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 PAutomatic segmentation methods are important tools for quantitative analysis of Magnetic Resonance Images

(MRI). Recently, patch-based label fusion approaches have demonstrated state-of-the-art segmentation accura-
cy. In this paper, we introduce a newpatch-based label fusion framework to perform segmentation of anatomical
structures. The proposed approach uses an Optimized PAtchMatch Label fusion (OPAL) strategy that drastically
reduces the computation time required for the search of similar patches. The reduced computation time of
OPAL opens the way for new strategies and facilitates processing on large databases. In this paper, we investigate
new perspectives offered by OPAL, by introducing a new multi-scale and multi-feature framework. During our
validation on hippocampus segmentation we use two datasets: young adults in the ICBM cohort and elderly
adults in the EADC-ADNI dataset. For both, OPAL is compared to state-of-the-art methods. Results show that
OPAL obtained the highest median Dice coefficient (89.9% for ICBM and 90.1% for EADC-ADNI). Moreover, in
both cases, OPAL produced a segmentation accuracy similar to inter-expert variability. On the EADC-ADNI
dataset, we compare the hippocampal volumes obtained by manual and automatic segmentation. The volumes
appear to be highly correlated that enables to perform more accurate separation of pathological populations.

© 2015 Published by Elsevier Inc.
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Introduction

Magnetic Resonance Imaging (MRI) has become an essential tool in
medical analysis, especially in the study of the human brain. The seg-
mentation of MRI brain structures is a necessary step for many clinical
applications. The manual segmentation of structures in MRI by clinical
experts is still considered as the gold standard. However, manual label-
ing is a highly tedious and very time consuming task. Moreover, the
manually generated segmentations are subject to inter- and intra-
rater variability. Therefore, designing fast, accurate and reliable auto-
matic segmentation methods is a challenging work in quantitative
MRI analysis.
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In the past decade, several paradigmswere proposed to automatical-
ly perform brain segmentation. First, atlas-based methods involving
nonlinear registration of a labeled atlas to the subject were proposed
(Collins et al., 1995; Babalola et al., 2009). Once the atlas is matched to
the subject image, the segmentation is achieved bywarping the atlas la-
bels to the target image space. Such atlas-based methods have been
widely used due to their robustness and the ease of integration of expert
priors. However, atlas-based methods may not sufficiently capture
inter-subject variability due to the one-to-onemapping assumption be-
tween the atlas and the subject anatomy. Consequently, atlas-based
methods are subject to registration errors since in general suchmapping
does not exist.

In order to minimize registration errors, template warping tech-
niques based on a training library of manually labeled templates were
introduced. The simplest method based on a library of training tem-
plates is the best-template approach (Barnes et al., 2008). The main
idea is to reduce the anatomical distance between a selected template
and the subject to be segmented in order to improve registration
accuracy. First, the most similar template is selected in the training li-
brary. Then, this template is nonlinearly registered to the subject. Final-
ly, the estimated nonlinear transformation is applied to the manually
ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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segmented labels in the selected template to obtain the final segmenta-
tion. While the selection of the most similar template compared to an a
priori fixed atlas may improve segmentation results, the best template
strategy is still subject to registration errors and leads to sub-optimal
results.

A significant improvement has been obtained with the introduction
of multi-template approaches. Such methods merge information from
several similar training templates instead of using a single template to
achieve better segmentation. In such methods, the registration errors
resulting from inter-subject variability are considered as a random vari-
able, thus reducing segmentation error by using several atlases (Rohlfing
et al., 2004; Heckemann et al., 2006). Since its introduction, many ap-
proaches have been proposed to improve the label fusion step, such as
preselection of most similar template following by majority voting
(Aljabar et al., 2009; Collins and Pruessner, 2010; Cardoso et al., 2013),
intensity models (Wolz et al., 2009; Lötjönen et al., 2010), fusion tech-
niques with local weighted label fusion (Artaechevarria et al., 2009;
Khan et al., 2011; Sabuncu et al., 2010) or systematic bias correction
using a learning-based method (Wang et al., 2011). Multi-templates
matching approaches demonstrated competitive segmentation accuracy
at the expense of an important computational burden resulting from
multiple nonlinear registrations, i.e., up to several hours.

Recently, a nonlocal patch-based label fusion (PBL) method (Coupé
et al., 2011) has been proposed for reducing the computational burden
of multi-templates basedmethods. Instead of performingmultiple non-
linear registrations, the PBLmethod relies on the comparison of patches
(centered neighborhood around a voxel) which only requires an affine
alignment of the subject and the training templates. The patch compar-
isons performed between the current image patch and training patches,
are used to assign a weight to themanual labels according to patch sim-
ilarity. The search for similar training patches is based on a nonlocal
strategy in order to better capture registration inaccuracies and to effi-
ciently handle the inter-subject variability. PBL overcomes the one-to-
one mapping assumption of multi-template warping methods thanks
to a well-defined one-to-many mapping model. Finally, the PBL ap-
proach produces state-of-the-art segmentation accuracy with limited
computation time, i.e., several minutes.

Since its introduction, the PBL approach has been intensively studied
and many improvements have been proposed. First, PBL can be com-
bined with other methods such as multi-template warping (Rousseau
et al., 2011), active appearance models (Hu et al., 2014) or level sets
(Wang et al., 2014). Moreover, other improvements have been pro-
posed using multi-resolution framework (Eskildsen et al., 2012), dis-
criminative dictionary learning and sparse coding (Tong et al., 2013),
or generative probability models (Wu et al., 2014). However, PBL still
suffers from several limitations. First, the search for similar patches is
still computationally expensive. Although preselection of templates
and patches (Coupé et al., 2011) or multi-scale strategies (Eskildsen
et al., 2012) have been proposed, an important amount of computation
remains dedicated to the search for similar patches in the training li-
brary. Secondly, the template preselection step can prevent finding
the most similar patches existing in the library. By selecting training
templates according to a global similarity measure between the subject
and the template, the template preselection step is likely to remove rel-
evant parts of the training library, possibly leading to sub-optimal re-
sults. Finally, in PBL, patch comparisons are performed between the
current patch and training patches. The relevance of the match is then
weighted depending on the similarity between the two patches. How-
ever, weights are assigned to a large number of training patches includ-
ingmanydissimilar patches. Beyond inefficient computations dedicated
to estimate negligibleweights, these dissimilar patches can decrease the
segmentation accuracy (Tong et al., 2013). Sparsity-basedmethods tend
to limit this issue but suffer from an important computational burden
(Tong et al., 2013; Wu et al., 2014).

In this paper, we first introduce a new Optimized PAtchMatch for
Label fusion (OPAL) to address the limitations of previous PBL approaches
Please cite this article as: Giraud, R., et al., An Optimized PatchMatch for m
dx.doi.org/10.1016/j.neuroimage.2015.07.076
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in terms of computation time and search strategy of similar patches. The
OPAL method is able to find, in significantly less computations, similar
patches over the entire training library without template or patch prese-
lection. Originally, the PatchMatch (PM) (Barnes et al., 2009) algorithm
was introduced to efficiently find patch correspondences between two
2D images. For each patchwithin the first image, an approximate nearest
neighbor (ANN) is foundwithin the second image. The algorithm is based
on a cooperative and randomized strategy resulting in very low computa-
tion time, enabling near real-time processing. PM has been applied to
medical imaging for super-resolution of cardiac MRI (Shi et al., 2013),
but most PM applications concern 2D image editing problems. In this
work, we investigate the use of PM for anatomical structures segmenta-
tion using multi-templates training library. Thanks to our Optimized PM
(OPM) algorithm, OPAL produces segmentations in a few seconds com-
pared to previous PBL methods. Beyond computation time efficiency,
OPAL complexity only depends on the size of the area to be processed
within the subject. Consequently, ourmethod does not require any prese-
lection, since the searchofmost similar patches is achievedover the entire
training library. Without training template or patch preselection, similar
patches can be foundwithin thewhole template library leading to higher
segmentation accuracy.

The drastically reduced computation time of OPAL opens theway for
new strategies and efficient processing of very large databases. In this
paper, we investigate new perspectives offered by OPAL by introducing
a newmulti-scale andmulti-feature framework. In our approach, sever-
al scales and features are analyzed at the same time before performing
the label fusion. First, the OPM is achieved with different patch sizes
on each feature. Then, we perform a late fusion of these independent
estimators, each one providing different information on structure char-
acteristics. The description of the structures indeed depends on the con-
sidered patch size or the image features used. By using multi-scale and
multi-feature searches, the diversity of selected matches is improved
which increases the segmentation accuracy.

Themain contributions of this work are: (i) an adaptation of the PM
algorithm to label fusion for anatomical structure segmentation in 3D
MRI, including acceleration techniques such as constrained initializa-
tion, parallel processing and optimized distance computation; (ii) a
novel late fusion strategy of multi-scale and multi-feature estimator
maps; (iii) an extensive OPAL validation on hippocampus segmentation
on two datasets with comparison to state-of-the-art methods in terms
of computation time and segmentation accuracy; and (iv) a comparison
of the ability to separate populations, based on hippocampal volumes
obtained with manual and automatic segmentation.

Methods

Fast nearest neighbor matching

In the PBLmethod, the first step consists in finding, for each patch of
the subject to segment, relevant matches, i.e., approximate nearest
neighbors (ANN), within the training template library. The twomain is-
sues of this method are the relevance of the selected patches and the
computational burden dedicated to this search. In this work, we pro-
pose a fast patch-based nearest neighbor matching algorithm to find
highly similar patches, thus addressing the computational costs usually
associated with classic PBL techniques.

The PatchMatch algorithm
The original PM algorithm (Barnes et al., 2009) is a fast and efficient

approach that computes patch correspondences (matches) between
two 2D images (e.g., A & B). The key point of this method is that good
matches can be propagated to the adjacent patches within an image.
This propagation, combined with random matches, leads to a very fast
convergence with limited computational burden. The core of the algo-
rithm is based on three steps: initialization, propagation, and random
search. The initialization consists in randomly associating each patch
ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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of Awith a corresponding patch in B, in order to obtain an initial ANN
field. The two following steps are then performed iteratively in order
to improve the ANN field. The propagation step uses the assumption
that when a patch p centered on xi = (x, y) ∈ A matches well with a
patch q centered on xj ∈ B, then the adjacent patches of p ∈ A should
match well with the adjacent patches of q ∈ B. The iterative process
follows a scan order (from left to right, top to bottom) on even iter-
ations and is reversed on odd iterations. Therefore, only recently
processed pixels are selected to propagate good matches to their
neighbors. For example, on even iterations, for a patch located at
xi = (x, y) ∈ A, only the neighboring patches centered on (x − 1, y)
and (x, y − 1) are considered during the propagation step. Let
xj' ∈ B be the match of the patch centered on position (x − 1, y) ∈ A.
The candidate to improve p correspondence is the patch centered
on xj' + (1, 0) ∈ B.

Next, the random search step consists of a random sampling around
the current ANN to escape from local minima. The candidates are ran-
domly selectedwithin an exponentially decreasing searchwindow cen-
tered on xj. The propagation of good matches within the iterative
U
N
C
O

R
R
E
C
T

(a) CI (b) PS for itera

(d) PS for iteration #2 (e) CRS for ite

Fig. 1.Optimized PatchMatch (OPM)main steps. In this figure, the representation of OPM steps
patches of the blue patch. During the constrained initialization (CI) subfig:init, patches of the
searchwindow (three are displayed). The propagation step (PS), is represented for iteration #1
of recently processed adjacent patches are tested for improvement (dotted lines). Constrain
subfig:rs:one and subfig:rs:two, respectively. Random tests are performedwithin a decaying sea
the result of multiple independent ANN searches by OPM is illustrated. See text for more detai

Please cite this article as: Giraud, R., et al., An Optimized PatchMatch for m
dx.doi.org/10.1016/j.neuroimage.2015.07.076
process combined with random search, provides a very fast conver-
gence of the algorithm in practice.
O
F

Optimized PatchMatch algorithm
In contrast to Barnes et al. (2009) where two 2D images are consid-

ered, OPALfinds the patch correspondences between a 3D image S and a
library of n 3D templates T = {T1, …, Tn}. One advantage of the PM
algorithm is that its complexity only depends on the size of image A to
process and not on the size of the compared image B, i.e., T in the
OPAL case. This important fact enables OPAL to consider the entire
image library Twithout any template preselection step at constant com-
plexity in time. Moreover, for each patch in S, OPAL computes the best k-
ANNmatches in T andnot only onematch as done in (Barnes et al., 2009).

The OPAL algorithm is explained in detail in the next section and
Fig. 1 proposes a schematic overview. To clearly illustrate our Optimized
PatchMatch (OPM) key steps, in Fig. 1, only three templates are consid-
ered as template library T, two iterations are performed and 3DMRI vol-
umes are displayed in 2D.
E
D
 P

R
O

tion #1 (c) CRS for iteration #1

ration #2 (f) multiple OPM

focuses on the blue patch in S. Green, pink, purple and orange colors represent the adjacent
subject S are matched (full lines) to a random patch of the library within an initialization
and #2 in subfig:prop:one and subfig:prop:two, respectively. The shifted correspondences
ed random search (CRS) for iteration #1 and #2 are represented for the blue patch, in
rchwindowaround the current bestmatch,within the current best template. In subfig:mp,
ls.

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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As in the original paper, themetric used to compare the distance be-
tween a patch centered on xi∈ A and a patch centered on xj ∈ B, is a sum
of squared differences (SSD),

dist xi;x j
� � ¼ X

σ∈Ωs

A xi þ σð Þ−B x j þ σ
� �� �2 ð1Þ

where Ωs is the index coordinate set of the s × s 2D patch, centered on
(0, 0), considering s as the patch size.

Constrained initialization
In the PM original paper (Barnes et al., 2009), the initialization con-

sists in assigning, for each patch located at (x, y) ∈ A, a random corre-
spondence which can be located everywhere at (x ', y ') ∈ B. In the
case of multi-templatesmethod based on 3DMRI, the natural extension
of this initialization step is to assign, for each patch of the 3D image of
the subject to segment S located at xi=(x, y, z) ∈ S, a random patch cor-
respondence located at xj = {(x ', y ', z '), t} where t ∈ {1, …, n} is the
index of the template Tt within the template library T. However, as we
deal with linearly registered MRI volumes, we propose to constrain
the random initial position (x ', y ', z ') to be within a fixed search win-
dow centered around the current voxel position (x, y, z). Then, for
each voxel in S, an index template t is assigned using i.i.d. random vari-
able within {1, …, n}. Consequently, each patch in S is associated to a
unique randommatch among all templates of the library T. Considering
the important number of patches in S, all templates are very likely to be
reached at least once. Moreover, although the corresponding template
is randomly selected during the initialization step, all matches can
move from a template to another during the following iterative process.
Fig. 1(a) illustrates the initialization step. For each patch in S (only three
are displayed), the fixed search window for the random initialization is
depicted in dotted lines in the different training templates.

This constraint has two advantages. First, it improves the matching
convergence, making good use of the linear registration between train-
ing template and the subject. Second, limiting the initialization to afixed
windowprevents the algorithm from finding similar patches in terms of
intensity (low SSD) that are spatially far, leading to potential segmenta-
tion errors. As a consequence, our constrain initialization reinforces spa-
tial proximity between voxels in S and their matches in T andmakes the
algorithm converge faster.

As in the original PatchMatch algorithm, after this constrained
initialization, propagation and random search steps are performed
iteratively in order to improve the patch correspondence.

Propagation step with fast distance computation
The propagation step of OPM is the 3D extension of the one pro-

posed in Barnes et al. (2009). For each patch located at (x, y, z) ∈ S, an
ANN improvement is performed by testing if the shifted ANN of its 6 di-
rectly adjacent patches located at (x±1, y, z), (x, y±1, z) and (x, y, z±
1) provides a better match.
U
N

Fig. 2.Core of OPALmethod: Optimized PatchMatch and patch-based label fusion on image inten
is carried out by OPM. A patch-based label fusion is then performed to generate a label estima
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In order to converge faster and to propagate good correspondences,
the original PMonly tests recently processed neighbors during this step.
Consequently, in 3D, only three adjacent neighbors are tested at each it-
eration, according to the raw scan order. Figs. 1(b) and (d) illustrate this
step, where the blue dotted lines correspond to the test of shifted adja-
cent neighbors in T, in order to improve the current blue patch corre-
spondence. In this example, the best match for the blue patch moves
from template T1 to T2 with iteration #1 and from T2 to T1 with iteration
#2. The propagation step is a core stage of the OPAL algorithm since it
allows a patch correspondence to move over all the templates in T.
Thus, the ANN of the current voxel can move from one template to an-
other one, since theANNof the adjacent voxels are not necessarily in the
same template.

Moreover, the computational burden of these tests can be extremely
reduced in the propagation step. Indeed, we propose an acceleration
technique based on the observation that the ANN of the adjacent
patches are known. As neighbor patches are overlapping, we use a
shifted SSD instead of computing the whole distance between the cur-
rent patch and the shifted ANN of its adjacent patch. Hence, only the
non overlapping coordinates are considered, i.e., the two squares at
3D patches extremities, since there is a one voxel shift in only one of
the three dimensions. The exact SSD between the current patch and
the shifted correspondence is thus obtained in the fastest way. The
patch overlapping is illustrated in Fig. 1(b), where the blue square over-
laps the green and pink ones. The distances on the overlapping areas do
not need to be re-computed.

Constrained random search
In the original PM algorithm (Barnes et al., 2009), the random search

step is performed on all dimensions. In contrast to the original method,
OPAL deals with a library of images. Therefore, we modify the random
search step to take into account this aspect. In order to ensure spatial
consistency, OPAL performs the random search only in the current tem-
plate containing the current best patch correspondence (i.e., t is fixed,
and we random on (xt' , yt' , zt') ∈ Tt) within a search window decaying
by a factor 2. The process stops when the window is reduced to a single
voxel. The decaying search window size is empirically defined as the
size of the initialization window. Fig. 1(c) presents examples of such
fixed template random search where the decaying search windows
are represented in dotted blue lines.

Multiple PM and parallel computation
Contrary to Barnes et al. (2009) that only estimates the best match

with PM, OPAL computes k-ANN matches in T. These ANNs are then
used to perform the label fusion. In the literature, an extension of the
original PM algorithm to k-ANN case has been proposed in (Barnes
et al., 2010). The suggested strategy is to build a stack of the best visited
matches. At each new testedmatch, the distance is compared to the one
of the worst ANN among the stack. If there is an improvement in terms
of SSD, the worst ANN is replaced by the new match. However, to
parallelize such an approach, the current image S must be split into
sities. For every voxel of the subject to segment, a search for similar patches of size s× s× s
tor map. See text for more details.

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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maps are computed and merged to provide the final segmentation. See text for more details.

t1:1Table 1
t1:2Influence of multi-scale andmulti-feature in terms of segmentation accuracy and compu-
t1:3tation time on the ICBM dataset. Mono-scale and mono-feature results are obtained with
t1:4PBL from 5 × 5 × 5 patch size ANN search on MRI intensities. Multi-feature considers the
t1:5MRI gradient norm in addition to the original MRI intensities. Multi-scale adds estimator
t1:6maps computed from 3 × 3 × 3 patch sizes on each feature. The given computation times
t1:7correspond to the mean segmentation processing time of one subject.

t1:8OPAL on ICBM Median Dice Mean Dice p-Value Comp. time

t1:9Mono-scale, mono-feature 89.4% 89.4 ± 1.85% b10−14 0.27 s
t1:10+Multi-feature 89.8% 89.6 ± 1.68% 0.0131 0.53 s
t1:11+Multi-scale 89.9% 89.7 ± 1.70% × 0.92 s
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several parts. Since PM uses propagation of good matches between ad-
jacent patches, any split would lead to boundary issues. Therefore, in
OPAL, we decide to implement the k-ANN search through k indepen-
dent OPM, denoted as k-OPM. This leads to a more efficient and simple
multi-threading. Consequently, each thread can run an OPM without
any dependencies to the other ones. Fig. 1(f) illustrates the result of
the multiple OPM steps with k = 3. One can note that independent
OPMs can lead to the same ANN for a given voxel. The redundancy of
the same ANN in the ANN map is not an issue, since each contribution
is weighted during the patch-based label fusion step. During our valida-
tion, for the considered size of training libraries, we experimentally ob-
served that such multiple selections of the same ANN is a rare
phenomena.

Patch-based segmentation

After convergence of themultiple OPM, the position and the distance
of the k-ANN is known. Therefore, a patch-based label fusion step can be
used to produce the final segmentation. In such a method, labels are
fused according to their relevance to compute an estimator map of the
subject to segment. In contrast to the original PBL method (Coupé
et al., 2011), where only the central voxel information was considered,
OPAL segmentation is performed in a patchwise manner, using the
whole training patch as done in (Rousseau et al., 2011; Wu et al., 2014;
Manjón et al., 2014). Moreover, as recently proposed in (Manjón et al.,
2014), OPAL uses a bilateral kernel for weight computation in order to
reinforce spatial coherency. Fig. 2 illustrates the patch-based label fusion
process and the computation of the estimatormap and is detailed below.

Patchwise label fusion
At the end of the matching process, the k-ANN are estimated for all

the patches in S. Thus, the location and the SSD between the patches
of S and their k-ANN in T are known. To obtain the final segmentation,
we used the Patch-based label fusion (PBL) method presented in
(Coupé et al., 2011). In contrast to (Coupé et al., 2011), that considers
all the patches within a fixed number of preselected templates, OPAL
only uses the k most similar patches (limiting segmentation error)
over the entire library (increasing segmentation accuracy). As previous-
ly mentioned, when the same ANN is selected several times by
independent PM, it will be taken into account several times during the
label fusion. Considering a 3D patch PðxiÞ at voxel position xi =
(x, y, z) ∈ S, and Ki ¼ fxj;tg the set of its k-ANN match positions, its
label fusion L(xi) is defined by,

L xið Þ ¼
X

x j;t∈Ki
ω xi;x j;t
� �

l x j;t
� �

X
x j;t∈Ki

ω xi;x j;t
� � ; ð2Þ
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Owhere ω(xi, xj,t) is the weight assigned to l(xj,t), the binary label given
by the expert at voxel xj,t = {xj, t} ∈ T.

Theweightω(xi, xj,t) depends on the similarity between the patches
PðxiÞ∈S, the patch contributing to the labeling of xi, and the ANN patch
Pðxj;tÞ∈T . This weight is defined as,

ω xi; x j;t
� � ¼ exp 1−

P xið Þ−P xj;t
� ��� ��2

2

h xið Þ2
 !

; ð3Þ

where hðxiÞ2 ¼ α2 min
x j;t∈Ki

ðkPðxiÞ−Pðxj;tÞk22 þ ϵÞ, with ϵ a small constant

to ensure numerical stability, and α a normalization constant. With the
parameter h(xi) the distance of the current contribution is divided by
the minimal distance among all k-ANN contributions.

Most nonlocal label fusion methods performs voxelwise aggrega-
tion, which can provide a lack of regularization on final segmentation.
Therefore, to further improve segmentation quality, the label fusion is
performed over the whole patch as done in Rousseau et al. (2011),
Wu et al. (2014) andManjón et al. (2014) and not only using the central
voxel. The patchwise labeling is then computed as follows,

L P xið Þð Þ ¼
X

x j;t∈Ki
ω xi; x j;t
� �

l P xj;t
� �� �

X
x j;t∈Ki

ω xi;x j;t
� � : ð4Þ

This way, 3D patches PðxiÞ∈S are labeled at the same time. At the
end, the label estimator for voxel xi is obtained by averaging all neigh-
bors' contributions from overlapping blocks containing xi to obtain the
estimator map F .

Bilateral kernel
In addition to the patchwise strategy, a spatial filtering is performed

during segmentation in order to reinforce spatial coherency of the select-
ed k-ANN. The spatial filtering exploits the observation that structures of
interest are spatially close due to the linear registration. Therefore, good
patch candidates should be similar in term of intensity and spatially not
too far. Therefore, as done in NICE (Manjón et al., 2014), each ANN
ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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t2:1 Table 2
t2:2 Influence of multi-scale andmulti-feature in terms of segmentation accuracy and compu-
t2:3 tation time on EADC-ADNI dataset. Mono-scale and mono-feature results are obtained
t2:4 with PBL from 5 × 5 × 5 patch size ANN search onMRI intensities. Multi-feature considers
t2:5 theMRI gradient norm in addition to the originalMRI intensities. Multi-scale adds estima-
t2:6 tor maps computed from 3 × 3 × 3 patch size on each feature. The given computation
t2:7 times correspond to the mean segmentation processing time of one subject.

t2:8 OPAL on EADC-ADNI Median Dice Mean Dice p-Value Comp. time

t2:9 Mono-scale, Mono-feature 89.4% 89.2 ± 1.55% b10−25 0.49 s
t2:10 + Multi-feature 89.7% 89.6 ± 1.45% b10−8 0.95 s
t2:11 + Multi-scale 90.1% 89.8 ± 1.46% × 1.51 s

t3:1

t3:2

t3:3

t3:4

t3:5

t3:6

t3:7

t3:8

6 R. Giraud et al. / NeuroImage xxx (2015) xxx–xxx
U
N
C
O

R
R
E
C

contribution to patchwise labeling is also weighted by the spatial
distance between patch centers xi ∈ S and xj,t = {xj, t} ∈ T,

ω xi;x j;t
� � ¼ exp 1−

P xið Þ−P xj;t
� ��� ��2

2

h xið Þ2
þ xi−xj
�� ��

2

σ2

 ! !
; ð5Þ

where σ2 is a normalization constant.

Late aggregation of multi-scale and multi-feature estimators

Due to the high computational cost of previously published multi-
templates methods, most were designed in a mono-scale and mono-
feature context. Recently, multi-scale (Eskildsen et al., 2012; Wu et al.,
2015; Wachinger et al., 2014), and multi-feature (Kim et al., 2013; Bai
et al., 2015) approaches have been investigated. These studies show
the advantage of such frameworks. However, since these methods re-
quire a non negligible computation time, they are based on either
multi-scale (Eskildsen et al., 2012; Wu et al., 2015; Wachinger et al.,
2014) or multi-feature (Kim et al., 2013; Bai et al., 2015) estimation
but not both at the same time. Moreover, these methods perform
early feature aggregation: all the considered scales or features are
fused into a single vector before performing patch comparison. Howev-
er, early fusion is not necessarily the best strategy. Usually used for com-
putation time consideration, early fusion has been shown to be less
efficient than late estimator fusion/aggregation (Snoek et al., 2005).
Moreover, the use of bothmulti-scale andmulti-feature should improve
segmentation accuracy. Leveraging the computational efficiency of
OPAL, we propose to investigate a new framework to simultaneously
perform multi-scale and multi-feature analysis with late aggregation
of estimators. Fig. 3 illustrates the whole OPAL method and the late fu-
sion of multi-feature and multi-scale label estimator maps.

Multi-scale estimators
In patch-based methods, the structure description highly depends

on the size of the patch. The patch size needs to be large enough to cap-
ture the local geometry and to prevent discontinuities in the segmenta-
tion. However, using very large neighborhoods may reduce the
probability of finding similar patches in the library. Although the opti-
mal patch size can be determined by experiments for a given dataset,
multi-scale approaches may significantly improve segmentation accu-
racy as shown in recent multi-scale label fusion approaches (Wu et al.,
2015; Wachinger et al., 2014). In these papers, the ANN search consists
in finding the candidate minimizing the distance for every scale at the
Table 3
Methods comparison in terms of segmentation accuracy and computation time (per subject) f

Method on ICBM Median D

Patch-based (PBL)Coupé et al. (2011) 88.2 ± 2.1
Multi-templates (MTM)Collins and Pruessner (2010) 88.6 ± 2.0
Sparse coding (SRC)Tong et al. (2013) 88.7 ± 1.9
Dictionary learning (DDLS)Tong et al. (2013) 89.0 ± 1.9
OPAL 89.9 ± 1.7
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same time. Therefore, such a strategy selects a consensual candidate
providing the best similarity on average over all the considered scales.
In contrast to these previous works, we propose to perform fully inde-
pendent multi-scale ANN searches where a candidate providing the
best similarity is obtained for each scale. With this method, k-OPM are
independently computed for multiple patch sizes si, i ∈ {1, …, Ns}.
Consequently, in our context, multi-scale refers to the simultaneous
use of patches of different sizes, and the images are considered with
their initial resolution. In Fig. 3, the ANN search by OPM, and PBL is per-
formed on each feature for Ns patch sizes.

Multi-feature estimators
Similarly, the search for similar patches byOPMcan also be carried out

independently on different features (edges, textures, etc.). During our
tests with different potential features, we found that using the gradient
norm (i.e., first intensity derivative) in addition to the original MRI inten-
sities increases the segmentation accuracy. Therefore, we use both these
features. Fig. 3 shows how OPAL is applied to the Nf features extracted
from the subject S to segment. The resulting estimator maps are then
merged a posteriori as explained in the next section. As for the multi-
scale aspect, our framework contrasts with recent multi-feature methods
(Bai et al., 2015)where the ANN search consists in finding the best candi-
date for every feature at the same time. In our method, the independent
searches improve the ANN diversity of the selected matches.

Late aggregation of estimators
Label estimator maps are independently computed from PBL on

multi-scale and multi-feature ANN searches. The last step is the aggrega-
tion of these estimator maps to generate the final segmentation. Here,
OPAL is applied on Nf features, with Ns different patch sizes, so N =
Ns × Nf estimator maps F i with i ∈ {1, …, N} are computed to generate
the final segmentation. The final estimator map F is then computed by
averaging the estimator maps with a late fusion (Snoek et al., 2005),

F ¼
XN

i¼1
F i

N
: ð6Þ

In the end, the final label decision is taken as follows:

M xið Þ ¼ 1; if F xið Þ≥0:5;
0; otherwise:

�
ð7Þ

Materials

Dataset

During our experiments on hippocampus segmentation, two differ-
ent datasets have been considered.We used images from elderly adults
obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
dataset (Jack et al., 2008) and images from young adults obtained
from the International Consortium for Brain Mapping (ICBM) dataset
(Mazziotta et al., 1995). Our goal was to demonstrate robustness of
our OPAL framework using data from different sources with different
preprocessing pipelines.
or the ICBM dataset.

ice 95% interval Comp. time

9% [87.7; 88.7]% 662 s (×700)
5% [88.2; 89.0]% 3974 s (×4300)
4% [88.3; 89.2]% 5587 s (×6000)
0% [88.5; 89.4]% 943 s (×1000)
0% [89.6; 90.3]% 0.92 s

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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EADC-ADNI
This dataset was used to evaluate the performance of our approach.

The European Alzheimer's Disease Consortium and Alzheimer's Disease
Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi
definition of manual hippocampus segmentation from MRI that can be
used to validate automated segmentation algorithms (Boccardi et al.,
2014). The EADC-ADNI dataset is based on ADNI MRI scans (Jack et al.,
2008) which were acquired on General Electric, Philips, and Siemens
scanners using a 3D MPRAGE T1-w sequence as recommended by the
MRI Core of the ADNI consortium. The ADNI acquisition protocol is
based on sagittal 3D MP-RAGE sequence (TR = 2400 ms, minimum full
TE (TI = 1000 ms, FOV = 240 mm, voxel size of 1.25 × 1.25 ×
1.2mm3). Imageswere then reconstructed at a voxel size of approximate-
ly 1 × 1 × 1.2 mm3). As part of the EADC-ADNI, 100 MRI of the ADNI
dataset have been manually labeled according to the harmonized proto-
col and are freely available (www.hippocampal-protocol.net). The defini-
tion of the harmonized protocol has been designed to reduce
inconsistencies of manual segmentation protocols as detailed in
(Boccardi et al., 2014). ThemeanDice value for repeatedmanual segmen-
tations between experts has been estimated to 89% ([88%; 92%]) accord-
ing to (Tangaro et al., 2014). All the images were preprocessed using
the volBrain pipeline (http://volbrain.upv.es). The first preprocessing
step is based on the adaptive nonlocal mean filter (Manjón et al., 2010).
Denoised MRI are then coarsely corrected for inhomogeneity with N4
(Tustison et al., 2010). Afterwards, an affine registration to MNI space is
achieved using ANTS (Avants et al., 2011). In the MNI space, a fine inho-
mogeneity correction is performed using SPM8 routines (Weiskopf
et al., 2011). Finally, an intensity normalization procedure is applied to
U
N
C
O

Fig. 5.Median Dice coefficient according to themono-scale and multi-scale patch sizes and the
dataset. These results are obtained with default multi-feature settings, i.e., MRI gradient norm
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Othe images (Manjón et al., 2008). Thewhole preprocessing pipeline is per-
formed in less than 5 min per subject.

ICBM
We used a part of the International Consortium for Brain Mapping

(ICBM) dataset (Mazziotta et al., 1995) which consists of 80MR images
of young and healthy individuals withmanual segmentations following
the Pruessner's protocol (Pruessner et al., 2000). TheMRI scanswere ac-
quiredwith a 1.5 T Philips GyroScan imaging system (1mm thick slices,
TR = 17 ms, TE = 10 ms, flip angle = 30°, FOV = 256 mm). The esti-
mated intra-class reliability coefficient was of 90% for inter- (4 raters)
and 92% for intra-rater (5 repeats) reliability. All the images were
preprocessed through the following pipeline: estimation of the stan-
dard deviation of noise (Coupé et al., 2010); denoising using the opti-
mized nonlocal means filter (Coupé et al., 2008); correction of
inhomogeneities using N3 (Sled et al., 1998); registration to stereotaxic
space based on a linear transform to the ICBM152 template
(1× 1×1mm3 voxel size) (Collins et al., 1994); linear intensity normal-
ization of each subject on template intensity; image cropping around
the structures of interest; and cross-normalization of the MRI intensity
between the subjects with (Manjón et al., 2008). As for EADC-ADNI
preprocessing, the whole pipeline requires less than 5 min per subject.

Quality metric and compared methods

The proposed method was validated through a leave-one-out cross
validation procedure for both datasets. The segmentation accuracy
was estimated with the standard Dice coefficient (also called kappa
number of neighbors (left), and the corresponding computation time (right) for the ICBM
in addition to the original MRI intensities.

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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Feature Patch size

3× 3× 3 5× 5× 5

MRI intensity

MRI gradient

norm

Final map &

segmentation

Fig. 7. 2D visualizations of estimator maps for several features and several patch sizes for
the EADC-ADNI dataset.With patches of size 5×5×5, estimatormap decision ismore sta-
ble for every voxel (higher intensity within the hippocampus volume). With patches of
size 3 × 3 × 3, some areas are more accurately segmented, see for instance the peak on
top on the hippocampus image.
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index) introduced in (Zijdenbos et al., 1994) which compares the
expert-based segmentation with the automatic segmentation. For two
binary segmentationsM1 andM2, the Dice coefficientD is computed as,

D M1;M2ð Þ ¼ 2 M1∩ M2j j
M1 þj jM2j j : ð8Þ

For each subject, the Dice coefficient of left and right hippocampus
are averaged and the values in Tables 1, 2 and 3 correspond to the me-
dian Dice over all the dataset. The associated computation times include
ANN map computation for every feature with every patch size, PBL on
every estimator map and final segmentation of both left and right hip-
pocampus. During our validation process, we investigated the impact
of parameters such as the initialization search window size, the patch
size, the number of neighbors (i.e., number of OPM), and the impact of
multi-scale and multi-feature approaches on segmentation accuracy
and computation time.

The results obtained by OPAL were compared to the published re-
sults on the ICBM dataset of the original Patch-Based Label fusionmeth-
od (PBL) (Coupé et al., 2011), a Sparse Representation Classification
method (SRC) (Tong et al., 2013), and a dictionary learningmethod, de-
noted as Discriminative Dictionary Learning for Segmentation (DDLS)
(Tong et al., 2013).Mean Dice coefficients of left and right hippocampus
results of EADC-ADNI dataset were compared to the results obtained
with a Random Forest approach (Tangaro et al., 2014), and two multi-
templates based approaches, BioClinica Multi-Atlas Segmentation algo-
rithm (BMAS) (Roche et al., 2014), and Learning Embeddings for Atlas
Propagation (LEAP) (Gray et al., 2014).

Implementation details

OPAL was implemented in MATLAB using multi-threaded C-MEX
code. Our experiments were carried out using a server of 16 cores at
2.6 GHz with 100 GB of RAM. Default parameters are set to process
both ICBM and ADNI datasets. These parameters offer a good trade-off
between segmentation accuracy and computation time. In the following
results, OPAL is processed with 3 inner iterations of OPM and the num-
ber of threads on each feature is equal to k. In (5), parameters α and σ
are empirically set to 2. In the multi-feature setting, estimator maps
are computed from image intensities and gradient norm intensities. In
the multi-scale setting, OPAL is processed with 3 × 3 × 3 and
5 × 5 × 5 voxels patch sizes on each feature.

Finally, the number of selectedmatches per voxel for each estimator
is by default set to k=10 ANNs, and the size of the initialization search
window is set to 13 × 13 × 13 voxels.
Please cite this article as: Giraud, R., et al., An Optimized PatchMatch for m
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Influence of parameters

First, as mentioned in the Constrained initialization section, the ini-
tialization search window reinforces spatial coherency between voxels
in S and their matches in T. By setting the optimal search window
area, the algorithm converges faster since more relevant matches are
found, thus leading to a higher segmentation accuracy. This optimal
window size is empirically estimated according to the dataset. Fig. 4
shows the Dice coefficient for several initialization window sizes on
both studied datasets. For ICBM, a plateau is reached for a search win-
dow of 7 × 7 × 7 voxels, while an area of 13 × 13 × 13 voxels leads to
better segmentation results for the EADC-ADNI dataset. This second
dataset requires a larger searchwindow size since it contains higher an-
atomical variability due to the presence of pathologies. Therefore, in the
ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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following, the initialization window is by default set to 13 × 13 × 13
voxels.

Figs. 5 and 6 show the influence of the number of ANN (i.e., k) and of
the patch size on the segmentation quality and on the computation time.
Without the multi-scale approach, we found out that patches of size
5 × 5 × 5 voxels provide the best results on both dataset. Such patch
sizes indeed gives acceptable descriptions for structures of different
scales, as already observed in Coupé et al. (2011) and Tong et al. (2013).

With ourmulti-scale approach,we can automatically take advantage
of different patch sizes that provide better results. Bymerging estimator
maps generated from 3 × 3 × 3 and 5 × 5 × 5 voxels patch sizes, we
reach a Dice coefficient of 89.9% for the ICBM dataset, with default set-
tings (i.e., k = 10 ANNs, multi-scale, multi-feature and initialization
window set to 13 × 13 × 13 voxels). By adding estimator maps from
7 × 7 × 7 voxels patch sizes and increasing the number of k-OPM, we
even reach a 90.1% Dice coefficient. For the EADC-ADNI dataset, we
reach a 90.1% Dice coefficient (90.05% with default parameters). For
both datasets, the segmentation step is performed in less than 2 s of pro-
cessing per subject. These results highlight the importance of taking into
U
N
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Best subject Med

Dice=92 .4% D

Expert 2D

Expert 3D

OPAL 2D

OPAL 3D

Errors 2D

Errors 3D

Fig. 8. 2D and 3D visualizations of best, median and worst segmented EADC-ADNI subjects comp
expert segmentation, green voxels are the false positives (segmented by OPAL but not by the exp
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account the diversity of information obtained from various patch sizes.
We noted that the median Dice coefficient reaches a plateau around
10-ANN. It is interesting to note that this number is coherent with the
suggested number of templates in multi-templates matching methods
(Collins and Pruessner, 2010). As expected, bigger patches and larger
number of ANN required higher computation time. Consequently, our
experiments suggest that using k = 10 ANNs on each feature offers a
good trade-off between segmentation accuracy and computation time.

Different settings were compared using paired t-test on Dice coeffi-
cients. The results in Tables 1 and 2 present the impact of each contribu-
tion on Dice coefficient and computation time during the segmentation
process. For both datasets, the use of multi-feature and multi-scale sig-
nificantly improved the segmentation accuracy compared to mono-
scale and mono-feature method, as assessed by p-values. Moreover, in
all studied cases, multi-scale and multi-feature approaches improved
results of mono-scale and multi-feature method. This demonstrates
the complementary nature of multi-feature and multi-scale strategy.

Estimator maps for several features and several patch sizes are
shown in Fig. 7, for a subject of the EADC-ADNI dataset. First, bigger
E
D
 P

R
O

ian subject Worst subject

.ice=90 1% Dice=85 .8%

uted with default settings. In the fifth and sixth rows, blue voxels are overlapping with the
ert) and red voxels are the false negatives (segmented by the expert but not by OPAL).

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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t4:1 Table 4
t4:2 Method comparison in terms of segmentation accuracy for the EADC-ADNI dataset. Since
t4:3 none of the selected publications mention their computation times, the comparison only
t4:4 focus on the mean Dice coefficient. The selected result for OPAL method was obtained in
t4:5 1.51 s processing per subject.

t4:6 Method on EADC-ADNI Mean Dice 95% interval

t4:7 Random Forest Tangaro et al. (2014) 76.0 ± 7.00% [74.6; 77.4]%
t4:8 Multi-templates (BMAS)Roche et al. (2014) 86.6 ± 1.70% [86.3; 86.9]%
t4:9 Multi-templates (LEAP)Gray et al. (2014) 87.6 ± 2.07% [87.1; 88.0]%
t4:10 OPAL 89.8 ± 1.46% [89.5; 90.1]%
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patch sizes produce smoother estimator maps. Smaller patches are able
to better capture finer details at the expense of noisier estimator maps.
Second, the estimators based on gradient normbetter define edge struc-
ture but are less robust to noise. Finally, the aggregation is able to pro-
duce a good trade-off between considered scales and features.

Fig. 8 presents segmentation results of best, median and worst sub-
jects obtained on the EADC-ADNI dataset. First, we can see that auto-
matic method produces a smoother segmentation than expert. The
patchwise label fusion obtains consistent segmentation along the
edge, but tends to fill holes present in manual segmentation. Some of
these holes appear to be hippocampal CSF while others seem to be
expert inaccuracies.
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Comparison with state-of-the-art methods

The performances obtained by OPAL are compared to othermethods
applied to the same dataset in Tables 3 and 4. The presented values are
the results published by the authors. The provided computation times
are the times dedicated to segmentation step only but do not include
template preselection while only OPAL does not require it. Therefore,
the computation times are under-estimated except for OPAL.

On the ICBM dataset, compared to the original PBL (Coupé et al.,
2011), OPAL improves segmentation accuracy by 1.7 percentage points
(pp) while being 700× faster. Compared to the most accurate method
on this dataset, based on dictionary learning (DDLS Tong et al., 2013),
OPAL obtained higher Dice coefficients for computation times 1000×
faster and with a p-value inferior to 10−12 obtained from a paired t-test
on the OPAL and DDLS sets of Dice coefficients. In addition, for a given
Dice coefficient of 89.0% (equivalent to the DDLS method accuracy)
OPAL requires less than 0.22 s on the ICBM dataset (4000× faster than
DDLS method).

On the EADC-ADNI dataset, OPAL results are compared to other
methods only in terms of segmentation accuracy, since computation
times are not provided by the authors in their publications. The results
presented with OPAL on EADC-ADNI in Table 4 are obtained in 1.51 s
processing per subject. In all studied cases, OPAL produced the best seg-
mentation accuracy with a mean Dice coefficient of 89.8% (median Dice
U
N

Fig. 9. Addition of new segmented subjects to the template library. The automatic segmentation
plate library in order to increase its size and diversity. Consequently, later segmentations may

Please cite this article as: Giraud, R., et al., An Optimized PatchMatch for m
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of 90.1%). The Dice values show that OPAL outperforms recently pro-
posed methods on EADC-ADNI. Indeed, compared to a Random forest
approach (Tangaro et al., 2014), OPAL improves segmentation accuracy
by 13.3 pp and compared to recent multi-template approaches OPAL
obtained a gain superior to 2.2 pp, with a p-value inferior to 10−25

obtained from a paired t-test on the OPAL and LEAP sets of Dice
coefficients.
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Complementary results

Automatic segmentations as priors
Recently, several works have proposed to use automatic segmenta-

tions as priors in order to accurately segment a new subject. A way to
improve segmentation accuracy consists in increasing the size of the
template library. In order to do this, subjects without expert segmenta-
tions are automatically segmented and added to the template library of
manually segmented subjects (Eskildsen et al., 2012). The Multiple
Automatically Generated Templates (MAGeT) approach has been pro-
posed in (Pipitone et al., 2014) and works by propagating segmenta-
tions to a template library, composed of a subset of unlabeled subjects,
via transformations estimated by nonlinear registrations. The resulting
segmentations are then used as template library to segment a new
subject. Similarly, the LEAPmethod (Gray et al., 2014) proposes to prop-
agate the label segmentation to unlabeled subjects by iteratively
segmenting the closest subjects in terms of joint entropy. These ap-
proaches lead to segmentation accuracy improvement, since the diver-
sity of the dataset used to segment a subject is increased.

Asmentioned in Section 2.1.2, the computation time and complexity
of OPAL only depends on the size of the subject to segment. This impor-
tant fact enables us to extend the library size with no impact on the
complexity of the algorithm. New subjects without manual expert seg-
mentations can be automatically segmented and added to the template
library in order to improve its diversity. Consequently, the segmentation
accuracy of a new subject may be improved, since more relevant
matches can be found within the template library.

Therefore, we propose an experiment where automatically seg-
mented subjects from the standardized ADNI1 dataset (Wyman et al.,
2013) are randomly selected and added to the EADC-ADNI template li-
brary as illustrated in Fig. 9. The Dice coefficient is still computed with a
leave-one-out procedure on the EADC-ADNI subjects with provided
expert-based segmentations. Fig. 10 shows the impact of increasing
the library size, on the segmentation accuracy and computation time.

Adding new templates to the library with automatic segmentations
as priors enables us to improve the segmentation accuracy. Indeed,
since the dataset is extended with new subjects, its diversity is in-
creased andmore relevantmatches can be foundwithin the template li-
brary. Most importantly, the computation time results in Fig. 9 highlight
the important fact that OPAL complexity only depends on the size of the
of new subjects providedwithoutmanual expert segmentations can be added to the tem-
benefit from more numerous and potentially better training templates.

ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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t5:1Table 5
t5:2Area under the ROC curve (AUC) on hippocampal volumes in the MNI space of the seg-
t5:3mentation results from reference EADC-ADNI harmonized protocol and OPAL method.

t5:4EADC-ADNI HarP OPAL

t5:5HC mean volume (mm3) 9397 ± 1588 9272 ± 1525
t5:6AUC NC vs. AD 0.884 0.898
t5:7AUC NC vs. MCI 0.805 0.821
t5:8AUC MCI vs. AD 0.612 0.634

Fig. 10. Influence of the addition of automatic segmented ADNI subjects to the EADC-ADNI dataset on the segmentation accuracy (left) and the corresponding computation time (right).
The results obtained with 100 subjects (dotted line) correspond to the selected results in Table 2.
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subject to segment and not on the size of the template library. Adding
subjects to the database improves the segmentation accuracy at the ex-
pense of a very little setback on computation time (due tomemory stor-
age and data transfer). With 50% of supplementary training templates,
the computation time is only increased by 6%.

Clinical application
Finally, we propose to show the performance of our method on a

clinical application, by comparing population separation accuracy
using manual segmentation of the EADC-ADNI harmonized protocol
(HarP) (Boccardi et al., 2014) and the OPAL segmentation. The area
under the ROC curve (AUC) is computed on hippocampal volumes in
the MNI space for both manual and OPAL segmentation results on the
three groups of the EADC-ADNI dataset, AD (Alzheimer's Disease,
N = 37), MCI (Mild Cognitive Impairment, N = 34) and NC (Normal
Controls, N = 29). As shown in Table 5, the segmentation results
provided by OPAL enable to better separate groups with a higher AUC.
The Pearson's correlation is also computed between the HarP and
OPAL hippocampal volumes of segmentations. In Fig. 11, the hippocam-
pal volumes distribution for each group are represented. The correlation
between hippocampal volumes of HarP and OPAL segmentations is also
illustrated.

Discussion

Our proposed OPAL method presents several differences with state-
of-the-art PBL approaches. First, the complexity of the Optimized
PatchMatch algorithm (see Fig. 1) only depends on the size of subject's
image. Consequently, the entire image library T is used without any
template preselection step, at constant complexity in time. The linear
registration is also exploited by constraining the search for patch
matches at each step. Secondly, a patchwise label fusion is performed
from the selected matches (see Fig. 2) and a bilateral kernel is also
used to increase spatial consistency leading to better segmentation re-
sults, as done in (Manjón et al., 2014). Finally, we introduced a new
multi-scale and multi-feature framework based on late aggregation of
estimators. This new approach is possible thanks to the very low com-
putational burden of the ANN search in our OPM framework. Indepen-
dent multi-scale and multi-feature ANN searches are carried out, and a
late fusion is finally performed on all resulting estimator maps from
PBL to produce thefinal segmentation as illustrated in Fig. 3.We validat-
ed our method on two datasets for hippocampus segmentation. These
datasets cover different manual segmentation protocols and prepro-
cessing pipeline. By this way, the robustness of OPAL to hippocampus
definition and processing has been studied.

On ICBM and EADC-ADNI datasets, we respectively obtained amedi-
an Dice coefficient of 89.9% and 90.1% in approximately 1.5 s processing
Please cite this article as: Giraud, R., et al., An Optimized PatchMatch for m
dx.doi.org/10.1016/j.neuroimage.2015.07.076
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per subject. A large comparison with published methods such as origi-
nal PBL (Coupé et al., 2011), sparse representation (SRC) (Tong et al.,
2013), dictionary learning (DDLS) (Tong et al., 2013), multi-templates
(MTM, BMAS, LEAP) (Collins and Pruessner, 2010; Roche et al., 2014;
Gray et al., 2014) and random forest (Tangaro et al., 2014), highlights
the very competitive results of the proposed method (see Tables 3
and 4).

For the EADC-ADNI comparison, the computation times are not pro-
vided by the authors. However, we may assume that the BMAS (Roche
et al., 2014) and LEAP (Gray et al., 2014) methods are likely to propose
comparable computation time to MTM (Collins and Pruessner, 2010)
since they are also based on a multi-templates warping approach. One
can note that multi-templates warping methods perform worse on the
EADC-ADNI dataset than on the ICBM dataset. This can be related to
higher anatomical variability in EADC-ADNI dataset due to the presence
of Alzheimer's disease (AD). On this dataset, the well defined one-to-
manymapping offering by patch-based segmentation appears to better
capture this higher variability.

It is important to note OPAL can reach the inter-expert reliability on
both datasets (90% and 89.0% respectively for ICBM and EADC-ADNI
datasets). Moreover, this has been validated on two datasets with two
different manual segmentation protocols. While more than 30 minutes
are required by an expert to segment one hippocampus (1 hour for
both), OPAL produced similar segmentation quality in less than 2 s.
OPAL is performed on denoised and registered images that are
preprocessed in less than 5 min (see Section 3.1). We compared the
population separation accuracy using manual segmentation of HarP
protocol and OPAL segmentation. The robustness and consistency of
our automatic segmentation method enable a better group separation
between ADNI populations (AD, MCI, NC). Complementary results on
the use of automatic segmentations as priors have been also presented.
We show that improvements can be obtained without significant in-
creasing of computation time by adding subjects to the training library.

Throughout this paper, wementioned OPAL high capacities in terms
of both segmentation and computation time. With such fast perfor-
mance, OPAL opens the way for new applications of label fusion seg-
mentation such as integration in visualization software that would
ulti-scale and multi-feature label fusion, NeuroImage (2015), http://
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Fig. 11.Hippocampal volumes in the MNI space of the segmentation results from reference EADC-ADNI harmonized protocol and OPALmethod (left). Correlation between hippocampal
volumes of HarP and OPAL segmentations (right).
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highly facilitate the analysis of brain MRI. A web-based tool for on-line
remoteMRI processing is also a possible application to exploit OPAL ca-
pacities.We plan to includeOPAL in the next version of volBrain (http://
volbrain.upv.es).

Finally, in this paper we only applied ourmethod to the hippocampus
segmentation, since it is themost studied structure in the Alzheimer's dis-
ease context. Nevertheless, the OPAL method can be applied to the seg-
mentation of any anatomical structure. Future research will focus on the
extension of the method to the whole brain segmentation as done in
(Heckemann et al., 2006). Our preliminary results suggest that this can
be done in less than 2 minutes.

Conclusion

In this paper, we propose a novel patch-based segmentationmethod
based on anOptimized PatchMatch label fusion. Thanks to the low com-
putational burden of ourmethod,we investigated the potential of a new
multi-feature and multi-scale framework with late estimator aggrega-
tion. The validation of our approach on hippocampus segmentation ap-
plied to two different datasets shows that the proposed method
produces competitive results compared to the state-of-the-art ap-
proaches. Indeed, OPAL obtained the highest median Dice coefficient
with a drastically reduced computation time. In addition, OPAL reaches
the inter-expert reliability on both datasets (90% and 89.0% respectively
for ICBMand EADC-ADNI datasets). Therefore, OPAL provides automatic
segmentations equivalent in terms of Dice coefficient to inter-expert
segmentations in less than 2 s of processing for the segmentation step.
In addition, the volumes segmented by OPAL are highly correlated to
the manually segmented volumes. Finally, the accuracy and reproduc-
ibility of OPAL enable to better separate ADNI groups (AD, MCI, NC).
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