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Measurements derived fromneuroimaging data can serve asmarkers of disease and/or healthy development, are
largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies.
To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring
potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epi-
genetic markers. However, identifying significant interaction effects is critical for revealing the true relationship
between genetic and phenotypic variables, and shedding light ondiseasemechanisms. In this paper, we present a
general kernelmachine basedmethod for detecting effects of the interaction betweenmultidimensional variable
sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms
(SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear
interactions between sets of variables in a flexible framework. As a demonstration of application, we applied
the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of
the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease
(CVD) risk factors, on hippocampal volumemeasurements derived from structural brainmagnetic resonance im-
aging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions
with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing
AD-related neurodegeneration in the presence of CVD risks.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Genetic components play a significant role in most brain-related
illnesses. The discovery of genetic effects can elucidate the biological
pathways and processes underlying neurological disorders, and ulti-
mately yield prevention and treatment strategies. In thefield of imaging
d from the Alzheimer's Disease
du). As such, the investigators
tation of ADNI and/or provided
is report. A complete listing of
du/wp-content/uploads/how_

er for Biomedical Imaging, 149
02129, USA.
genetics, this goal is approached by using quantitative brain image de-
rived measurements as intermediate or endophenotypes (Biffi et al.,
2010; Ge et al., 2014; Gottesman and Shields, 1972; Gottesman and
Gould, 2003; Meyer-Lindenberg and Weinberger, 2006; Sabuncu et al.,
2012), which are biomarkers of disease, and are believed to be closer
to the disease process and have a simpler genetic architecture than clin-
ical diagnoses.

However, heritability analyses and genome-wide association studies
(GWAS) (Visscher et al., 2012) of complex genetic phenotypes ranging
from human height (Yang et al., 2010), body mass index, von
Willebrand factor (Yang et al., 2011), and schizophrenia (Lee et al.,
2012b), to various volume-, surface- or connection-based brain mea-
surements computed from structural, functional or diffusion images
(Thompson et al., 2013), indicate that phenotypic variation cannot be
solely explained by genetics. The interactions between genetic and
non-genetic variables such as disease risk factors, environmental expo-
sures and epigenetic markers may play an important role in the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.01.029&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.01.029
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:tge1@nmr.mgh.harvard.edu
mailto:msabuncu@nmr.mgh.harvard.edu
http://dx.doi.org/10.1016/j.neuroimage.2015.01.029
http://www.sciencedirect.com/science/journal/10538119


506 T. Ge et al. / NeuroImage 109 (2015) 505–514
variation of complex phenotypes (Sullivan et al., 2012), and the influ-
ence of genetic variants on the likelihood, development, and progres-
sion of a brain illness may be indirect and interactive. The presence of
interactions implies that genetics can modulate the effects of various
risk factors on the disease, producing variations across subjects even ex-
posed to the sameenvironment. Alternatively, the effect of the genotype
on outcomes can depend on one or more risk factors or environmental
exposures. For example, Caspi et al. (2002) reported that the effect of
maltreatment of children from birth to adulthood on the development
of antisocial behavior is moderated by a functional polymorphism in
theMAOA gene. The genotype of a locus known as 5-HTTLPR located in
the promoter region of the serotonin transporter gene was found to
moderate the influence of stressful life events on depression (Caspi
et al., 2003). Therefore, identifying potential genetic interactions with
non-genetic variables can be critical in understanding the true relation-
ship between genotype and phenotype.

Thanks to recent advances in genotyping technology, it is now possi-
ble to investigate genetic interaction effects involving specific genetic
risk factors, candidate genes, or even the entire genome, in unrelated
individuals. Current statistical methods to test for interactions largely
utilize multiple linear regression models with quantitative phenotypes,
or logistic regression models with binary outcomes, in both the genetics
community (Aschard et al., 2011; Kraft et al., 2007; Paré et al., 2010), and
the imaging community (e.g., psychophysiological interactions analysis
(Friston et al., 1997)). In these analyses, both main effects are typically
univariate variables, and the interaction is modeled by their product. Al-
though a number of recent papers have tried to improve the power of the
classical univariate interaction test (Hsu et al., 2012; Mukherjee and
Chatterjee, 2008;Murcray et al., 2011), they suffer from twomain draw-
backs when detecting interactions between genetic variants and non-
genetic variables. First, converging evidence has shown that many com-
plex brain disorders are polygenic and influenced by up to thousands of
genetic variants with small effects (Purcell et al., 2009; Sullivan et al.,
2012). Analyzing each individual locus may not identify any reliable re-
sults with a small to moderate sample size, which is typical in imaging
genetic studies. And second, it is now not uncommon to collect a large
number of disease risk factors, environmental variables, or epigenetic
markers in a single study. The product of all possible pairs of genetic var-
iants and non-genetic variables may be dauntingly large, which dramat-
ically increases the burden of computation and multiple testing
corrections. More critically, Lin et al. (2013) showed that if the main ef-
fects of a set of genetic variants are associated with the phenotype, test-
ing each single genetic variant for interactions can be biased.

In this paper, inspired by Li and Cui (2012), we present a
semiparametric kernel machine based method to detect interactions
between multidimensional variable sets. Kernel machine based
methods have been previously used in association studies between sin-
gle nucleotide polymorphism (SNP) sets and complex diseases or imag-
ing phenotypes (Kwee et al., 2008; Liu et al., 2007; Wu et al., 2010,
2011), and have been applied to voxel-wise genome-wide association
studies to obtain boosted statistical power (Ge et al., 2012; Stein et al.,
2010). Here, to jointly model the genetic and non-genetic variables,
and their interactions, we extend the original kernel machine based
method, and include three appropriately selected kernels in the
model; one for genetic variants, one for non-genetic variables, and a
third one, which is the Hadamard product of the genetic and non-
genetic kernel, for the interaction effect. The genetic kernel provides a
biologically-informed way to capture epistasis in a set of SNPs and
model their joint effect on the phenotype. SNP sets can be formed by
SNPs located in or near a gene, within a gene pathway or a haplotype
structure; risk SNPs identified by previous studies or other a priori bio-
logical information (Wu et al., 2010). Examining the collective contribu-
tion of SNPs further opens possibilities to investigate cumulative effects
of rare variants (Wu et al., 2011), and often provides improved repro-
ducibility, biologically informed insights, and increased power relative
to univariate methods. The non-genetic kernel allows for modeling
the joint effect of multiple variables. By using a connection to linear
mixed effects models, the interaction effect can be tested by a variance
component score test (Lin, 1997; Liu et al., 2007). The proposedmethod
thus offers a flexible framework to account for epistatic effects, multiple
non-genetic factors, and test for the overall interaction effect between
sets of multidimensional variables.

As a demonstration of application, we applied the proposed method
to detect the interaction effects between candidate late-onset Alzheimer's
disease (AD) risk genes and cardiovascular disease (CVD) risk factors in-
cluding age, gender, body mass index (BMI), hypertension, current
smoking status and diabetes, on hippocampal volumederived fromstruc-
tural brain magnetic resonance imaging (MRI) scans, which is associated
with AD risk and future AD progression (Sperling et al., 2011).

AD, themost common form of dementia, is characterized bymemo-
ry loss, cognitive decline, and other symptoms. The cause and progres-
sion of AD are not well understood. As a disease that often co-occurs
with AD in the elderly population, vascular pathology is among the
potential factors to increase the risk of AD. In particular, increasing evi-
dence shows that many CVD risk factors including hypertension,
smoking and diabetes are associated with cognitive decline and neuro-
degeneration, and may increase the risk and accelerate the progression
of AD (Helzner et al., 2009; Kivipelto et al., 2001; Lo et al., 2012;
Luchsinger et al., 2005; Purnell et al., 2009). For example, the
neurovascular hypothesis of AD suggests that neurovascular dysfunc-
tion reduces the clearance of amyloid beta (Aβ) peptide across the
blood–brain barrier, which could initiate a series of pathological pro-
cesses and ultimately lead to neuronal injury and loss (Zlokovic,
2005). Moreover, recent studies have identified that the interaction
within multiple CVD risk factors, and the interaction between CVD risk
factors and the apolipoprotein E (APOE) polymorphism, the largest
genetic determinant of late-onset AD susceptibility, may significantly
influence the risk and progression of AD (Borenstein et al., 2005; Irie
et al., 2008; Purnell et al., 2009; Qiu et al., 2003). We therefore
hypothesized that genetic components play a role in the development
and progression of AD in the presence of CVD risk factors and events.
Testing for the interactions between AD risk genes and CVD risk factors
on hippocampal volumemay shed light on the underlyingmechanisms
of AD-related neurodegeneration, and suggest potential therapeutic
treatment as many CVD risk factors are largely modifiable.

The remainder of the paper is organized as follows. In the Materials
andmethods section,we present the kernelmachine basedmethod and
the statistical test for interaction detection between multidimensional
variable sets. Simulation studies are then introduced to evaluate the
proposed method. In the Results section, simulation results, as well as
our findings on the real data are shown, and compared to alternative in-
teraction detection methods. The advantages and weaknesses of the
method, and the implication of the findings, are summarized in the
Discussion section. Some theoretical aspects of the kernel method and
supplementary analyses are provided in the Appendix.

Materials and methods

Kernel methods for interaction detection

The model
We assume that there are N unrelated subjects under investigation.

yi, i = 1, ⋅ ⋅⋅, N, is a quantitative phenotype for the i-th subject, such as
an image derived diseasemarker. We are interested in detecting the in-
teraction between a collection of genetic variants and a set of non-
genetic variables such as disease risk factors, environmental exposures,
or epigenetic markers. In particular, let Gi = [Gi,1, ⋅ ⋅⋅, Gi,L]⊺ denote the L
SNP markers, where Gi,s, s = 1, ⋅ ⋅⋅, L, is the genotype coded to be the
number of copies of the minor allele that the i-th subject possesses for
the s-th SNP, and takes the values of 0 (homozygotic major alleles), 1
(heterozygote), and 2 (homozygotic minor alleles). Let Wi =
[Wi,1, ⋅ ⋅⋅, Wi,R]⊺ denote the R non-genetic variables for the i-th subject.
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We associate the phenotypewith the genetic and non-genetic variables
via the following semiparametric model:

yi ¼ x⊺iβþ f Gi;W ið Þ þ ϵi; i ¼ 1; ⋯;N; ð1Þ

where xi is a p× 1 vector of covariates (e.g., age, sex) for the i-th subject,
β is a p × 1 vector of fixed effects, ϵi is random residual with zero-mean
and homogeneous variance σ2, f is an unknown function on the product
domain X ¼ XG⊗XW ; with Gi∈XG and W i∈XW . According to the
ANOVA decomposition of functions (Gu, 2002), f can be expanded as:

f Gi;W ið Þ ¼ hG Gið Þ þ hW W ið Þ þ hG�W Gi;W ið Þ; ð2Þ

where hG(Gi) and hW(Wi) are the main effects of genetics and non-
genetic factors, respectively, and hG × W(Gi, Wi) captures interactions.
The overall mean of f can be absorbed into the intercept contained in
xi, and is therefore omitted here. A reproducing kernel Hilbert space
(RKHS) H of smooth real-valued functions on X can be constructed
(Gu andWahba, 1993; Wahba et al., 1995). In particular, the functional
space H has an orthogonal decomposition:

H ¼ HG ⊕HW ⊕HG�W ; ð3Þ

whereHG andHW are RKHSs of functions onXG andXW , respectively,
HG × W is a RKHS of functions onX,⊕ denotes direct sum. Each compo-
nent in Eq. (2) lies in the corresponding subspace in Eq. (3). Therefore,
H is a RKHSwith the associated reproducing kernel as the sumof the re-
producing kernels of the three component subspaces. We assume that
H is equipped with an inner product b⋅, ⋅ N and a norm �k kH.

Model estimation
The function f ∈ H can be estimated by minimizing the penalized

squared-error loss function of model (1):

L y;β; fð Þ ¼ 1
2

XN

i¼1

yi−x⊺iβ− f Gi;W ið Þ
h i2 þ λ

2
J fð Þ; ð4Þ

where J �ð Þ ¼ �k k2H is a roughness penalty, and λ is a tuning parame-
ter. Since the entire functional space H has the orthogonal decomposi-
tion (3), the penalty function J �ð Þ can be decomposed accordingly,
and Eq. (4) can be more explicitly written as:

L y;β; fð Þ ¼ 1
2

XN

i¼1

yi−x⊺iβ−hG Gið Þ−hW W ið Þ−hG�W Gi;W ið Þ
h i2

þλG

2
hGk k2HG

þ λW

2
hWk k2HW

þ λG�W

2
hG�Wk k2HG�W

¼ 1
2

y−Xβ−hG−hW−hG�Wð Þ⊺ y−Xβ−hG−hW−hG�Wð Þ

þ λG

2
hGk k2HG

þ λW

2
hWk k2HW

þ λG�W

2
hG�Wk k2HG�W

;

ð5Þ

where y = [y1, ⋯, yN]⊺, X = [x1, ⋯, xN]⊺, hG = [hG(G1), ⋯, hG(GN)]⊺, hW =
[hW(W1), ⋯, hW(WN)]⊺, hG × W = [hG × W(G1, W1), ⋯, hG × W(GN, WN)]⊺,
λG, λW, and λG × W are positive smoothing parameters that balance the
goodness of fit and complexity of the model.

By the representer theorem (Kimeldorf and Wahba, 1971; Wahba,
1990), the functions hG, hW and hG × W that minimize the functional
(5) take the forms:

hG G�� � ¼
XN

j¼1
αG; jkG G�

;G j

� �
;

hW W�� � ¼
XN

j¼1
αW; jkW W�

;W j

� �
;

hG�W G�
;W�� � ¼

XN
j¼1

αG�W ; jkG�W G�
;W�� �

; G j;W j

� �� �
;

ð6Þ

for arbitrary G* and W*, where αG,j, αW,j and αG × W,j, j = 1, 2, ⋯, N, are
unknown coefficients, kG, kW and kG × W are reproducing kernel
functions of the Hilbert spaces HG, HW and HG × W, respectively. Since
the reproducing kernel of a tensor product of two RKHSs is the product
of the two reproducing kernels (Aronszajn, 1950), the kernel function
kG × W is connected to the kernel functions kG and kW by:

kG�W G�
;W�� �

; G j;W j

� �� �
¼ kG G�

;G j

� �
� kW W�

;W j

� �
: ð7Þ

Define theN × N symmetric kernel matrices KG= {kG(Gi, Gj)}, KW=
{kW(Wi, Wj)} and KG × W = {kG × W((Gi, Wi), (Gj, Wj))} = KG ⊙ KW,
where ⊙ is the Hadamard product (element-wise product) of two ma-
trices. Then:

hG ¼ KGαG; hW ¼ KWαW ; hG�W ¼ KG�WαG�W ; ð8Þ

where αG = [αG,1, ⋯, αG,N]⊺, αW = [αW,1, ⋯, αW,N]⊺ and αG × W =
[αG × W,1, ⋯, αG × W,N]⊺. Substituting hG, hW and hG × W into Eq. (5), and
making use of the reproducing kernel property, we obtain:

L y;β;αG;αW ;αG�Wð Þ
¼ 1

2
ϵ⊺ϵþ λG

2
α⊺

GKGαG þ λW

2
α⊺

WKWαW þ λG�W

2
αΤ

G�WKG�WαG�W ;
ð9Þ

where ϵ = y − Xβ − KGαG − KWαW − KG × WαG × W.
The gradients of L with respect to the parametric coefficients β and

nonparametric coefficients αG, αW, and αG × W are:

∂L
∂β ¼ −X⊺ϵ;

∂L
∂αG

−K⊺
Gϵþ λGKGαG ;

∂L
∂αW

¼ −K⊺
Wϵþ λWKWαW ;

∂L
∂αG�W

¼ −K⊺
G�Wϵþ λG�WKG�WαG�W

:

ð10Þ

Therefore, setting the gradients to zero, this first-order condition is
given by the linear system:

X⊺X X⊺KG X⊺KW X⊺KG�W

K⊺
GX K⊺

GKG þ λGKG K⊺
GKW K⊺

GKG�W

K⊺
WX K⊺

WKG K⊺
WKW þ λWKW K⊺

WKG�W

K⊺
G�WX K⊺

G�WKG K⊺
G�WKW K⊺

G�WKG�W þ λG�WKG�W

2
6664

3
7775

β
αG
αW
αG�W

2
664

3
775¼

X⊺y
K⊺

Gy
K⊺

Wy
K⊺

G�Wy

2
664

3
775:

ð11Þ

Liu et al. (2007) showed that this first-order linear system is equiv-
alent to the normal equation of the linear mixed effects model:

y ¼ Xβþ hG þ hW þ hG�W þ ϵ; ð12Þ

where β is a coefficient vector of fixed effects, hG, hW and hG × W are in-
dependent random effects, and distributed as hG ∼ N(0, τG2KG), τG2 =
λG
−1σ2, hW ∼ N(0, τW2 KW), τW2 = λW

−1σ2, hG × W ∼ N(0, τG × W
2 KG × W),

τG × W
2 = λG × W

−1 σ 2, ϵ is independent of random effects and follows
ϵ ∼ N(0, σ2I), and I is an identity matrix. This connection indicates
that thefixed effectsβ, and the randomeffectshG,hW and hG ×W, obtain-
ed by minimizing the loss function in Eq. (4), are equivalent to the best
linear unbiased predictors (BLUPs) of the linear mixed effects model
(12). The variance components τG2, τW2 , τG × W

2 and σ2 can be estimated
via the restricted maximum likelihood (ReML) approach (Harville,
1977; Lindstrom and Bates, 1988) (see the Appendix for details), and
the estimates of randomeffects ĥG, ĥW, ĥG ×W canbe obtained by solving
the linear system (11) and inserting the α̂ estimates into Eq. (8).

Selection of kernels
There are a variety of choices for the kernel functions to characterize

the similarity between subjects with respect to the genetic variants and
non-genetic factors, as long as they are nonnegative definite (Schaid,
2010a,b). Possible candidates are the linear kernel, the polynomial ker-
nel, the Euclidean distance (ED) kernel, the Gaussian kernel, and the
identity-by-state (IBS) kernel (Kwee et al., 2008).
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Herewe use the IBS kernel for the genetic effect. The IBS kernelmea-
sures the similarity of the genotypes between the i-th and j-th subject
by:

kG Gi;G j

� �
¼ 1

2L

XL

s¼1

2− Gi;s−Gj;s

���
���

� �
; ð13Þ

where L is the number of SNPmarkers to be combined. The IBS kernel is
a nonparametric function of the genotypes, as it does not depend on the
selection of basis or any assumption on the types of genetic interaction.
Therefore, in principle, it can capture any epistatic effect between genet-
ic variants and their nonlinear influences on the phenotypes.

We propose the linear kernel to combine multiple non-genetic
factors. The linear kernel can be represented as:

kW W i;W j

� �
¼ 1

R
bW i;W j N ¼ 1

R

XR

s¼1

Wi;sW j;s; ð14Þ

where R is the number of non-genetic factors under investigation. We
evaluate the performance of the two kernels by simulation studies.

Score test
We note, from the linear mixed effects model representation (12),

that testing an overall genetic and non-genetic effect H0 : hG(⋅) =
hW(⋅)= hG ×W(⋅)=0 is equivalent to testing the variance components:
H0 : τG2 = τW2 = τG × W

2 = 0. To address the issue that, under the null hy-
pothesis, the parameters τG2, τW2 , and τG × W

2 are on the boundary of the
parameter space, Liu et al. (2007) proposed a score test based on the
ReML. In particular, letK=KG+KW+KG × W, and the score test statis-
tic is defined as:

S σ2
0

� �
¼ 1

2σ2
0

y−Xβ̂0

� �⊺
K y−Xβ̂0

� �
¼ 1

2σ2
0

y⊺P0KP0y; ð15Þ

where β̂0 is the maximum likelihood estimate (MLE) of the regression
coefficients under the null model y = Xβ0 + ϵ0, σ0

2 is the variance
of ϵ0, P0 = I − X(X⊺X)−1X⊺ is the projection matrix under the

null. S σ2
0

� �
is a quadratic function of y and follows a mixture of

chi-squares under the null. We use the Satterthwaite method to ap-

proximate the distribution of S σ2
0

� �
by a scaled chi-square distribution

κχν
2. In practice, the unknown value of the model parameter σ0

2 in S is

replaced by its ReML estimate σ̂2
0 under the null model. To account

for this substitution, the fitted scale parameter κ and the degrees of
freedom ν are adjusted, giving κ̂ and ν̂ (see the Appendix for details).

The p-value of an observed score statistic S σ̂2
0

� �
is then computed

using the scaled chi-square distribution κ̂χ2
ν̂ .

To test the interaction effect, we notice that testing the null hypoth-
esisH0

I : hG × W(⋅) = 0 is equivalent to testing the variance component:
H0

I : τG × W
2 = 0. Let Σ= τG2KG + τW2 KW + σ2I, where τG2, τW2 , and σ2 are

model parameters under the null model y = Xβ + hG + hW + ε. We
follow Li and Cui (2012) and design a score test statistic

SI τ2G; τ
2
W ;σ2

� �
¼ 1

2
yΤPIKG�WPIy; ð16Þ

where PI = Σ−1 − Σ−1X(XΤΣ−1X)−1XΤΣ−1 is the projection matrix
under the null hypothesis H0

I . Analogously, the Satterthwaite method
is used to approximate the distribution of SI by a scaled chi-square

distribution κ Iχ
2
νI
. In practice, the unknown model parameters τG2, τW2

and σ2 in SI are replaced by their ReML estimates τ̂2G , τ̂
2
W and σ̂2

under the null model. The fitted scale parameter κI and the degrees of
freedom νI are adjusted to account for this substitution, giving κ̂ I and
ν̂I (see the Appendix for details). The p-value of an observed score sta-

tistic SI τ̂2G; τ̂
2
W ; σ̂2

� �
is then computed using the scaled chi-square dis-

tribution κ̂ Iχ
2
ν̂I
.

The ADNI data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National In-
stitute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public–private partnership. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and early
Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

Theprincipal investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California-San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited over 1500
adults, ages 55 to 90, to participate in the research, consisting of
cognitively normal older subjects, people with early or late MCI, and
people with early AD. The follow up duration of each group is specified
in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.

Data preprocessing and SNP grouping
All ADNI-1 1.5T structural brain MRI scans were processed using

FreeSurfer (freesurfer.nmr.mgh.harvard.edu) (Dale et al., 1999; Fischl,
2012; Fischl et al., 1999), version 4.3. Subject specific intra-cranial
volume (ICV) and bilateral hippocampal volumes were automatically
computed by FreeSurfer, after skull stripping, B1 bias field correction,
segmentation and labeling (Fischl et al., 2002, 2004), and passed rigor-
ous visual quality control checks. Formore details regarding the imaging
processing and quality control, we refer the reader to the official
website of ADNI (http://adni.loni.usc.edu).

CVD risk factors considered in the present study included age, gen-
der, body mass index (BMI), systolic blood pressure, current smoking
status and diabetes. A CVD risk score summarizing these six risk factors
can be calculated using the non-laboratory, office-based cardiovascular
risk profile prediction function from the FraminghamHeart Study (FHS)
(D'Agostino et al., 2008). The score can be treated as a continuous vari-
able, and higher values indicate higher risks of developing individual
CVD events. We use the FHS risk score as a benchmark variable to
compare the results obtained with the proposed multivariate method.

We followed the ENIGMA2 1KGP cookbook (v3) (The Enhancing
Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium,
http://enigma.loni.ucla.edu/wp-content/uploads/2012/07/ENIGMA2_
1KGP_cookbook_v3.doc, version July 27, 2012), developed by the ENIG-
MA2 Genetics support team, to preprocess and impute the ADNI
genome-wide SNP data. In brief, we used PLINK (Purcell et al., 2007)
for preprocessing and quality control, which included sex discrepancy
check, removing subjects with low genotype call rate (b95%), and filter-
ing individual markers that contained an ambiguous strand assignment
and that did not satisfy the following quality control criteria: genotype

http://www.adni-info.org
http://adni.loni.usc.edu
http://enigma.loni.ucla.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.doc
http://enigma.loni.ucla.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.doc
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call rate ≥95%, minor allele frequency (MAF) ≥1%, and Hardy–
Weinberg equilibrium p ≥ 1 × 10−6. We then used the MaCH software
(Li et al., 2010) to impute ungenotyped SNPs based on the 1000
genomes reference (1000 Genomes Project Consortium, 2012). 697
subjects (cognitive normal controls N= 203, subjects with mild cogni-
tive impairmentN=334, andAD patientsN=160) that have complete
imaging and genetic data, and CVD risk factors, were included in the
following analyses. Among the 334 subjects withmild cognitive impair-
ment (MCI), 183 subjects were stable and did not convert to AD
throughout the follow-up, and 151 subjects progressed to AD in at
least one of the follow-up visits.

In addition to APOE, themajor genetic risk factor for late-onset AD, a
recent two-stage meta-analysis of GWAS with 74,046 individuals iden-
tified 20 susceptibility loci for late-onset AD (Lambert et al., 2013). A
very recent article suggested that the REST gene may play a critical
role in normal aging in human cortical and hippocampal neurons, and
may distinguish neuroprotection from neurodegeneration (Lu et al.,
2014). We therefore used these 21 genes as our candidate gene set
and extracted all the SNPs on the coding regions as well as 20 kb up/
downstream of each of these genes in the ADNI data set. Some of
these genes, e.g., BIN1, CR1 and PICALM, have been associated with
quantitative imaging phenotypes, such as hippocampal volume, amyg-
dala volume and entorhinal cortical thickness, in ADNI (Biffi et al.,
2010; Bralten et al., 2011; Furney et al., 2010; Weiner et al., 2013).
Table 1 lists the 21 genes and the final number of SNPs located on
them after preprocessing and quality control.
Alternative methods

No standard method exists in the literature that can detect interac-
tions between a collection of SNPs and a set of non-genetic variables
such as CVD risk factors. Below in both simulation studies and real
data analysis, we consider alternative methods based on burden tests
and principal component analysis (PCA) that can summarize multiple
variables into a single regressor and convert the problem into standard
multiple regression analyses.

Burden tests collapse a set of variants in a genetic region into a single
burden variable. They can be powerful when most variants in a region
are causal and the effects are in the same direction, but suffer from dra-
matic power loss when these assumptions are violated (Lee et al.,
2012a). Different variants of burden tests have been proposed and are
mainly aimed at rare variant association tests. Here we adapt two
methods to our context: (1) the rare variant test (RVT), proposed by
Morris and Zeggini (2010), which calculates the proportion of minor al-
leles in the set of genetic variants for each subject as the burden regres-
sor, and (2) the weighted sum test (WST) (Madsen and Browning,
2009), which calculates a genetic score as the burden variable. The
genetic score is a weighted average of the count of minor alleles
for each subject. Specifically, if Gi,s ∈ {0, 1, 2} is the count of minor
Table 1
A list of 21 candidate risk genes for late-onset Alzheimer's disease and the final number of
SNPs located on and near them.

Chr Gene SNP num Chr Gene SNP num

19 ABCA7 240 6 HLA-DRB5 62
2 BIN1 301 2 INPP5D 495
20 CASS4 165 5 MEF2C 272
6 CD2AP 421 11 MS4A6A 63
19 CD33 85 11 PICALM 360
11 CELF1 97 8 PTK2B 419
8 CLU 116 4 REST 146
1 CR1 264 14 SLC24A4 716
18 DSG2 219 11 SORL1 233
7 EPHA1 115 7 ZCWPW1 74
14 FERMT2 242
alleles in genetic variant s for the i-th subject, then the genetic score
is γi = ∑s = 1

L Gi,s/ws, where L is the number of SNP markers,
ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsqs 1−qsð Þp

is the weight, in which qs = (ms + 1)/(2Ns + 2),
Ns is the total number of subjects genotyped for variant s, and ms is
the number of minor alleles observed for variant s. Many other burden
tests are similar to these two methods. We note that the underlying as-
sumptions of these collapsing methods are that the interactions have
similar effect sizes and the same direction for all the genetic variants
being collapsed. The tests can be biased or have inflated type I error if
these assumptions are violated.

For the second alternativemethod,we performPCA on the set of SNP
regressors or CVD risk factors to extract the first principal component
that explains the largest possible variance of the original regressors.

After reducing the dimension of the SNP set and the CVD risk factors,
we can carry out a standard multiple regression analysis, in which the
interaction effect between the derived univariate SNP regressor and
the CVD risk factor is modeled by their product.

Simulation studies

We conducted simulation studies to evaluate the performance of the
ReML algorithm and the accuracy of the score tests. The simulation was
based on real ADNI demographic information, genetic data and CVD risk
factorswithN=697 subjects, in order to bestmimic the situation of our
real data application. To synthesize quantitative phenotypes, we
employed the following model:

yi ¼ xΤi βþ αM hG Gið Þ þ hW W ið Þ½ � þ αIhG�W Gi;W ið Þ þ σεi; ð17Þ

where xi is a vector comprising an intercept, the ICV, and the education
(in years) of the i-th subject, β is a vector of all ones, εi is a Gaussian dis-
tributed random error with zero mean and unit variance, σ is the stan-
dard deviation of the error andwas set to 5 in our simulation studies.αM

and αI are two free parameters. We followed (Liu et al., 2007) and de-
signed the function hG to have the following complex form:

hG Gið Þ ¼ 2 cos Gi;1

� �
−3G2

i;2 þ 2e−Gi;3Gi;4−1:6 sin Gi;5

� �
cos Gi;3

� �

þ 4Gi;1Gi;5: ð18Þ

The main non-genetic effect was designed as hW(Wi) =Wi,1 +Wi,2.
Finally, we introduced a linear interaction effect between the genetic
variants and CVD risk factors: hG × W(Gi, Wi) = 3hG(Gi)hW(Wi).

Since previous work has performed extensive simulations to charac-
terize the overall score test for the semiparametric model (Hua and
Ghosh, 2014; Liu et al., 2007), we focused our simulations on testing
for the interaction effect. Our major concern is to assess whether the
main effects “bleed” into the interaction, yielding false positives, or
“cloud” the interaction, reducing sensitivity.

In the first simulation study, we generated data under different
values of αM and αI to evaluate the performance of the score tests. Spe-
cifically, when αM = αI = 0, both main and interaction effects vanish,
and we studied the false positive rate of the score test for overall effect.
When αM N 0 and αI = 0, there are main effects but no interaction, and
we therefore assessed the power of the overall score test, and the false
positive control of the score test for interaction effect. We also set αM

and αI at a number of different values to test the power of both score
tests in different situations. 1000 simulations were performed for each
setting. For each run, we randomly picked a gene from Table 1 and ran-
domly selected five adjacent SNPs on the gene, reflecting the linkage
disequilibrium (LD) between genetic markers, and randomly selected
two variables from the six CVD risk factors (age, gender, BMI, systolic
blood pressure, smoking and diabetes). The phenotypic data were
then generated using thefive SNPs and two CVD risk variables following
Eq. (17).We note that for all the genes the signal only comes froma very



Table 2
Simulation results of the overall and interaction score tests, and the alternativemethods for interaction detection based on dimension reduction andmultiple regression. Nominal p-value
threshold was set to 0.05. The first row corresponds to simulating the null hypothesis for both the overall and interaction effects. The second and third rows correspond to the null hy-
pothesis of the interaction effect only. Thus, corresponding detection rates in the first three rows are desired to be below the p-value threshold of 0.05.

(αM, αI) Kernel method Alternative methods

Overall Interaction PCg × FHS PCg × PCw RVT × FHS RVT × PCw WST × FHS WST × PCw

(0, 0) 0.048 – 0.051 0.043 0.051 0.040 0.049 0.038
(0.5, 0) 0.908 0.046 0.061 0.046 0.063 0.043 0.062 0.054
(1, 0) 1.000 0.051 0.052 0.052 0.068 0.049 0.061 0.052
(0. 0.5) 0.961 0.918 0.622 0.499 0.578 0.444 0.572 0.455
(0, 1) 0.983 0.950 0.681 0.546 0.620 0.508 0.631 0.505
(1, 0.1) 0.999 0.585 0.292 0.242 0.229 0.204 0.226 0.216
(1, 0.25) 0.995 0.865 0.506 0.405 0.432 0.324 0.433 0.325
(1, 0.5) 0.997 0.926 0.591 0.481 0.542 0.413 0.536 0.425
(0.1, 1) 0.984 0.951 0.681 0.529 0.622 0.478 0.610 0.476
(0.25, 1) 0.986 0.944 0.665 0.521 0.600 0.459 0.601 0.469
(0.5, 1) 0.983 0.951 0.654 0.517 0.612 0.472 0.587 0.446
(0.5, 0.5) 0.984 0.918 0.625 0.488 0.587 0.423 0.575 0.431
(1, 1) 0.994 0.958 0.660 0.527 0.629 0.488 0.620 0.489

PCg:first principal component of the genetic data; PCw:first principal component of the cardiovascular disease risk factors; RVT: rare variant test burden variable;WST:weighted sum test
burden variable; FHS: the Framingham Heart Study vascular disease risk score.
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small proportion of the SNPs. Likewise, only part of the CVD risk factors
were used in producing the phenotypic data.

We then evaluated the performance of the kernel method. As a com-
parison,we summarized genetic variants andCVD risk factors into a sin-
gle regressor respectively using different collapsing methods (for
genetic data: PCA, RVT and WST; for CVD risk factors: PCA and the
FHS risk score2), and conducted standard univariate interaction tests
between all possible combinations of these univariate genetic and
CVD risk variables, which amounted to six multiple regression analyses.

In the second simulation study, we fixed αM=1, and for each run αI

was assigned a random number uniformly distributed on [0, 1] with a
probability of 0.5, and was fixed at 0 otherwise. We then generated
data following the same approach described above, and compared the
Receiver Operating Characteristic (ROC) curves of the kernel method
and alternative methods for interaction detection.

Real data application

As a sanity check, we started with some standard regression analyses
of real data from ADNI. Specifically, we tested the association between
hippocampal volume (averaged between two hemispheres) and APOE-
ε4 status (carriers vs. non-carriers), after controlling for ICV, age, gender
and education. We conducted multiple regression analyses to assess the
main effects of the FHS CVD risk score and each CVD risk factor, and
their interaction effects with APOE-ε4 status on hippocampal volume,
after properly controlling for covariates. Using logistic regression, we
also analyzed the association between diagnosis (AD patients vs. cogni-
tive normal controls) and the FHS CVD risk score and each CVD risk factor.

We then applied the kernel method to detect interaction effects be-
tween each of the 21 candidate AD risk genes listed in Table 1, and the
collection of six CVD risk factors, on hippocampal volume. ICV and edu-
cation were included in the model as covariates. The IBS kernel was
used to combine SNPs located on andnear each gene, and a linear kernel
was used for the CVD risk factors. All CVD risk factorswere standardized
(subtracting the mean and divided by the standard deviation) to trans-
form variables measured with different units onto the same scale.
Bonferroni correction was used to control the family-wise error (FWE)
rate, and a gene was identified to have a significant interaction with
the CVD risk factors if the p-value was smaller than 0.05/
21 ≈ 2.38 × 10−3. Analogous to the simulation studies, we compared
the proposed kernelmachine basedmethod to six univariate interaction
tests based on different dimension reduction methods.
2 We note that the FHS risk score was derived from real biological data. Thus the FHS
risk score is likely suboptimal for detecting the simulated effects of the CVD risk factors
on the phenotype.
In order to reveal the direction of a significant interaction effect, we
collapsed genetic variables andCVD risk factors into scalar variables; the
RVT burden variable and the FHS risk score, respectively, and defined
four regimes, low genetic risk and low CVD risk, high genetic risk and
low CVD risk, low genetic risk and high CVD risk, high genetic risk and
high CVD risk, by splitting the data with respect to the medians of the
RVT burden variable and the FHS risk score. We then averaged the esti-
mated interaction effect ĥG × Wwithin each of the four regimes. A small-
er average indicates a higher risk of the interaction effect (smaller
hippocampal volume). Jackknife resampling was used to get accurate
standard error estimates of these average statistics. We also compared
ĥG × W between the 183 stable MCI subjects (who remained MCI
throughout the follow-up) and the 151 MCI subjects that progressed
to AD to investigate the predictive power of the interaction effect on dis-
ease progression.

Results

Simulation results

Table 2 shows the simulation results for the overall and interaction
score tests. Here we used a nominal p-value threshold of 0.05. In more
than 99% of the situations, the ReML algorithm converged within 50 it-
erations (convergence was declared when the difference between suc-
cessive log ReML likelihoods was smaller than 10−4), the maximum
number of iterations we set in this simulation study, and in most cases
it converged very quickly within 10 iterations and a few seconds with
a MATLAB implementation on a MacBook Pro with 8 GB of memory
and a 2.4 GHz Intel Core i7 processor.

It can be seen thatwhenαM=αI=0, the size of the overall score test
is close to the nominal p-value threshold of 0.05.WhenαM N 0 andαI=0,
the false positive rate of the score test for interaction effect is also well
controlled.WhenαI N 0, the power of the interaction test quickly exceeds
0.90. In contrast, we observe that dimension reductionmethods can have
slightly inflated false positive rates and are dramatically under-powered
when compared to the kernel machine based method.

Fig. 1 shows the ROC curves of the kernel method and alternative
methods for interaction detection, obtained with the second simulation
data. The power gain of the kernel method relative to the alternative
methods is evident.

Application to ADNI data

APOE-ε4 status is significantly associated with hippocampal volume
(p=3.97 × 10−16), after controlling for ICV, age, gender and education.
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Fig. 1. Receiver operating characteristic (ROC) curves of the kernelmethod and alternative
methods for interaction detection in the simulated data. False positive rates are plotted
against true positive rates with the p-value threshold varying between 0 and 1 with a
step size of 0.01.
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Table 3 shows themain effects of the CVD risk factors, and their interac-
tion effects with APOE-ε4 status on hippocampal volume obtained by
conventional interaction analyses, as well as the association between
diagnosis (AD patients vs. cognitive normal controls) and each CVD
risk factor obtained by logistic regression analyses. As expected, the
association between age and hippocampal volume is highly significant,
indicating the reduction in the size of the hippocampus over time. The
FHSCVD risk score is also significantly associatedwith hippocampal vol-
ume. Specifically, higher CVD risk scores suggest smaller hippocampal
volumes. Age also shows a suggestive significant interaction with
APOE-ε4 status but did not survive a Bonferroni correction for the
total number of statistical tests performed here.

Table 4 lists the ReML estimates of τG2, τW2 , τG × W
2 and σ2, and the p-

values for the interaction effects between each of the 21 candidate AD
risk genes and the CVD risk factors on hippocampal volume. Two
genes, CR1 (p = 4.85 × 10−4) and EPHA1 (p = 5.64 × 10−4), are
identified to have significant interaction with the CVD risk factors.

Fig. 2 shows the average of the estimated interaction effect ĥG × W

within each of the four regimes (low genetic risk and low CVD risk,
high genetic risk and low CVD risk, low genetic risk and high CVD risk,
high genetic risk and high CVD risk) for the two genes CR1 and EPHA1
that show a significant interaction effect. For both genes, CVD risks
largely dominate the interaction effect with higher CVD risk associated
with higher risk of interaction and vice versa. The genetic risk appears
to have an opposite effect of its marginal effect on interaction under
high CVD risk, i.e., high genetic risk reduces the interaction effect in
Table 3
Results of standard regression analyseswith two different outcomes: hippocampal volume and
Framingham Heart Study (FHS) cardiovascular disease (CVD) risk score and each CVD risk fact
conventional interaction analyses are presented. The p-values for the association between diag
gistic regression analyses are shown. Significant associations, with Bonferroni corrected p-valu

Risk factor Covariates adjusted Hippocam

Main effe

FHS risk score ICV, edu 5.12 × 10
Age ICV, edu, gender 3.99 × 10
Gender ICV, edu, age 0.103
Body mass index (BMI) ICV, edu, age, gender 2.37 × 10
Systolic blood pressure ICV, edu, age, gender 0.832
Smoking status ICV, edu, age, gender 0.062
Diabetes ICV, edu, age, gender 0.609
the presence of high CVD risk. One interpretation of this interaction
pattern is that under low genetic risk, CVD risk factors have a more
detrimental effect.

Two-sample t-tests showed that subjects with stable MCI have sig-
nificantly larger ĥG × W (lower risk) than subjects that progressed to
AD for both genes (CR1, p = 0.049; EPHA1, p = 0.044), suggesting
that disease progression is predicted by the interaction effect.

Comparison to alternative methods

Table 4 also shows the p-values for the alternative methods to test
the interaction effect. PCA on both the genetic data and CVD risk factors,
followed bymultiple linear regression analyses, also identified CR1with
a FWE-corrected significant p-value, but failed to find EPHA1. Other
alternative methods did not identify any significant interaction effect.

Discussion

In this paper, we have proposed a kernel machine based method to
test for interactions betweenmultidimensional variable sets. Compared
to traditional collapsing and PCA-basedmethods, the proposedmethod
provides a more flexible and biological plausible way tomodel epistasis
between genetic variants, accommodates multiple factors that poten-
tially moderate genetic effects, and can test for complex interaction ef-
fects between multidimensional variable sets. Although multivariate
methods typically produce more powerful and reproducible results,
which can also be biologically more insightful, the interpretation of
model parameters is often challenging. In this paper, we made some
preliminary attempts to reveal the direction of interaction between
multidimensional variable sets and investigate the prediction of disease
progression by interaction effects. Further improvement of model inter-
pretation would be facilitated by incorporating more biological infor-
mation when a better understanding of the underlying mechanisms is
achieved.

One particular case where model interpretation might be straight-
forward is when we use a linear kernel, as we did to model non-
genetic effects. In our analyses, the non-genetic effect hW can be repre-
sented as a linear combination of the CVD risk factors: hW = WβW,
where W= [W1, ⋯, WN]Τ are the individual CVD risk factors. The linear
coefficients βW reflect the influence of each variable on the phenotype.
The covariance matrix of the coefficient estimates can be computed as

cov β̂W−βW

� �
¼ τ2W=R

� �
I− τ2W=R

� �2
WΤPW ; ð19Þ

where R is the number of non-genetic variables, P = V−1 − V−1

X(XΤV−1X)−1XΤV−1, and V = τG2KG + τW2 KW + τG × W
2 KG × W + σ2I.

An estimate of this covariance structure can be obtained by inserting
the ReML estimates of the variance component parameters τG2, τW2 ,
τG × W
2 and σ2 into Eq. (19), assuming that the error of the ReML estima-

tion can be ignored. Supplementary Table S1 presents the point estimates
Alzheimer's disease (AD) diagnosis (AD vs. control). The p-values for themain effects of the
or, and their interaction effects with APOE-ε4 status on hippocampal volume obtained by
nosis (AD patients vs. cognitive normal controls) and each CVD risk factor obtained by lo-
es smaller than 0.05, are highlighted in bold.

pal volume (linear regression) AD vs. control
(logistic regression)

ct Interaction with APOE-ε4

−4 0.132 0.761
−18 4.03 × 10−3 0.301

0.982 0.467
−3 0.227 0.011

0.591 0.077
0.112 0.974
0.541 0.247



Table 4
Results of themultivariate interaction analyses. The restrictedmaximum likelihood (ReML) estimates of τG2, τW2 , τG × W

2 and σ2, and the p-values for the interaction effects between each of
the 21 candidate Alzheimer's disease (AD) risk genes and the cardiovascular disease (CVD) risk factors on hippocampal volume, using the kernel method and the alternative methods
based on dimension reduction and multiple regression, are shown. p-values that survive multiple testing corrections are highlighted in bold.

Gene Kernel method Alternative methods

τG2 τW2 τG × W
2 σ2 p-value PCg × FHS PCg × PCw RVT × FHS RVT × PCw WST × FHS WST × PCw

ABCA7 3.44E-7 3.24E-2 9.03E-4 0.286 0.479 0.138 0.253 0.215 0.183 0.291 0.258
BIN1 6.41E-4 1.66E-2 2.03E-2 0.279 0.167 0.861 0.615 0.165 0.296 0.049 0.441
CASS4 2.17E-3 3.31E-2 3.44E-7 0.284 0.492 0.522 0.889 0.971 0.565 0.742 0.838
CD2AP 3.44E-7 4.31E-2 3.44E-7 0.290 0.954 0.150 0.737 0.145 0.618 0.229 0.728
CD33 7.76E-5 4.39E-2 3.44E-7 0.289 0.845 0.196 0.245 0.807 0.543 0.734 0.807
CELF1 3.44E-7 2.74E-2 6.52E-3 0.284 0.284 0.591 0.626 0.102 0.115 0.230 0.216
CLU 1.62E-3 3.60E-2 3.44E-7 0.286 0.602 0.920 0.998 0.140 0.479 0.154 0.563
CR1 3.44E-7 7.21E-3 4.68E-2 0.273 4.85E-4 0.559 4.08E-4 0.268 0.023 0.354 0.109
DSG2 3.44E-7 3.51E-2 3.44E-7 0.286 0.566 0.232 0.135 0.823 0.367 0.617 0.202
EPHA1 3.44E-7 3.44E-7 5.12E-2 0.273 5.64E-4 0.323 0.133 0.182 0.270 0.939 0.979
FERMT2 2.05E-2 3.17E-2 5.93E-3 0.278 0.342 0.556 0.817 0.767 0.794 0.852 0.876
HLA-DRB5 3.44E-7 3.80E-2 3.44E-7 0.286 0.759 0.764 0.388 0.763 0.388 0.763 0.388
INPP5D 6.18E-4 3.44E-2 3.44E-7 0.285 0.527 0.910 0.395 0.267 0.022 0.375 0.156
MEF2C 1.74E-3 2.08E-2 1.77E-2 0.279 0.058 0.125 0.408 0.085 0.436 0.067 0.418
MS4A6A 9.32E-4 3.77E-2 3.44E-7 0.287 0.902 0.769 0.969 0.779 0.945 0.781 0.926
PICALM 1.89E-2 3.91E-2 3.44E-7 0.281 0.679 0.473 0.295 0.580 0.390 0.922 0.294
PTK2B 1.68E-3 3.25E-2 9.00E-4 0.284 0.460 0.779 0.615 0.630 0.406 0.043 0.048
REST 3.66E-2 2.11E-2 1.95E-2 0.273 0.189 0.732 0.497 0.800 0.578 0.694 0.671
SLC24A4 8.22E-3 1.64E-2 2.35E-2 0.277 0.211 0.345 0.029 0.634 0.222 0.942 0.268
SORL1 2.30E-3 4.77E-2 3.44E-7 0.290 0.919 0.663 0.521 0.129 0.481 0.126 0.455
ZCWPW1 3.44E-7 2.85E-2 3.80E-3 0.284 0.265 0.634 0.373 0.600 0.422 0.574 0.437

PCg:first principal component of the genetic data; PCw: first principal component of the CVD risk factors; RVT: rare variant test burden variable;WST: weighted sum test burden variable;
FHS: the Framingham Heart Study vascular disease risk score.
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and standard errors for each element of βW, for the ADNI analyses corre-
sponding to each one of the 21 candidate AD risk genes. The above strat-
egy does not apply to nonlinear kernels, but individual subjects can be
examined by inspecting the estimated main and interaction effects ĥG,
ĥW, ĥG × W, and their variabilities. More specifically, cov(ĥG × W −
hG × W) = τG × W

2 KG × W − (τG × W
2 KG × W)P(τG × W

2 KG × W), and the vari-
ability of ĥG and ĥW can be quantified analogously. Analyses of individual
subjects may provide additional information about the model, but we
consider this beyond the scope of the present paper.

Due to the moderate sample size in the present study, we
constrained our analysis to a list of candidate late-onset AD risk genes.
However, the proposed method can be applied to genome-wide inter-
action studies. In particular, we note that when testing for the overall
genetic and non-genetic effect, the variance component parameters
Fig. 2. Direction of significant interaction effects. For genes CR1 and EPHA1 that show sig-
nificant interaction effect, genetic variables and cardiovascular disease (CVD) risk factors
were collapsed into scalar variables; the RVT burden variable and the FHS risk score, re-
spectively. The average of the estimated interaction effect ĥG × W within each of the four
regimes (lowgenetic risk and lowCVD risk, high genetic risk and lowCVD risk, lowgenetic
risk and high CVD risk, high genetic risk and high CVD risk) is shownwith a standard error
estimate obtained by Jackknife resampling. A smaller average indicates a higher risk of the
interaction effect (smaller hippocampal volume).
τG2, τW2 , and τG × W
2 need not be estimated. Therefore, the overall score

test offers an efficient and non-iterative approach to screen the whole
genome for genetic variants that might show significant contribution
to the phenotypic variation. Fitting the full model, estimating the
variance components, and testing for interactions can then focus on ge-
netic componentswith significant overall effect,whichwill dramatically
reduce computational burden. A similar argument applies to voxel-/
vertex-wise interaction studies.

Wewould like to note that most of the CVD risk factors we employed
in our ADNI analyses are largely endogenous and thus are, to some
extent, under genetic control. Although, this might make the interpreta-
tion of the results difficult, this challenge, we believe, exists in many in-
teraction effects probed and detected in the genetics literature.
Furthermore, even though the non-genetic variables we used are
collectively associated with cardiovascular risk, and thus our interpreta-
tion of the detected interaction effects as genetic influences modified by
cardiovascular risk is highly likely, alternative explanations that donot in-
volve cardiovascular mechanisms are also possible. Finally, while hippo-
campal volume is a sensitive biomarker of AD, it is not solely related to
this condition. In fact, we conducted additional analyses with entorhinal
cortex thickness and volume (also MRI markers of late-onset AD) as
alternative outcome variables. These analyses (not included here) did
not reveal any statistically significant interaction effect. Although our pre-
sented results demonstrated that the detected interaction effects with
hippocampal volume predict future MCI-to-AD conversion, one possibil-
ity is that these associationsmight not be specific to AD. Elucidating these
issues is beyond the scope of this paper andwill require careful follow-up
studies that will consider all alternative possibilities.

Another potential concern in the present study is that we took the
coding regions and 20 kb up/downstream of the 21 candidate genes as
units for interaction detection. Although Lambert et al. (2013) exam-
ined all SNPs that have strong associationswith the top SNPs to confirm
the relevance of these genes, we are aware that they are likely not the
causative genes. Also, the size of the regulatory region of different
genes may vary substantially. Therefore, an alternative strategy is to
group SNPs in high LD with the most associated SNP, whether or not
they are in or close to the nearest gene.

The choice of kernels may have an impact on the validity and power
of the method too. In the present study, we employed an IBS kernel for
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the genetic data and a linear kernel for the CVD risk factors, as both ker-
nels are parameter free and can in principle capture complex epistatic
effects between genetic variants and model the joint effect of multiple
non-genetic variables. We found, through simulation studies, that the
proposed selection of kernels appears to work well in our setting, both
in terms of false positive rate control and statistical power. Using
other kernel functions, e.g., the Gaussian kernel for combining non-
genetic factors, is certainly possible, but might require preselecting or
estimating additional parameters. Our preliminary implementation (re-
sults not shown) suggests that incorporating the estimation of the
spread parameter in the Gaussian kernel into the ReML algorithm
might lead to unstable estimates and failure of convergence. The perfor-
mance of various kernel functions in different data structures, and the
optimal selection of kernels, deserve future investigation.

Although we illustrated the proposed method using a univariate
quantitative image derived phenotype, genes as units to group SNPs,
and CVD risk factors as non-genetic variables, the modeling framework
is general and can be applied to other types of phenotypic and genetic
data, and to detecting other types of interactions such as genotype-by-
environment interactions. Our method can also be extended to accom-
modate binary outcomes, and thus has potential wide applications to
case–control studies. Recently, a series of papers have been published
on the proper modeling of longitudinal and time-to-event data in neu-
roimaging studies (Bernal-Rusiel et al., 2013a,b; Sabuncu et al., 2014).
Incorporating genetic components and interactions in longitudinal and
survival models, and investigating the genetic contributions to the pro-
gression of a brain-related illness and the timing of a clinical event of in-
terest, seem promising directions for future research.

Two genes, CR1 and EPHA1, were identified to have significant inter-
action effects with the CVD risk factors in the present study. The associ-
ations between the two genes and AD have been identified and
replicated by a number of independent studies (see e.g., Harold et al.,
2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011),
in addition to Lambert et al. (2013), and their potential contributions
to the mechanism of AD have been under active investigation (Biffi
et al., 2012; Chibnik et al., 2011; Thambisetty et al., 2013).Moreover, re-
cent studies show thatmany of the AD risk genes have potential roles in
relationship with CVD risk factors, such as hypertension, hypercholes-
terolemia, and obesity (Guerreiro et al., 2012; Liu et al., 2014). In partic-
ular, excess adiposity may act as an enhanced substrate for CR1-related
inflammatory events (Guerreiro et al., 2012). Our findings indicate that
genetic components may contribute to the etiology of late-onset AD in
the presence of CVD risks, and warrant further investigations.
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