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Abstract

The aim of this paper is to systematically evaluate a biased sampling issue associated with 

genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic 

studies, including the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Specifically, the 

original sampling scheme of these imaging genetic studies is primarily the retrospective case-

control design, whereas most existing statistical analyses of these studies ignore such sampling 

scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. 

Although it has been well documented in genetic epidemiology that ignoring the case-control 

sampling scheme can produce highly biased estimates, and subsequently lead to misleading results 

and suspicious associations, such findings are not well documented in imaging genetics. We use 

extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer’s Disease 

Neuroimag-ing Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme 

on GWAS results based on some standard statistical methods, such as linear regression methods, 

while comparing it with several advanced statistical methods that appropriately adjust for the case-

control sampling scheme.
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1 Introduction

The case-control design has been widely used in many imaging studies, such as Alzheimer’s 

Disease Neuroimaging Initiative (ADNI). The case-control study usually starts with 

identifying two or more groups with the known outcome (e.g., case and control) and then 

retrospectively identifies risk factors (e.g., structural and functional imaging) that may 

contribute to the outcome. Case-control studies are comparatively quick, inexpensive, and 

easy, but they provide less evidence for causal inference than a randomized controlled trial. 

They are particularly appropriate for investigating outbreaks and studying rare diseases or 

outcomes. For example, although the overall design of ADNI is a longitudinal prospective 

study for studying various biomarkers at baseline and their longitudinal profiles, ADNI is 

essentially a case-control design for studying genetic influences on these biomarkers, since 

the ADNI participants is not a random sample of the age-matched general population (Kim 

and Pan, 2015).

The use of the case-control design in imaging genetic studies raises many intricate statistical 

issues in the joint analysis of imaging, genetic, clinical, and cognitive data (Lin and Zeng, 

2009; Monsees et al., 2009; Schifano et al., 2013; Wei et al., 2013; Chen et al., 2013; Ghosh 

et al., 2013; Tchetgen, 2014; Kim and Pan, 2015). Specifically, in case-control imaging 

genetic studies, there are four sets of variables including marker genotype(s), G, secondary 

traits, Y, primary (outcome) phenotype, D, and clinical variables X. Imaging measures have 

been widely used as secondary (or intermediate) traits, that may be directly associated with a 

specific disease outcome, for most neuropsychiatric and neurodegenerative illnesses (Chou 

et al., 2009; Filippini et al., 2009; Jahanshad et al., 2010; Yoon et al., 2010; Molina et al., 

2011; Kremen et al., 2010; Montag et al., 2008; Chiang et al., 2011; Gilmore et al., 2010; 

Shen et al., 2010; Peterson et al., 2009). The key difficulty comes from the fact that both 

secondary traits Y and marker genotype(s) G are collected conditional on the primary 

phenotype D, whereas the main target of inference is the population model for Y given G. 

As a result, it may be essential to adjust for D when one models Y given G in case-control 

studies.

It is well known in genetic epidemiology that for quantitative trait, improperly handling 

case-control sampling scheme can lead to estimation bias, inflated false positive rate, and 

decreased power (Lin and Zeng, 2009; Tchetgen, 2014; Kim and Pan, 2015), while one may 

gain substantial powers by appropriately accounting for the case-control scheme (Lin and 

Zeng, 2009; Monsees et al., 2009; Schifano et al., 2013; Wei et al., 2013; Chen et al., 2013; 

Ghosh et al., 2013; Tchetgen, 2014). To the best of our knowledge, however, existing GWAS 

of imaging phenotypes either ignore the case-control sampling scheme or include both 

diagnosis and the interaction between diagnosis and SNP as covariates (Potkin et al., 2009). 

Until recently, Kim and Pan (2015) wrote a cautionary note on the potential importance of 

Zhu et al. Page 2

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adjusting the case-control design in the GWAS of imaging measures. Specifically, they 

compared the retrospective likelihood method in Lin and Zeng (2009) and the standard 

linear regression method by using simulation studies and ADNI data analysis and concluded 

that standard linear regression is generally valid (with only small biases or slightly inflated 

Type I errors) for the ADNI data.

The aim of this paper is to understand the effects of the case-control sampling scheme on 

GWAS of imaging measures. There are two major contributions in this paper. The first one is 

to carry out GWAS of imaging measures obtained from ADNI by comparing statistical 

methods with and without correcting for the case-control study design (Tchetgen, 2014; Lin 

and Zeng, 2009). To this end, we first study the association between 501,584 Single 

Nucleotide Polymorphisms (SNPs) and each of 93 regions of interest (ROIs) across 362 

subjects including 198 cognitively normals (CNs) and 164 AD patients from ADNI-1. Then 

to confirm the results with a larger sample size, we combine ADNI-1 with ADNI-2 in order 

to study the association between 6,017,259 markers (including SNPs and indels) and the 

right hippocampus across 494 subjects (CN and AD patients). In contrast, in Kim and Pan 

(2015), they focused on the genetic markers on the 19th chromosome and single ROI 

volume (right hippocampus), while they did not adjust for population stratification. The 

second one is to carry out additional simulation studies based on relatively simple genetic 

models in order to examine the case-control sampling scheme. We consider some settings, in 

which moderate association exists between the secondary trait and disease status. In contrast, 

in Kim and Pan (2015), they focused on the settings, in which a weak correlation exists 

between the secondary trait and disease status. Specifically, in their simulations, the odds 

ratio of the secondary trait with disease status is very close to one. Therefore, it is not 

surprising that simple linear regression only introduces small amount of biases and slightly 

increase inflated Type I errors.

2 Methods

Suppose that imaging genetic data are collected from n independent subjects under the 

retrospective case-control sampling design. For each subject, given the case-control status Di 

(0 or 1), we observe the imaging measure Yi of interest, the clinical factors Xi, as well as the 

genotype score Gi at one of SNP markers along the whole genome for i = 1, . . . , n. We only 

consider the additive mode of inheritance, where Gi counts the number of copies of the 

minor allele at the locus. We assume, from now on, that Yi is a quantitative trait due to the 

fact that almost all imaging measures of interest are continuous. In the following, we briefly 

describe two sets of methods to model the association between single genetic variant and 

imaging phenotype with and without considering the case-control sampling scheme, both of 

which can be used to screen the whole genome in GWAS of imaging phenotypes.

2.1 Methods without Handling Case-control Sampling Scheme

Most imaging genetic studies to date do not account for the case-control sampling scheme in 

the association analysis of imaging phenotype Yi and genetic variant Gi, but rather include 

the case-control status Di as a covariate or exclude it in the association model.
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Linear regression model without adjusting for disease status—The most popular 

method is to regress Yi on Gi with only Xi as covariates. Specifically, we consider a linear 

regression model as follows:

(1)

where α0, α1, and α2 are regression coefficients, and εis’ are measurement errors with zero 

mean and variance σ2.

Linear regression model adjusting for disease status—The other method is to 

regress Yi on Gi, while including both Xi and Di as covariates in the model. Specifically, we 

consider a linear regression model as follows:

(2)

where α3 is a regression coefficient. We may also consider an interaction model by adding 

the interaction between Gi and Di in the above model (Potkin et al., 2009) as follows,

(3)

In both models (1) and (2), we are interested in making statistical inference on α1 by using a 

test statistic, such as score test, to test whether α1 = 0 holds or not. In model (3), we are 

interested in making statistical inference on α4 as we did for α1 in both models (1) and (2). 

Moreover, α2 can be a vector due to the presence of multiple environmental factors, among 

others.

2.2 Methods with Properly Handling Case-control Sampling Scheme

Several approaches have been proposed to properly account for the case-control scheme in 

the association analysis of secondary trait. Here we adopt two of them for comparison 

purposes.

A retrospective likelihood method—Lin and Zeng (2009) proposed a retrospective 

likelihood function  given by

where P (Di = 1) = ∫Y∫G,X P (Di = 1|Xi, Gi, Yi)P (Yi|Xi, Gi)P (Xi, Gi)dYdG,X, and P (Di = 

0) = 1 − P (Di = 1). We model P (Yi|Xi, Gi) as a linear regression model given by

Zhu et al. Page 4

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



while we consider a logistic regression model as follows:

We are interested in making inference on α1. Since we are not interested in P (Xi, Gi), it is 

possible to treat P (Xi, Gi)s’ as nuisance parameters. To make inference on α1, Lin and Zeng 

(2009) proposed a profile-likelihood approach to eliminate the nuisance parameters and 

obtain a profile-likelihood function, which can be maximized by the Newton-Raphson 

algorithm. More details please refer to Lin and Zeng (2009). In this paper, we use the 

software SPREG downloaded from http://dlin.web.unc.edu/software/spreg-2/.

A re-parameterization of the conditional model—Tchetgen (2014) presented a 

general regression framework for the analysis of secondary trait in case-control studies. This 

method is based on a careful non-parametric reformulation of the conditional model for the 

secondary trait given D and X. As pointed out by Tchetgen (2014), the inverse probability 

weighted regression method (IPW) (Monsees et al. (2009)) is a special case of his method 

and therefore, we do not consider IPW here.

Following Tchetgen (2014), we are mainly interested in two mean models as follows. One is 

the population mean model for Yi given (Gi, Xi) given by

The other one is the conditional mean of Yi given (Gi, Xi, Di) given by

(4)

where Si = 1 indicates selection into the case-control sample and the second equality holds 

under the assumption that selecting individuals into the case-control study is independent of 

(Yi, Gi, Xi) given Di by using the unmatched case-control design.

The key idea of Tchetgen’s (2014) method is to re-parameterize the conditional mean model 

(4) based on a relationship between μ(Gi, Xi; α) and μ̃ (Gi, Xi, Di) as follows:

(5)

where p(Gi, Xi) ≡ P (Di = 1|Gi, Xi). Moreover, H(Gi, Xi) ≡ E(Yi|Gi, Xi, Di = 1) − E(Yi|Gi, 
Xi, Di = 0) is often modeled as
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Furthermore, we have

where p̄ = P (Di = 1) and π̄ = P (Di = 1|Si = 1) are the disease prevalences in the target 

population and in the case-control sample, respectively. Moreover, logit(P (Di = 1|Gi, Xi, Si 

= 1)) can be modeled as a logistic regression as follows:

(6)

The estimation of η in model (6) is followed by the estimations of β and α in model (5). 

Here, we are also interested in making inference on α1. See Tchetgen (2014) for more 

details.

3 Simulation Studies

We use Monte Carlo simulations to evaluate the finite sample performance of the five 

methods mentioned in Section 2 including (i) LReg: linear regression method without 

adjusting for case-control status; (ii) LRegD: linear regression method adjusted for case-

control status; (iii) LRegDG: linear regression method adjusted for case-control status as 

well as interaction between case-control status and genetic factor; (iv) SPREG: the 

retrospective likelihood method in Lin and Zeng (2009); and (v) SEE: the approach based on 

the re-parameterization of conditional model in Tchetgen (2014).

3.1 Simulation Setup

The data were simulated through the following steps:

1. Generate design vector X = (X1, X2)T, where X1 is simulated from a Bernoulli 

distribution Bernoulli(0.5) and X2 is simulated from a normal distribution N (0, 
1).

2. Generate biallelic genetic variable G. Given a minor allele frequency (MAF) of 

pA and assuming Hardy-Weinberg equilibrium, SNP genotypes (AA, Aa and aa) 

were simulated from a multinomial distribution with frequency ( , 2pA(1 − 

pA), (1 − pA)2) for (AA, Aa, aa). We consider only the additive mode of 

inheritance, under which the genetic variable was coded as the number of minor 

alleles. We set pA = 0.1, 0.3, and 0.45.

3. Generate quantitative trait Y from a linear regression model α0 + α1G + α2X + 

ε, where ε ~ N(0, σ2). We set α0 = σ2 = 1 and α2 = (−0.1, −0.2). Then, we set α1 
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= 0 under the null hypothesis and α1 = −0.12 under the alternative hypothesis, 

respectively.

4. Generate case-control status. The case-control status was simulated using a 

logistic model given by

We considered two values of γ2: − log(2) and log(2) and three values of γ1: 0, 

log(1.2) and log(1.4). Then, we chose γ0 to get a disease prevalence of 10%. 

Negative γ2 indicates that the secondary trait and the quantitative trait are 

negatively correlated. For example, reduced brain volumes is often seen in 

Alzheimer’s Disease patients and reduced gray matter (GM) volume is often 

seen in subjects with schizophrenia.

5. Repeat Steps 1–4 until a sample with 100, 000 is obtained.

6. Sample 1000 cases and 1000 controls from the above large pool of subjects.

Since we focus on the association study of imaging measures, we will primarily calculate 

Type I error rates and powers for each method instead of assessing estimation biases. For 

each combination of simulation parameters, we simulated 100,000 data sets and then 

estimated Type I error rates and powers of the four estimation methods. The estimated Type 

I error rates and powers are defined as the ratios of the number of tests that were rejected 

among the 100,000 replications under the null hypothesis (α1 = 0) and the alternative 

hypothesis (α1 = −0.12), respectively.

3.2 Type I Error Rates

Table 1 shows Type I error rates of the five methods for the analysis of the SNP-secondary 

trait association at different MAFs and two given nominal significance levels 0.01 and 0.05. 

If the Type I error rate for a test exceeds the nominal significance level too much, it cannot 

control Type I error well and is undesirable. The closer that the Type I error rate is to the 

nominal significance level, the better the test will be. When no SNP is associated with the 

disease, except for LReg, all other four methods have comparable Type I error rates and can 

appropriately control Type I errors at the nominal significance level. However, the Type I 

error rates for LReg increase with the odds ratio of SNP with the case-control status, 

especially when the secondary trait and the disease status are negatively correlated (ORDY 

=0.5). For LRegD, although the Type I error rates can be controlled well when the secondary 

trait and the disease status are negatively correlated, they increase with the odds ratio of SNP 

when the secondary trait and the disease status are positively correlated (ORDY =2). In 

contrast, LRegDG, SEE in Tchetgen (2014), and SPREG in Lin and Zeng (2009) maintain 

appropriate Type I errors in all scenarios.

3.3 Power Results

As shown in Figures 1–2, when no SNP is associated with the disease, LReg, LRegD, and 

SPREG have similar power, whereas they have higher power than SEE. The power of 

LRegDG is extremely small for all the simulation settings. Similar to the results for Type I 
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errors, for all MAF settings, LReg and LRegD are not stable with respect to the odds ratio of 

SNP and the case-control status. When the secondary trait and the disease status are 

positively correlated (ORDY =2), the power of LReg decreases with the odds ratio of SNP 

and the case-control status. Similar phenomenon can be found for LRegD when the 

secondary trait and the disease status are negatively correlated (ORDY =0.5). Lin and Zeng 

(2009) also addressed the power loss in their main conclusions about the standard statistical 

methods for the secondary trait analysis. Please refer to Appendix B of Lin and Zeng (2009) 

for more details. For some settings, the higher power of LReg and LRegD comes with the 

cost of inflated type I error rates. In contrast, the power of SEE and SPREG remains stable 

regardless the direction of the correlation between the secondary trait and the case-control 

status, and no matter what the MAF is. This leads to a noteworthy observation that it is very 

important to appropriately handle the case-control sampling scheme in the analysis of 

secondary trait.

4 GWAS for ADNI

4.1 ADNI

“Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year publicpri-

vate partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of California, San Francisco. ADNI is the 

result of efforts of many coinvestigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed 

by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, 

ages 55 to 90, to participate in the research, consisting of cognitively normal older 

individuals, people with early or late MCI, and people with early AD. The follow up 

duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. 

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in 

ADNI-2. For up-to-date information, see www.adni-info.org.”

4.2 Sample

Two data sets, including imaging and genetic data as well as demographics, have been used 

throughout the paper. We focus on the first data set, which contains 818 ADNI-1 subjects, 

out of which 806 also had baseline neuroimaging data. For the second data set, we also 

include 432 ADNI-2 subjects and merge them with ADNI-1 subjects in order to increase the 
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sample size. Both ADNI data sets contain three groups of subjects classified according to 

disease status, which are AD patients, patients with mild cognitive impairment (MCI) and 

cognitively normal (CN) subjects. Since we focus on evaluating how the case-control 

sampling scheme affects GWAS of ADNI imaging measures, we only consider AD patients 

and CN subjects from the baseline diagnostic groups for both data sets.

4.3 MRI Acquisition and Image Preprocessing

The MRI data in ADNI 1, collected across a variety of 1.5 Tesla MRI scanners with 

protocols individualized for each scanner, included standard T1-weighted images obtained 

using volumetric three-dimensional sagittal MPRAGE or equivalent protocols with varying 

resolutions. The typical MRI protocol for ADNI1 included the following parameters: 

repetition time (TR) = 2400 ms, inversion time (TI) = 1000 ms, flip angle = 8°, field of view 

(FOV) = 24 cm with a 256 × 256 × 170 acquisition matrix in the x-, y-, and z-dimensions 

yielding a voxel size of 1.25 × 1.26 × 1.2 mm3 (Jack et al. (2008)). All original uncorrected 

image files are available to the general scientific community at http://adni.loni.usc.edu/. All 

participants newly enrolled in ADNI 2 are scanned using the 3T MRI scanning protocol. The 

typical MRI protocol for ADNI 2 included the following parameters: 8-channel coil, TR = 

400 ms, TE = min full, flip-angle = 11°, slice thickness = 1.2 mm, resolution = 256×256mm 
and FOV = 26 cm.

We processed the MRI data by using standard steps as follows. First, AC (anterior 

commissure) and PC (posterior commissure) correction were performed on all original 

images using MIPAV software, which is a free image analysis program developed by the 

National Institutes of Health and is available at http://mipav.cit.nih.gov (McAuliffe et al. 

(2002)). We re-sampled the images to have dimension 256 × 256 × 256. N2 bias field 

correction was implemented to reduce intensity inhomogeneity in these reconstructed 

images (Sled et al. (2002)). For each subject, we aligned the follow-up time point images to 

the baseline image using rigid registration for one subject in order to keep intracranial 

registration consistent. Skull-stripping on the baseline image were performed using a hybrid 

of two widely-used algorithms: Brain Surface Extractor (BSE) (Shattuck et al. (2001)) and 

Brain Extraction Tool (BET) (Smith (2002)), which can be used to compensate for problems 

encountered with individual methods and ensure the accuracy of the skull-stripping results. 

Intensity inhomogeneity correction followed the skull-stripping procedure. Then, we 

removed the cerebellum from the images based on registration using a manually-labeled 

cerebellum as a template. We performed intensity inhomogeneity correction for the third 

time and subsequently segmented the brain into four different tissues: grey matter (GM), 

white matter (WM), ventricle (VN), and cerebrospinal fluid (CSF) using the FSL-FAST 

software (Zhang et al. (2001)).

We used the deformation field that we obtained during registration to generate RAVENS 

maps (Davatzikos et al. (2001); Davatzikos and Resnick (1998); Goldszal et al. (1998)) to 

quantify the local volumetric group differences for the whole brain and each of the 

segmented tissue type (GM, WM, VN, and CSF), respectively. Regional volumetric 

measurements and analyses are then performed via measurements and analyses of the 

resulting tissue density maps. This technique has previously been applied to a variety of 
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longitudinal aging studies (Beresford et al. (2006); Fan et al. (2008); Resnick et al. (2000)) 

and has been extensively validated. Lastly, we carried out automatic regional labeling: first, 

by labeling the template and second, by transferring the labels following the deformable 

registration of subject images. Labeling of the ROIs for each subject’s data was done 

automatically and based on previously-validated segmented atlas of the human brain 

(Kabani et al. (1998)) After labeling 93 ROIs, we were able to compute volumes for each of 

these ROIs for each subject.

4.4 Genotype data

For the first data set, the subjects from ADNI-1 were genotyped using the Human610-Quad 

BeadChip (Illumina, Inc. San Diego, CA). The original data contained 620,901 markers, 

including multiple types of genetic variants. This paper focuses on single nucleotide 

polymorphisms (SNPs) and only SNP markers on the autosomes were analyzed (582,539 out 

of 598,821 SNP markers on the autosomes). To reduce the population stratification effect, 

we only used 749 Caucasians from all 818 subjects with complete imaging measurements at 

baseline. The following quality control (QC) procedures were then performed: (i) call rate 

check per subject, (ii) gender check, (iii) sibling pair identification, and (iv) population 

stratification. After the quality control procedures, 708 subjects remained. Furthermore, 

SNPs were excluded from the imaging genetics analysis if they could not meet any of the 

following criteria: (i) call rate per SNP ≥ 95%, (ii) minor allele frequency (MAF) ≥ 5%, and 

(iii) Hardy-Weinberg equilibrium test of p ≥ 10−6. Remaining missing genotype variables 

were imputed as the modal value. Finally, by removing all MCI subjects, 362 subjects and 

501,584 SNPs remained in the final data analysis.

For the second data set, to increase the sample size, we merged ADNI-1 and ADNI-2 

together. The subjects from ADNI-2 were genotyped using the Illumina Human 

OmniExpress BeadChip (Illumina, Inc. San Diego, CA). The original data contained 

730,525 markers, including multiple types of genetic variants. We applied the following 

preprocessing technique to the genetic data obtained from ADNI-1 and ADNI-2. The similar 

quality control procedures, except that the call rate per SNP was changed to ≥ 90%, were 

performed on the genotype data for ADNI-1 and ADNI-2, separately. After the quality 

control procedures, 503,892 SNPs obtained from 22 chromosomes of 708 Caucasians with 

complete imaging measurements at baseline were included in ADNI-1, and 517,152 SNPs of 

349 Caucasians with complete imaging measurements at baseline were included in ADNI-2. 

MACH-Admix software (http://www.unc.edu/~yunmli/MaCH-Admix/) (Liu et al., 2013) 

was applied to perform genotype imputation, using 1000G Phase I Integrated Release 

Version 3 haplotypes (http://www.1000genomes.org) (1000 Genomes Project Consortium, 

2012) as a reference panel. The 7,986,566 bi-allelic markers (including SNPs and indels) 

were included in ADNI-1 and 8,218,182 markers were included in ADNI-2. Finally, the two 

data sets were merged based on the intersection of markers and quality control was also 

conducted after imputation, excluding markers with (i) low imputation accuracy (based on 

imputation output R2), (ii) Hardy-Weinberg equilibrium p < 10−6, and (iii) MAF < 5%. 

Finally, 494 AD and CN subjects and 6,017,259 bi-allelic markers (including SNPs and 

indels) remained in the final data analysis.
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4.5 GWAS analysis

Since LRegDG has extremely small power according to our simulation studies, we only 

applied the four methods: LReg, LRegD, SEE, and SPREG mentioned in Section 2 to the 93 

ROIs for the first data set, and to the right hippocampus only for the second data set. To 

correct for population stratification, we adopt the widely used principal component analysis 

(PCA) approach that was proposed by Price et al. (2006). This approach applies principal 

components analysis to genotype data in order to identify several top principal components 

(PCs), which are the continuous axes of genetic variations, and then these PCs are treated as 

covariates in the association analysis. Here we only consider additive genetic model and 

include age, sex, and the top 5 principal component scores as non-genetic covariates. In 

addition, ICV is generally considered to be an accurate indicator of brain volume. In order to 

adjust for the effect of brain volume, the volume phenotypes were transformed by first being 

divided by ICV and then taking logarithm as response variables. For SEE (Tchetgen (2014)) 

and SPREG (Lin and Zeng (2009)), an estimated disease prevalence is needed. However, 

since the disease prevalence of ADNI varies over time as well as different subpopulation of 

age based on the annual reports of ADNI, it is not straightforward to estimate the disease 

prevalence properly for the ADNI case-control sample. We varied the disease prevalence rate 

from 0.1 to 0.4 with an increment of 0.05.

4.6 Results

For the sake of space, we first present GWAS analysis based on 6 selected ROIs including 

the left and right amygdala, the left and right temporal lobes, and the left and right 

hippocampi at different disease prevalences for the first data set. Since the aim of this paper 

is to evaluate the effects of the case-control sampling scheme on different methods of 

GWAS, we did not use the usual significance threshold of GWAS due to only very few SNPs 

passing 5 × 10−8 for all the methods. In order to achieve better comparison results, we use 

10−6 as the cut point of the p-values although we may also use other cut points for our 

GWAS of imaging measures. The quantile-quantile (Q-Q) plots of GWAS analyses on the 

right hippocampus, the left amygdala, and the right amygdala are shown in Figures 3–5. The 

Q-Q plots for the left hippocampus and the left (or right) temporal lobe are not included here 

since there are no SNPs with p-value < 10−6. Figures 3–5 reveal that SEE is severely 

affected by disease prevalence (dp), whereas SPREG performs very well under different 

disease prevalence rates. The Manhattan plots of GWAS analyses on the right hippocampus, 

the left amygdala, and the right amygdala are shown in Figures 6–8. Here we only include 

the results corresponding to LReg, LRegD, and SEE for the right hippocampus and the left 

amygdala as dp = 0.25 and for the right amygdala as dp = 0.2, and those corresponding to 

SPREG as dp = 0.15 and dp = 0.35. All Q-Q plots and Manhattan plots show that LReg and 

SPREG give similar results for the 6 selected ROIs in the first data set, which are basically 

consistent with the results of Kim and Pan (2015). Moreover, including disease status as a 

covariate in the linear model (LRegD) may be problematic for the GWAS analyses of 

secondary imaging phenotypes from ADNI.

Table 2 presents seven SNP-ROI pairs with their p-values smaller than 10−6. The results 

corresponding to p-values smaller than 10−6 are highlighted if the corresponding method has 

a reasonable Q-Q plot as shown in Figures 3–5. Moreover, although SEE detects many SNP-
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ROI pairs with their p-values smaller than 10−6, we did not include them in Table 2 due to 

the poor performance of the Q-Q plots. As shown in Table 2, SPREG is able to detect more 

SNP-ROI pairs with values smaller than 10−6 compared with LReg and/or LRegD. 

Specifically, six SNP-ROI pairs with their p-values smaller than 10−6 are identified by 

SPREG, whereas only four of them are found by LReg, and one is found by the LRegD. 

SPREG leads to the smallest p-values compared with all other methods, if disease 

prevalence can be chosen properly. All these results indicate that it is helpful to properly 

consider the sampling scheme in GWAS of secondary imaging phenotypes even though 

LReg is seemed to be reasonable. The SNP marker rs2075650, identified by LReg and 

SPREG, is associated with the right hippocampus and the right amygdala. The association 

between rs2075650 and the right hippocampus was also detected by previous works (Shen et 

al. (2010); Xu et al. (2014)).

Figures 9–11 present the LocusZoom plots around SNPs in 19q13 for the right hippocampus 

and right amygdala, in 18q21.31 and 5q33.1 for the left amygdala, and in 14q24.3 for the 

right amygdala. In the 18q21.31 region, rs12457258 and rs12605132 are highly correlated 

with each other (r2 > 0.8) and show similar low p-values for the association with the left 

amygdala volume, even though rs12605132 does not show significant association at the 

significance level < 10−6. In the 5q33.1 region, rs10476743 and rs1056993 are both highly 

correlated with rs1135093 (r2 > 0.8), rs4629585 is correlated with rs1135093 (r2 > 0.6), and 

they show similar low p-values for the association with the left amygdala volume. In the 

14q24.3 region, rs2655997 is correlated with rs207801 (r2 > 0.6) and the p-value for the 

association with the right amygdala volume is 7.32E-6. In the 19q13 region, rs2075650 has 

the smallest p-value for the right hippocampus volume and the right amygdala volume.

We summarize some key findings for other 87 ROIs in the first dataset. For SEE and 

SPREG, we only include the results corresponding to dp = 0.25 here. Table 3 lists the 

numbers of SNP-ROI pairs with their p-values smaller than 10−6 that are identified by 

SPREG and/or SEE, but not by LReg and LRegD for each of other 87 ROIs. Most of these 

SNP-ROI pairs were identified by SPREG. Table 4 lists the numbers of SNP-ROI pairs with 

their p-values smaller than 10−6 identified by the methods with or without accounting for the 

sampling scheme, in which the p-values corresponding to the SNP-ROI pairs identified by 

SPREG and/or SEE are smaller than those identified by LReg and LRegD. If we set 10−8 as 

the significance threshold, Figures 12–15 reveal that SPREG detects more significant SNP-

ROI pairs with their p-values smaller than 10−8 than LReg and LRegD for the four ROIs, 

including me.f-o.gy.R, sup.f.gy.R, inf.f.gy.L, and fornix.R. Although LReg also detects two 

significant SNP-ROI pairs with their p-values smaller than 10−8 (Figures 13 and 15), 

SPREG has smaller p-values than LReg for these two SNP-ROI pairs. These summaries 

show that SPREG is better than LReg in GWAS of these four ROIs from ADNI-1.

Finally, we present the GWAS results of the right hippocampus in the second data set. Here, 

we only include the results with dp = 0.25 for SEE and the results with dp = 0.15 and dp = 

0.35 for SPREG. Figure 16 shows the Q-Q plots and Manhattan plots of GWAS on the right 

hippocampus. Again, LReg and SPREG, even SEE, give the similar results.
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Overall, LReg is a good choice for most of ROIs from ADNI, but all the above results lead 

us to believe that it may be necessary to consider the sampling scheme in GWAS of 

secondary imaging phenotypes from ADNI.

5 Discussion

The two aims of this paper are to draw an attention on the importance of accounting for the 

case-control sampling scheme in the genome-wide association study of secondary imaging 

phenotypes and to understand how much the inflated false positive rate may be produced by 

standard LReg and LRegD when neglecting the sampling scheme and how much power we 

may potentially gain by properly accounting for it.

We have used the ADNI data to show that LReg and SPREG give very similar results for 

most of ROIs although LReg does not take account of the sampling scheme, which is 

probably due to the high prevalence of the AD in the target population as pointed out by 

Kim and Pan (2015). However, further analyses showed that more significant SNP-ROI pairs 

with their p-values smaller than 10−8 can be identified by using SPREG based on the 

retrospective likelihood method for me.f-o.gy.R, sup.f.gy.R, inf.f.gy.L and fornix.R. We have 

used extensive simulations to show that linear regression methods including LReg and 

LRegD show severely inflated Type I error rates when the genetic variant is associated with 

the case-control status and reduce powers when the secondary trait is highly associated with 

the case-control status. Moreover, the retrospective likelihood method performs very well 

both for power calculation and for controlling of Type I error.

Although we have designed the simulation studies by assuming a single quantitative 

secondary trait and the additive mode of inheritance, the studies can be easily extended to 

consider other kind of secondary traits such as binary traits (Wang and Shete (2011); Chen et 

al. (2013)), longitudinal traits (Skup et al. (2012); Xu et al. (2014)), multiple traits (Lin et al. 

(2012); Zhang et al. (2014); Zhu et al. (2014)) as well as other modes of inheritance. We 

only include AD patients and CN subjects in the GWAS of ADNI data in the paper, but we 

may include the MCI subjects in our GWAS and treat them as controls by following the 

analysis in Kim and Pan (2015). Moreover, it may be more interesting to develop new 

methods for secondary imaging phenotypes under the multiple-group design.

Although our conclusions are only based on the analysis of ANDI dataset, in which the main 

conclusion is that it is helpful to adjust for the sampling scheme in GWAS of secondary 

imaging phenotypes, we expect that the general conclusions will not be changed too much 

even for other imaging genetic datasets. Following the discussions of Kim and Pan (2015), it 

is necessary to properly adjust the sampling scheme of any imaging genetic study when the 

disease prevalence in the target population is much less than that of AD in ADNI study. The 

topic initiated by this paper is rather important and timely, as there is an increasing interest 

in GWAS of secondary imaging data, but almost all existing analyses do not account for the 

case-control sampling scheme. We hope that our paper along with Kim and Pan (2015) can 

encourage more scientists to conduct further research on the development of new methods 

for secondary-trait analysis and other related issues in imaging genetic studies.
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Figure 1. 
Simulation results: power of association tests at the 0.01 nominal significance level and three 

MAFs 0.1 (first row), 0.3 (second row), and 0.45 (third row) for the five analysis methods: 

LReg, LRegD, LRegDG, SEE, and SPREG based on 100,000 simulated data sets for the 

10% disease prevalence. ORDG and ORDY refer to the odds ratio of disease with the SNP 

and the odds ratio of disease with the secondary trait, respectively.
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Figure 2. 
Simulation results: power of association tests at the 0.05 nominal significance level and three 

MAFs 0.1 (first row), 0.3 (second row), and 0.45 (third row) for the five analysis methods: 

LReg, LRegD, LRegDG, SEE, and SPREG based on 100,000 simulated data sets for the 

10% disease prevalence. ORDG and ORDY refer to the odds ratio of disease with the SNP 

and the odds ratio of disease with the secondary trait, respectively.
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Figure 3. 
ADNI data analysis results: Q-Q plots of genome-wide association study (GWAS) of the 

right hippocampus volume by using the four methods including LReg, LRegD, SEE, and 

SPREG.
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Figure 4. 
ADNI data analysis results: Q-Q plots of genome-wide association study (GWAS) of the left 

amygdala volume by using the four methods including LReg, LRegD, SEE, and SPREG.
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Figure 5. 
ADNI data analysis results: Q-Q plots of genome-wide association study (GWAS) of the 

right amygdala volume by using the four methods including LReg, LRegD, SEE, and 

SPREG.
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Figure 6. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the right hippocampus volume by using LReg (first row), LRegD (second row), 

SEE with dp = 0.25 (third row), and SPREG with dp =0.15 (fourth row) and dp = 0.35 (fifth 

row).
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Figure 7. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the left amygdala volume by using LReg (first row), LRegD (second row), SEE 

with dp = 0.25 (third row), and SPREG with dp =0.15 (fourth row) and dp = 0.35 (fifth row).
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Figure 8. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the right amygdala volume by using LReg (first row), LRegD (second row), SEE 

with dp = 0.2 (third row), and SPREG with dp =0.15 (fourth row) and dp = 0.35 (fifth row).
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Figure 9. 
ADNI data analysis results: the LocusZoom plot of genome-wide association study (GWAS) 

of the right hippocampus volume by using SPREG showing ADNI associated region near 

the TOMM40 gene and intergenic region. Pairwise values of LD with the top SNP 

(rs2075650 in purple) was calculated using the HapMap CEU population. Physical positions 

are based on NCBI Build 36 of the human genome.

Zhu et al. Page 25

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
ADNI data analysis results: the LocusZoom plot of genome-wide association study (GWAS) 

of the left amygdala volume by using SPREG showing ADNI associated region near the 

FLJ41603 and TXNL1 genes. Pairwise values of LD with the top SNPs (rs1135093 and 

rs12457258 in purple) were calculated using the HapMap CEU population. Physical 

positions are based on NCBI Build 36 of the human genome.
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Figure 11. 
ADNI data analysis results: the LocusZoom plot of genome-wide association study (GWAS) 

of the right amygdala volume by using SPREG and SEE (the lower right) showing ADNI 

associated region near the TMEM63C, the TOMM40 gene and intergenic regions. Pairwise 

values of LD with the top SNPs (rs13066603, rs207801, rs2075650, and rs12804305 in 

purple) were calculated using the HapMap CEU population. Physical positions are based on 

NCBI Build 36 of the human genome.
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Figure 12. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the volume of me.f-o.gy.R by using LReg (first row), LRegD (second row), SEE 

with dp = 0.25 (third row), and SPREG with dp =0.25 (fourth row).
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Figure 13. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the volume of sup.f.gy.R by using LReg (first row), LRegD (second row), SEE 

with dp = 0.25 (third row), and SPREG with dp =0.25 (fourth row).
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Figure 14. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the volume of inf.f.gy.L by using LReg (first row), LRegD (second row), SEE 

with dp = 0.25 (third row), and SPREG with dp =0.25 (fourth row).
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Figure 15. 
ADNI data analysis results: Q-Q and Manhattan plots of genome-wide association study 

(GWAS) of the volume of fornix.R by using LReg (first row), LRegD (second row), SEE 

with dp = 0.25 (third row), and SPREG with dp =0.25 (fourth row).
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Figure 16. 
ADNI 1 and 2 data analysis results: Q-Q and Manhattan plots of genome-wide association 

study (GWAS) of the right hippocampus volume by using LReg (first row), LRegD (second 

row), SEE with dp = 0.25 (third row), and SPREG with dp = 0.15 (fourth row) and dp = 0.35 

(fifth row).
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