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Abstract—Alzheimer’s disease (AD) is a progressive neu-

rodegenerative disorder and the most common type of

dementia among older people. The number of patients with

AD will grow rapidly each year and AD is the fifth leading

cause of death for those aged 65 and older. In recent years,

one of the main challenges for medical investigators has

been the early diagnosis of patients with AD because an

early diagnosis can provide greater opportunities for

patients to be eligible for more clinical trials and they will

have enough time to plan for future, medical and financial

decisions. An established risk factor for AD is mild cognitive

impairment (MCI) which is described as a transitional state

between normal aging and AD patients. Hence an accurate

and reliable diagnosis of MCI can be very effective and help-

ful for early diagnosis of AD. Therefore in this paper we pre-

sent a novel and efficient method based on pseudo Zernike

moments (PZMs) for the diagnosis of MCI individuals from

AD and healthy control (HC) groups using structural MRI.

The proposed method uses PZMs to extract discriminative

information from the MR images of the AD, MCI, and HC

groups. Two types of artificial neural networks, which are

based on pattern recognition and learning vector quantiza-

tion (LVQ) networks, were used to classify the information

extracted from the MRIs. We worked with 500 MRIs from

the database of the Alzheimer’s Disease Neuroimaging

Initiative (ADNI 1 1.5T). The 1 slice of 500 MRIs used in this

study included 180 AD patients, 172 MCI patients, and 148

HC individuals. We selected 50 percent of the MRIs

randomly for use in training the classifiers, 25 percent for

validation and we used 25 percent for the testing phase.

The technique proposed here yielded the best overall classifi-

cation results between AD and MCI (accuracy 94.88%, sensi-

tivity 94.18%, and specificity 95.55%), and for pairs of the

MCI and HC (accuracy 95.59%, sensitivity 95.89% and speci-

ficity 95.34%). These results were achieved using maximum

order 30 of PZM and the pattern recognition network with

the scaled conjugate gradient (SCG) back-propagation
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INTRODUCTION

Dementia is a general term for diseases and conditions

that develop when nerve cells in the brain die or no

longer function normally. The most common type of

dementia is Alzheimer’s disease (AD) (Budson and

Solomon, 2011) a progressive neurodegenerative dis-

ease (Braak and Braak, 1991). The disease is associated

with impaired consciousness and memory loss, and it

generally occurs in people aged over 65 (Brookmeyer

et al., 1998). The disease was first described by

German psychiatrist Alois Alzheimer in 1906 (Berchtold

and Cotman, 1998). The incidence of AD and other

dementia-related disease has been increasing rapidly

each year throughout the world. For example, approxi-

mately 4.7 million Americans had AD in 2010, and this

number had increased to 5.3 million in 2013. It has been

estimated that there will be 13.8 million AD patients in the

U.S. by 2050 (Hebert et al., 2013). There were 68% more

deaths from AD in 2010 than there were in 2000, making

AD the sixth leading cause of death in the U.S. (Hebert

et al., 2001; Escudero et al., 2011).

In 2012, the National Institute of Aging and the

Alzheimer’s Association proposed new criteria and

guidelines for describing and categorizing the changes

in the brain associated with AD and other dementia-

related diseases (Hyman et al., 2012). These criteria

define the three stages of AD as pre-clinical AD, mild cog-

nitive impairment (MCI) due to AD, and dementia due to

AD. MCI is described as a transitional state between nor-

mal aging and AD patients, and people with MCI exhibit

difficulties with memory or thinking, but the impairment

is not severe enough to affect their ability to conduct their

daily activities (Petersen et al., 1999). In the new criteria

and guidelines that were proposed in 2011 (Albert et al.,

2011; McKhann et al., 2011; Sperling et al., 2011) MCI

is actually an early stage of Alzheimer’s or other

dementia-related diseases. Approximately 50% of the

people who see a doctor concerning the symptoms of

MCI symptoms will develop dementia in three to four

years (Petersen et al., 1999). Therefore, the ability to
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diagnose and classify MCI from AD patients and HC

groups precisely will be very effective and helpful for the

early diagnosis of AD. In recent years, several neu-

roimaging techniques have been used in the clinical diag-

nosis and classification of AD patients, MCI patients, and

healthy individuals. These techniques include computed

tomography (CT), magnetic resonance imaging (MRI),

functional magnetic resonance imaging (fMRI), positron

emission tomography (PET), and single-photon emission

computed tomography (SPECT), and several attempts

have been made to prove and compare the efficiency

and reliability of these techniques (Erkinjuntti et al.,

1989; Toyama et al., 2005; Davatzikos et al., 2008;

Chaves et al., 2009; Magnin et al., 2009; Cuingnet

et al., 2011; Illán et al., 2011; Tripoliti et al., 2011; Ortiz

et al., 2013). Usually, researchers use three types of

well-known techniques for diagnosing and classifying

the AD, MCI, and HC groups. Some previous studies

were based on volumetric measurements of segmented

regions of interest (ROI), (Convit et al., 1997, 2000;

Kaye et al., 1997; Rusinek et al., 2004; Tapiola et al.,

2008) such as the hippocampus, entorhinal cortex, and

gray matter (GM) in some regions that are affected by

AD. Several investigators have proposed the use of

Voxel-based Morphometry (VBM) for measuring the spa-

tial distribution of atrophy in the white matter (WM) and

GM of the brain as well as in the cerebrospinal fluid

(CSF) in MCI and AD patients (Hämäläinen et al., 2007;

Guo et al., 2010; Shin et al., 2010; Kim et al., 2011; Li

et al., 2012), whereas other groups use cortical thickness

as a feature for diagnosing AD, MCI, and HC (Lerch et al.,

2008; Hua et al., 2009; McDonald et al., 2009; Lehmann

et al., 2011; Grand’Maison et al., 2013).

For many years, moments have been used as

descriptors of the properties of the images in pattern

recognition, and many researchers still use them in

several applications.

Zernike moments (ZMs) have attracted extensive

attention as a powerful feature extractor in pattern

recognition due to their high robustness to noise and

their good performance in recognizing circular shapes,

such as faces (Jenkinson et al., 2005). ZMs can be used

to extract structural facial features that are local features

of face images, for example, the shapes of eyes, nose

and mouth in human face images. Since Zernike polyno-

mials are orthogonal to each other, ZMs can represent the

properties of an image with no redundancy or overlap of

information between the moments, so they are used

extensively in various applications (Haddadnia et al.,

2003; Li et al., 2009; Liyun et al., 2009; Tahmasbi et al.,

2011).

Although the ZMs are very useful in image processing,

they have some limitations. Thus, an improved version

was developed, which is referred to as pseudo Zernike

moment (PZM).

Current research is directed toward the development

of a novel method for early diagnosis of AD based on

PZM’s extraction of features of AD, MCI, and HC from

MR images. In this study, we used pattern recognition

and learning vector quantization (LVQ) networks as

classifiers to discriminate between the three groups.
MATERIALS

Data

Data used in the preparation of this paper were obtained

from the Alzheimer’s disease Neuroimaging Initiative

(ADNI) database (http://www.loni.ucla.edu/ADNI). The

ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year

public–private partnership. The primary goal of ADNI

has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological

assessment can be combined to measure the

progression of MCI and early AD. Determination of

sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians

to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of

clinical trials.

Subjects

The general eligibility criteria used for the inclusion of

participants were those defined in the ADNI protocol

(described in details at http://www.adni-info.org/

Scientists/AboutADNI.aspx#). Enrolled subjects were

between 55 and 90 (inclusive) years of age, had a study

partner able to provide an independent evaluation of

functioning, and spoke either English or Spanish. All

subjects were willing and able to undergo all test

procedures, including neuroimaging and agreed to

longitudinal follow up. Between twenty and fifty percent

must be willing to undergo two lumbar punctures,

spaced one year apart. Specific psychoactive

medications were excluded. General inclusion/exclusion

criteria were as follows: healthy control subjects (HC)

had Mini Mental State Examination (MMSE) scores

between 24 and 30 (inclusive), a Clinical Dementia

Rating (CDR) of zero. They were non- depressed, non

MCI, and non-demented. MCI subjects had MMSE

scores between 24 and 30 (inclusive), a memory

complaint, had objective memory loss measured by

education adjusted scores on Wechsler Memory Scale

Logical Memory II, a CDR of 0.5, absence of significant

levels of impairment in other cognitive domains,

essentially preserved activities of daily living, and an

absence of dementia. AD patients had MMSE scores

between 20 and 26 (inclusive), CDR of 0.5 or 1.0, and

met NINCDS/ADRDA criteria for probable AD. In this

paper, we used a total of 500 subjects, including 180

AD patients, 172 MCI subjects and 148 HC individuals.

The demographic characteristics of all subjects are

shown in Table 1.

MRI acquisition

In this paper, we used T1-weighted MR images from 1.5 T

scanners acquired according to the ADNI acquisition

protocol (Jack et al., 2008). All MR images that we used

had undergone specific preprocessing correction steps.

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org/Scientists/AboutADNI.aspx#
http://www.adni-info.org/Scientists/AboutADNI.aspx#


Table 1. Clinical and demographic information of the study population. For each group, the total number of subjects (N), number of men (M) and

number of females (F) are shown, along with the average age, Standard deviation (SD), average mini mental state examination (MMSE) score, and

clinical dementia rating (CDR)

HC (N= 148; 67 F/81 M) MCI (N= 172; 77 F/95 M) AD (N= 180; 75 F/105 M)

Mean SD Range Mean SD Range Me SD Range

Age 75.3 5.6 60–86 76.3 6.5 55–88 75.4 6.3 56–89

MMSE 28.39 1.4 25–30 26.8 1.7 24–30 23.8 2.1 20–27

CDR 0 0.0 0–0 0.5 0.0 0.5–0.5 0.7 0.3 0.5–1
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First of all, the image geometry distortion due to gradient

non-linearity was corrected by a system-specific correc-

tion that was called Gradwarp after that B1 non-

uniformity was used to for correct the image intensity

non-uniformity and in the third step N3 that is a histogram

peak sharpening algorithm was applied to all images for

reducing the residual intensity non-uniformity due to the

wave or the dielectric effect at 3T and 1.5T scans.

Meanwhile, all MR images downloaded from the

public ADNI site (www.loni.ucla.edu/ADNI) with

Neuroimaging Informatics Technology Initiative (NIfTI)

format.
Fig. 1. Plots of Zernike polynomials in the unit disk.
FEATURE EXTRACTION METHOD

In order to design an accurate diagnostic system from

MRIs the choice of feature extraction methods is very

important. Moment invariants as a statistical-based

approach for their invariance properties have received

much attention in recent years. The term invariant

denotes that an image feature remains unchanged if

that image undergoes one or a combination of the

changes such as: change of size (scale), change of

position (translation), change of orientation (rotation),

and reflection. In this paper we used the PZMs for

extracting the features from the MRIs. PZM is a

powerful shape descriptor and a form of projection of

the entire image intensity function onto the space of the

pseudo Zernike polynomials of order n with repetition m.

As earlier mentioned, the orthogonality implies no

redundancy or overlap of information between the

moments with different orders and repetitions. This

property enables the contribution of each moment to be

unique and independent from the information in an

image (Hwang and Kim, 2006). There are three steps

for computation of the PZM from an input image: first of

all computation of radial polynomials, after that computa-

tion of pseudo Zernike basis functions and finally compu-

tation of PZMs by projecting the image onto the pseudo

Zernike basis functions (Hwang and Kim, 2006; Li et al.,

2009).
ZMs

Zernike polynomials were introduced by Frits Zernike in

1934 (Zernike, 1934) as a set of orthogonal, complex-

valued polynomials, over the interior of the unit circle

(Fig. 1).

The complete set of Zernike polynomial or Zernike

basis function Vn;m is defined as:
Vnmðx; yÞ ¼ Rnmðx; yÞejmh

where j ¼ ffiffiffiffiffiffiffi�1
p

, h ¼ tan�1 y
x

� �
And Rn;m is a set of real-valued radial polynomial

which is defined as:

Rnmðx; yÞ ¼
Xn�jmj

2

s¼0

Sn;jmj;sðx2 þ y2Þn�2s

Sn;jmj;s ¼ ð�1Þs ðn� sÞ!
s! nþjmj

2
� s

� �
! n�jmj

2
� s

� �
!

where n P 0, jmj 6 n, x2 þ y2 6 1 and n� jmj ¼ even.
The complex ZMs of order n and repetition m are

defined as:

ZMnm ¼ nþ 1

p
X
x

X
y

fðx; yÞV�
nmðx; yÞ

where fðx; yÞ is the image function and * denotes the

complex conjugate.

The equation of ZMs by scale invariant central

moments is described as follows:

ZMnm ¼ nþ 1

p
Xn

k¼jmj
n�k¼even

Xb

a¼0

Xm
d¼0

ð�jÞd jmj
d

� �
b

a

� �
Sn;jmj;sCMk�2a�d;2aþd
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where CMpq is the scale invariant Central moments and

b ¼ ðN� jMjÞ=2� S.
PZMs

Zernike polynomials contain only 1
2
ðnþ 1Þðnþ 2Þ linear,

independent polynomials, and this is their main

limitation. Therefore, fewer features will be generated by

ZMs, hence PZMs were proposed by Bhatia and Wolf

(1954) to solve this problem. The difference between

ZM and PZM is in the real-valued radial polynomials,

which are defined as:

Rn;mðx; yÞ ¼
Xn�jmj

s¼0

Dn;jmj;sðx2 þ y2Þ
n�s
2

where

Dn;jmj;s ¼ ð�1Þs ð2nþ 1� sÞ!
s!ðn� jmj � sÞ!ðn� jmj � sþ 1Þ!

The PZM of order n with repetition m can be computed

by the scale invariant central moments (CMpq) and the

Radial Geometric Moments (RMpq), which are described

by the following equations: (Belkasim et al., 1991; Bailey

and Srinath, 1996):

PZMInm ¼ nþ 1

p
Xn�jmj

ðn�m�sÞeven;s¼0

Dn;jmj;s

�
Xk

a¼0

Xm
b¼0

k

a

� �
m

b

� �
ð�jÞbCM2kþm�2a�b;2aþb

þ nþ 1

p
Xn�jmj

ðn�m�sÞodd;s¼0

Dn;jmj;s

�
Xd

a¼0

Xm
b¼0

d

a

� �
m

b

� �
ð�jÞbRM2dþm�2a�b;2aþb

where k= (n � s � m)/2 and d= (n � s �m + 1)/2;

CMpq and RMpq are as follows:

CMpq ¼
lpq

M
ðpþqþ2Þ=2
00

where lpq denotes the central moment of the connected

component, and Mpq is the geometric moments of order

p+ q of a digital image that can be described as:

lpq ¼
X
x

X
y

fðx; yÞðx� x0Þpðy� y0Þq
Fig. 2. Feed-forward neural networks.
Mpq ¼
X
x

X
y

fðx; yÞxpyq

where p,q= 0,1,2,. . ., fðx; yÞ is the gray scale digital image

at x,y location, x0 ¼ M10=M00 and y0 ¼ M01=M00 are the

centers of the image. And

RMpq ¼

X
x

X
y

fðx; yÞðx̂2 þ ŷ2Þ12x̂pŷq

M00ðpþ qþ 2Þ=2
where x̂ ¼ x� x0 and ŷ ¼ y� y0.
CLASSIFICATION METHODS

Artificial neural networks (ANNs) have been used

extensively as classifiers in diagnostic systems, the

analysis of medical images, predicting and forecasting

diseases in multiple areas, such as cardiology,

radiology, pathology, and pulmonology (Itchhaporia

et al., 1996; Flores-Fernández et al., 2012; Sartakhti

et al., 2012; Vieira et al., 2013; Chankong et al., 2014).

In this paper, we used pattern recognition and LVQ neural

networks to classify people into the AD, MCI, and HC

groups.
Pattern recognition neural network (PRNN)

Pattern recognition neural networks are feed-forward

networks that can be trained to classify inputs according

to target classes.

Information always moves in only one direction in

feed-forward neural networks, and there is no feedback.

The information moves forward from the input layer

through the hidden layer to the output layer (Fig. 2). A

two-layer feed-forward network, with sigmoid hidden and

softmax output neurons, can classify vectors arbitrarily

well, given enough neurons in its hidden layer.
Training functions. After initializing the weights and

biases of the network, it will be ready for training. There

are several algorithms that can be used to train artificial

neural networks (Hagan et al., 1996). In the present

study, we used three types of training algorithms. The first

was the Levenberg–Marquardt (LM) back-propagation

algorithm (Marquardt, 1963), which often has the fastest

convergence of the training algorithms and usually per-

forms better with function-fitting problems than with pat-

tern recognition problems. The LM is very useful when

accurate training is required, but the advantage of LM

decreases when the number of weights in the network

increases. The second algorithm is a resilient back-
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propagation (RB) algorithm that was introduced by Martin

Riedmiller and Heinrich Braun (Riedmiller and Braun,

1992). The RB algorithm is a local, adaptive learning

scheme that was proposed to eliminate the harmful influ-

ence of the magnitudes of the partial derivatives on the

weight step (Baykal and Erkmen, 2000). The scaled con-

jugate gradient (SCG) algorithm (SCG) (Møller, 1993) is

the third algorithm that was used in the current study,

and it is based on conjugate directions and designed to

avoid the time-consuming line search. The SCG algorithm

is almost as fast as the LM algorithm, and it will be faster

for large networks on function approximation problems.

The term ‘back propagation’ (BP) that is used in all of

these methods refers to an algorithm that is a supervised

learning method for multi-layer, feed-forward networks.

This network was proposed by Rumelhart and

McClelland (Rumelhart et al., 1988) for determining the

optimal weight parameters. The back-propagation

method is also known as the error back-propagation algo-

rithm, which is based on the error-correction learning rule.

In this algorithm, network weights are selected randomly,

and, in each iteration, the difference between network out-

put and desired output (error) is calculated; therefore the

goal is to minimize the error by adjusting the weights.
Learning Vector Quantization neural network
(LVQNN)

LVQ is a supervised neural network that was proposed by

Teuvo Kohonen (Kohonen and Maps, 1995). LVQ is a

combination of competitive learning with supervision,

and it is well known and extensively used in processing

medical images and in bioinformatics or pattern classifica-

tion (Ganesh Murthy and Venkatesh, 1998; Kara and

Güven, 2007; Martı́n-Valdivia et al., 2007; Hung et al.,

2011). An LVQ network is made up of two layers. The first

layer is a competitive layer that maps input vectors into

clusters that are identified by the network during training.

The second layer is a linear layer that maps the merging

of the groups of first-layer clusters into classes defined by

the target data.
EXPERIMENTS AND RESULTS

As mentioned above, all MR images that we downloaded

from ADNI were pre-processed. We considered 1 slice of

all MR images in axial view (Fig. 3), and PZMs was

calculated as features for each MRI.
Fig. 3. Axial view of HC, MCI and AD.
For analyzing the effect of the orders of PZM on the

performance of the overall system, four categories were

defined as feature vectors based on PZM’s orders.

Maximum order of the first category is 5 and includes 12

moments of PZM that are considered as feature vector

elements, which satisfy the following conditions:

Category1 ¼

0 6 n 6 5

jmj 6 n

n� jmj ¼ 2k

k 2 N

8>>><
>>>:

9>>>=
>>>;

In the second category, maximum order of the second

category is 10 and the number of moments is 36, and

these moments satisfy the following conditions:

Category2 ¼

0 6 n 6 10

jmj 6 n

n� jmj ¼ 2k

k 2 N

8>>><
>>>:

9>>>=
>>>;

In the third and fourth categories, maximum orders are

20 and 30 and there are 121 and 256 moments,

respectively, that satisfy the following conditions:

Category3 ¼

0 6 n 6 20

jmj 6 n

n� jmj ¼ 2k

k 2 N

8>>><
>>>:

9>>>=
>>>;
Category4 ¼

0 6 n 6 30

jmj 6 n

n� jmj ¼ 2k

k 2 N

8>>><
>>>:

9>>>=
>>>;

Table 2 shows feature vector elements of PZM for four

categories.

To demonstrate the applicability of our proposed

method, an experimental study was conducted on the 1

slice of 500 ADNI MRI database, which includes 180 AD

patients, 172 MCI subjects, and 148 HCs. We chose 50

percent of images (250 images) at random and used

them in the training set (90 AD, 86 MCI and 74 HC); 25

percent of MR images (125 images) were used as the

validation set (45 AD, 43 MCI and 37 HC), and the rest

of 25 percent MR images (125 images) used as the

testing set for evaluating the classification performances.

Training set is presented to the network during

training, and the network is adjusted according to its

error. Validation set is used to measure network

generalization, and to halt training when generalization

stops improving and the testing set has no effect on

training and so provide an independent measure of

network performance during and after training (Hai-Jew,
Table 2. Feature vector elements of PZM

Category Maximum Order of PZM No. of moments

1 5 12

2 10 36

3 20 121

4 30 256
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2015). We used the validation set to avoid the overfitting

problem. In order to prevent overfitting, it is necessary to

use some additional techniques (e.g. cross-validation,

regularization, early stopping) (Li, 2008). In this paper

we used the early stopping technique. For using this tech-

nique the available data should be divided into three sub-

sets. The error on the validation set is monitored during

the training process. The validation error will normally

decrease during the initial phase of training, as does the

training set error. However, when the network begins to

overfit the data, the error on the validation set will typically

begin to rise. When the validation error increases for a

specified number of iterations, the training is stopped,

and the weights and biases at the minimum of the valida-

tion error are returned (Du and Swamy, 2013).

Three steps were performed. First, PZMs of 1 slice of

500 MRIs were computed and used as features. Second,

the extracted features were used to feed the pattern

recognition and LVQ networks. Third, the effect of

PZMs’ orders and three training algorithms were

assessed to identify relevant pairs of diagnostic groups

(AD/MCI, and MCI/HC).

The performance of the proposed method was

evaluated by the percentages of three measurements,

i.e., sensitivity, specificity and accuracy. The respective

definitions of these parameters are described as follows:

Sensitivity ¼ TP

TPþ FN
� 100

Specificity ¼ TN

TNþ FP
� 100

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
� 100

where TP, TN, FP, and FN denote true positives (i.e., the

number of patients who were correctly classified), true

negatives (i.e., the number of HCs who were correctly

classified), false positives (i.e., the number of patients

who were classified as HCs), and false negatives (i.e.,

the number of members of the HC group who were
Table 3. Classification results of AD vs. HC

Maximum

order of PZM

No. of features Classification methods Tra

5 12 SC

PRNN LM

RB

LVQNN

10 36 SC

PRNN LM

AD/HC RB

LVQNN

20 121 SC

PRNN LM

RB

LVQNN

30 256 SC

PRNN LM

RB

LVQNN
classified as patients), respectively. After training the

pattern recognition and LVQ networks using the training

set, we tested our proposed method using the test set.

To increase reliability we train, validate and test our

proposed method 5 times for each AD/HC, AD/MCI and

MCI/HC group and the average of results considered.

Tables 3–5 present the results of the classification

experiments for the pairs of AD/HC, AD/MCI, and MCI/

HC, respectively. Figs. 4–6 show the accuracy rates for

the classifications of the AD/HC, AD/MCI, and MCI/HC

groups with respect to maximum order of PZM, PRNN

training algorithms and LVQ neural network.
Classification of AD and HC

The classification results for pairs of AD/HC are shown in

Table 3, and Fig. 4.

The best results that were obtained when the

maximum order of PZM was selected as 30 (256

features) and the pattern recognition network was

trained by SCG training algorithm were sensitivity

96.64%, specificity 97.79%, and accuracy 97.27%,

whereas classification based on the LVQ network

resulted in 89.72% sensitivity, 90.76% specificity, and

90.30% accuracy.
Classification of AD and MCI

The best overall classification results (sensitivity 94.18%,

specificity 95.55%, and accuracy 94.88%) for groups of

AD and MCI were obtained when PZM was used with

maximum order 30 (256 features) and the pattern

recognition network was trained by the SCG algorithm.

The LVQ network obtained lower results (sensitivity

90.01%, specificity 90.27%, and accuracy 90.62%) than

a pattern recognition network. The classification results

are shown in Table 4, and Fig. 5.
ining algorithm Sensitivity (%) Specificity (%) Accuracy (%)

G 93.41 92.43 92.89

92.68 90.42 91.47

93.12 89.06 90.90

85.22 88.63 86.93

G 92.10 95.50 93.93

92 94.44 93.33

90.27 90.32 90.30

88.81 88.77 88.78

G 94 96.11 95.15

9.55 95.08 94.84

91.78 92.39 92.12

86.92 91.52 89.32

G 96.64 97.79 97.27

95.97 97.23 96.66

94.59 95.60 95.15

89.72 90.76 90.30



Table 4. Classification results of AD vs. MCI

Maximum order of PZM No. of features Classification methods Training algorithm Sensitivity (%) Specificity (%) Accuracy (%)

5 12 SCG 89.75 88.70 89.20

PRNN LM 90.36 89.24 89.77

RB 87.05 87.91 87.50

LVQNN 85.54 87.70 86.64

10 36 SCG 89.77 93.18 91.47

PRNN LM 89.71 92.65 91.19

AD/MCI RB 89.47 90.60 90.05

LVQNN 89.95 86.77 87.78

20 121 SCG 92.39 93.37 92.89

PRNN LM 92.35 92.85 92.61

RB 92.07 89.89 90.90

LVQNN 85.39 89.65 87.50

30 256 SCG 94.18 95.55 94.88

PRNN LM 95.23 94.56 94.87

RB 91.27 92.77 92.04

LVQNN 90.01 90.27 90.62

Table 5. Classification results MCI vs. HC

Maximum

order of PZM

No. of features Classification methods Training algorithm Sensitivity (%) Specificity (%) Accuracy (%)

5 12 SCG 89.65 89.59 89.62

PRNN LM 88.80 90.79 88.36

RB 85.62 89.69 87.73

LVQNN 83.44 86.82 85.22

10 36 SCG 88.96 93.29 91.19

PRNN LM 92.30 90.85 91.50

MCI/HC RB 89.18 90.58 89.93

LVQNN 86.75 89.82 88.36

20 121 SCG 93.37 95.80 94.65

PRNN LM 93.28 94.67 94.02

RB 91.78 91.86 91.82

LVQNN 89.04 89.53 89.30

30 256 SCG 95.89 95.34 95.59

PRNN LM 95.20 94.76 94.96

RB 92.36 91.37 91.82

LVQNN 90.97 90.22 90.56

Fig. 4. Classification accuracy of AD vs. HC with respect to Max

orders of PZM, 3 PRNN Training algorithm and LVQ.

Fig. 5. Classification accuracy of AD vs. MCI with respect to Max

orders of PZM, 3 PRNN Training algorithm and LVQ.
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Fig. 6. Classification accuracy of MCI vs. HC with respect to Max

orders of PZM, 3 PRNN Training algorithm and LVQ.

368 H. T. Gorji, J. Haddadnia /Neuroscience 305 (2015) 361–371
Classification of MCI and HC

The best classification result of maximum order 30 (256

features) of PZM was achieved (sensitivity 95.89%,

specificity 95.34%, and accuracy 95.59%) when we

used the pattern recognition network and the SCG

training algorithm as was the case for the AD/MCI

classification results mentioned above. As expected, the

LVQ classification result was lower than the other

classification method (sensitivity 90.97%, specificity

90.22%, and accuracy 90.56%). The results are shown

in Table 5, and Fig. 6.

DISCUSSION

Several methods have been proposed for the diagnosing

dementia in patients. Some of the recent studies have

used segmented ROI, VBM, and surface-based analysis

(SBA) for diagnosis of AD, MCI, and HC.

Recent Studies based on ROI, VBM, and SBA have

reported classification rates between 75% and 94.3%

(Fan et al., 2008a; Magnin et al., 2009; Zhang et al.,

2011; Gray et al., 2013; Ortiz et al., 2013). The high vari-

ation in these reported results is partly due to different

databases and study populations being used but also

due to the fact that different studies using different classi-

fiers and common types of cross-validation approaches,

e.g. K-fold or leave-one-out cross-validation.

To the best of our knowledge, the present study is the

first in which the PZM approach was used with the aim of

early diagnosing AD, based on T1-weighted structural MRI

data. PZM is a powerful shape descriptor. A relatively

small set of PZMs can characterize the global shape of a

pattern effectively. Lower order moments represent the

global shape of a pattern and higher order moments

represent the details. PZM descriptor has such desirable

properties that make it one of the most suitable choices

for our work: rotation invariance, robustness to noise,

expression efficiency, fast computation and multi-level

representation for describing the various shapes of

patterns. With a proper normalization method, scale

invariance can also be achieved.
Therefore PZMs have been used to extract the AD,

MCI, and HC features from MRIs with the aim of

generating feature vectors for the task of diagnosing

and classifying the AD/MCI, and MCI/HC pairs. Also, to

evaluate and compare the performances of our

proposed method, two types of classifiers (pattern

recognition with the three training algorithm and LVQ

networks) were used for the classification of the AD,

MCI, and HC groups. Sensitivity, specificity, and

accuracy are three parameters that determine the

results of the classification. The ADNI MRI data were

separated randomly into two groups of the same size, i.

e., the training set and the test set. After training the

classifiers by the features that were extracted by PZM,

the performance of our proposed method was evaluated

using the test set.

As shown in ‘Experiments and results’ section, our

proposed method obtained high values of sensitivity,

specificity and accuracy. The performance of the

proposed method improved significantly when the

maximum order of PZMs increased from 5 (12 features)

to 30 (256 features) and pattern recognition network

with the SCG back-propagation training algorithm used

as a classifier (4.38% for AD/HC, 5.68% for AD/MCI

and 5.97% for MCI/HC).

Tables 3–5 shows classification results for AD/HC,

AD/MCI and MCI/HC by PRNN and LVQ network

respectively for four categories of maximum orders of

PZMs. The Classification accuracy of AD/HC, AD/MCI

and MCI/HC with respect to Maximum orders of PZMs,

3 PRNN Training algorithm and LVQNN is shown in

Figs. 4–6 respectively.

This technique yielded the best overall classification

results between AD and MCI (accuracy 94.88%,

sensitivity 94.18%, and specificity 95.55%), and for pairs

of the MCI and HC (accuracy 95.59%, sensitivity

95.89% and specificity 95.34%) which is higher

compared with state-of-the-art methods.

In several studies classification between AD/HC and

MCI/HC was evaluated. Therefore, we also assessed

the classification performance of AD over HC using our

proposed method.

The lower classification results that we obtained by

PZM with a maximum order 5 and LVQNN were for the

AD/HC pairs (sensitivity 89.72%, specificity 90.76%, and

accuracy 90.30%), which were comparable to the best

results that have been reported in Table 6.

Classification between MCIc (MCI individuals that

converted to AD) and MCInc (MCI non-converters to

AD) has been proposed in a few studies (Misra et al.,

2009; Zhang et al., 2011; Aguilar et al., 2013; Ota et al.,

2014; Suk et al., 2014). However, since the pre-

processing steps were different, separate training and test

sets were used, the classification rate varied between

74% and 86% for the pairs of MCIc/MCInc. Because the

aim of this study is the early diagnosis of AD, and as men-

tioned above MCI is a transitional state between HC peo-

ple and AD patients, we achieved classification results

between the pairs of AD/MCI and MCI/HC to distinguish

between MCI and two other groups. However, for discrim-

ination between AD/MCI and MCI/HC, our proposed



Table 6. Comparison of the proposed method with other studies

Reference Year Feature extraction method Database Acc of AD/HC

(%)

Acc of AD/MCI

(%)

Acc of MCI/HC

(%)

Our proposed methods 2014 Pseudo Zernike moment ADNI 97.27 94.88 95.59

Shen et al. (Shen et al., 2014) 2014 GM, WM, CSF ADNI 93.2 – 86.5

Wang et al. (Wang et al., 2013) 2013 GM, WM, CSF ADNI 93.3 – 78.9

Yang et al. (Yang et al., 2013) 2013 Volume and shape by SPM Private 94.12 – 88.89

Gray et al. 2013 VBM and biomarkers ADNI 89 – 75

Ortiz et al. 2013 Tissue distribution of GM and

WM

ADNI 90 – –

Zhang et al. 2011 (ROIs) and CSF biomarkers ADNI 93.2 – 76.4

Escudero et al. (Escudero et al.,

2011)

2011 Anatomical analysis by

Freesurfer

ADNI 89.2 – 72.7

Ramı́rez et al. 2010 Partial least squares Private 96.9 – –

López et al. (López et al., 2009) 2009 Voxel of ROI Private 92.31 – –

Colliot et al. (Colliot et al., 2008) 2008 Hippocampus Segmentation Private 84 – 73
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method can achieve a classification accuracy of 94.88%,

and 95.59% respectively.

The best classification results we obtained for MCI vs.

HC, i.e., sensitivity 95.89%, specificity 95.34%, and

accuracy 95.59%), were lower than those in the study

reported in the original paper by (Fan et al., 2008b).

They reached 100% accuracy when they chose 68 or

75 brain regions as features, but, as mentioned in their

paper, for a reasonable range of the brain region numbers

(between 50 and 80), they obtained an average accuracy

of about 93%, whereas the average result of our proposed

method was 92.76%, is comparable to their results.

However, for an exact comparison of the two studies,

we should consider an important point, i.e., number of

subjects used in the two experiments. In our study, we

used 320 subjects (172 MCI and 148 HC), while just 30

subjects (15 MCI and 15 HC) were used in the other

study. Thus, we can claim that the current study achieved

better performance than the other study. Table 6 provides

a brief comparison between our proposed method and the

other diagnosis and classification results.
CONCLUSION

A novel method based on PZMs was presented in this

paper for extracting discriminative information from

structural MRI with the aim of the early diagnosis of AD

and classification between patients with AD, patients

with MCI, and HC subjects. The results on ADNI MRI

data for 500 subjects showed that our feature extraction

and classification methods achieved high accuracy, high

sensitivity, and high specificity for the AD and MCI

groups as well as the HC group. A pattern recognition

network with three training algorithms and a LVQ

network were used as classifiers in this work. The best

results were obtained when the maximum order of PZM

was 30 and the pattern recognition network with the

SCG back-propagation training algorithm was used as

the classifier.

The proposed method yielded 97.27% classification

accuracy (96.64% sensitivity and 97.79% specificity) for

the pairs of AD/HC, 94.88% classification accuracy

(94.18% sensitivity and 95.55% specificity) for the pairs

of AD/MCI, and 95.59% classification accuracy (95.89%
sensitivity and 95.34% specificity) for classification of

the pairs of MCI/HC. These results demonstrate the

high precision and reliability of our proposed method

and indicate that the proposed method could provide a

good choice for the early diagnosis of AD.
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