
predictors alone. As a result, it is not possible to investigate the rela-
tionship of a single predictor with the condition. In contrast, univar-
iate tests analyze each predictor in isolation and therefore, the
strength of the relationship as well as its sign can be attributed to
that particular predictor and further local interpretations become
possible. However, our proposed multivariate method, as we have
seen in the synthetic examples and the reproducibility study espe-
cially, can provide a more exhaustive feature set and can hence pro-
vide information that is not accessible by univariate analysis.

8. Conclusions and future work

We presented a new multivariate algorithm for relevant feature se-
lection for neuroimaging studies. The proposed method is an iterative
knock-out algorithm that uses Random Forests. The NAF-KO algorithm
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explicitly aims to construct an exhaustive set of relevant features with
different mechanisms to attain exclusivity. In this respect, it differs
from alternative MVPA methods proposed in the literature. Results on
synthetic and real datasets presented in Section 7 demonstrate the ad-
vantages of the proposed method.

Furthermore, the real advantage ofmultivariatemethods and specif-
ically the proposed method over univariate analysis is shown in our re-
producibility study. We see that NAF-KO achieves a much higher
reproducibility than univariate analysis as presented in Fig. 7. Sowhere-
as researchers often choose between either a univariate or a multivari-
ate analysis or have difficulty consolidating the results achieved via
univariate andmultivariatemethods, we feel that the proposedmethod
can close the gap between the two approaches.

Future work includes the investigation of statistical guarantees
about the recovery of relevant features. If parametric assumptions
on the covariance can be made, then we would like to investigate if
our proposed method can recover all relevant features with high
probability.
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