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Abstract

Motivation: Recent advances in technology for brain imaging and high-throughput
genotyping have motivated studies examining the influence of genetic variation on
brain structure. Wang et al. (Bioinformatics, 2012) have developed an approach for
the analysis of imaging genomic studies using penalized multi-task regression with
regularization based on a novel group l2,1-norm penalty which encourages structured
sparsity at both the gene level and SNP level. While incorporating a number of useful
features, the proposed method only furnishes a point estimate of the regression coeffi-
cients; techniques for conducting statistical inference are not provided. A new Bayesian
method is proposed here to overcome this limitation.

Results: We develop a Bayesian hierarchical modeling formulation where the pos-
terior mode corresponds to the estimator proposed by Wang et al. (Bioinformatics,
2012), and an approach that allows for full posterior inference including the construc-
tion of interval estimates for the regression parameters. We show that the proposed
hierarchical model can be expressed as a three-level Gaussian scale mixture and this
representation facilitates the use of a Gibbs sampling algorithm for posterior simula-
tion. Simulation studies demonstrate that the interval estimates obtained using our
approach achieve adequate coverage probabilities that outperform those obtained from
the nonparametric bootstrap. Our proposed methodology is applied to the analysis of
neuroimaging and genetic data collected as part of the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), and this analysis of the ADNI cohort demonstrates clearly the
value added of incorporating interval estimation beyond only point estimation when
relating SNPs to brain imaging endophenotypes. Software is publicly available at
https://cran.r-project.org/web/packages/bgsmtr/index.html.
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1 Introduction

Imaging genetics involves the use of structural or functional neuroimaging data to study
subjects carrying genetic risk variants that may relate to neurological disorders such as
Alzheimer’s disease. In such studies the primary interest lies with examining associations
between genetic variations and neuroimaging measures which represent quantitative traits.
Compared to studies examining more traditional phenotypes such as case-control status, the
endophenotypes derived through neuroimaging are in some cases considered closer to the
underlying etiology of the disease being studied, and this may lead to easier identification
of the important genetic variations. A number of settings for statistical analysis in imaging
genetics have been studied involving different combinations of gene versus genome-wide and
region of interest (ROI) versus image-wide analysis, all of which have different advantages
and limitations as discussed in Ge at al. (2013).

The earliest methods developed for imaging genomics data analysis are either based
on significant reductions to both data types or they employ full brain-wide genome-wide
scans based on a massive number of pairwise univariate analyses (e.g. Stein et al., 2010).
While these approaches are convenient in terms of their implementation they ignore potential
multicollinearity arising from variants within the same LD block, and they also ignore the
potential relationship between the different neuroimaging endophenotypes. Ignoring these
relationships precludes the borrowing of information about the genetic associations across
components of the response vector. Hibar et al. (2011) use gene-based multi-variate statistics
and avoid having collinearity of SNP vectors by using dimensionality reduction. Vounou et
al. (2010) develop a sparse reduced-rank regression approach for studies involving high-
dimensional neuroimaging phenotypes, while Ge et al. (2012) develop a flexible multi-locus
approach based on least squares kernel machines. In the latter case, the authors employ
permutation testing procedures and take advantage of the spatial information inherent in
brain images by using random field theory as an inferential tool (Worsley, 2002). More
recently, Stingo et al. (2013) develop a Bayesian hierarchical mixture model for relating
brain connectivity to genetic information for studies involving functional magnetic resonance
imaging (fMRI) data. The mixture components of the proposed model correspond to the
classification of the study subjects into subgroups, and the allocation of subjects to these
mixture components is linked to genetic covariates with regression parameters assigned spike-
and-slab priors. The proposed model is used to examine the relationship between functional
brain connectivity based on fMRI data and genetic variation.

In contrast, the focus of our work concerns the development of methodology for studies
where the neuroimaging phenotypes consist of volumetric and cortical thickness measures
derived from MRI which summarize the structure (as opposed to the function) of the brain
over a relatively moderate number (e.g. up to 100) ROI’s, and we are interested in relating
brain structure to genetics.

We develop a Bayesian approach based on a continuous shrinkage prior that encourages
sparsity and induces dependence in the regression coefficients corresponding to SNPs within
the same gene, and across different components of the imaging phenotypes. Our approach
is related to the Bayesian group lasso (Park and Casella, 2008; Kyung et al., 2010) but it is
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adapted to accommodate multivariate phenotypes and it is extended to allow for grouping
penalties both at the gene and SNP level. Our work is primarily motivated by the recent work
of Wang et al. (2012) who propose an estimator based on group sparse regularization applied
to multivariate regression where SNPs are grouped by genes or LD blocks. In what follows
we will assume for specificity that the groups correspond to genes; however, this assumption
is not necessary and any approach for grouping the SNPs (e.g. LD blocks) may be used.
Let y` = (y`1, . . . , y`c)

T denote the imaging phenotype summarizing the structure of the
brain over c ROIs for subject `, ` = 1, . . . , n. The corresponding genetic data are denoted by
x` = (x`1, . . . , x`d)

T , ` = 1, . . . , n, where we have information on d SNPs, and x`j ∈ {0, 1, 2}
is the number of minor alleles for the jth SNP. We further assume that the set of SNPs can be
partitioned into K groups, for example K genes, and we let πk, k = 1, 2, . . . , K, denote the
set containing the SNP indices corresponding to the kth group and mk = |πk|. We assume
that E(y`) = WTx`, ` = 1, . . . , n, where W is a d x c matrix, with each row characterizing
the association between a given SNP and the brain summary measures across all ROIs. The
estimator proposed by Wang et al. (2012) takes the form

Ŵ = arg min
W

n∑
`=1

||WTx`-y`||22 +γ1||W||G2,1 + γ2||W||l2,1 (1)

where γ1 and γ2 are regularization parameters weighting a G2,1-norm penalty

||W||G2,1 =
∑K

k=1

√∑
i∈πk

∑c
j=1w

2
ij and an `2,1-norm penalty ||W||l2,1 =

∑d
i=1

√∑c
j=1w

2
ij

respectively. The G2,1-norm addresses group-wise association between SNPs and encourages
sparsity at the gene level. This regularization differs from group lasso (Yuan and Lin, 2006) as
it penalizes regression coefficients for a group of SNPs across all imaging phenotypes jointly.
As an important gene/group may contain irrelevant individual SNPs, or a less important
group may contain individually significant SNPs, the second penalty, an `2,1-norm (Evgeniou
and Pontil, 2007), is added to allow for additionall structured sparsity.

The estimator (1) provides a novel approach for assessing associations between neu-
roimaging phenotypes and genetic variations as it accounts for several interrelated struc-
tures within genotyping and imaging data. The incorporation of biological group structure
in regression analysis with genetic data has been developed in a variety of contexts (see e.g.
Stingo et al., 2011; Wen, 2014; Rockova et al., 2014; Zhu et al., 2014) . Wang et al. (2012)
show that such an approach when applied to imaging genetics is able to achieve enhanced
predictive performance and improved SNP selection compared with a number of alternative
approaches in certain settings. Notwithstanding these advantages, a limitation of the pro-
posed methodology is that it only furnishes a point estimate Ŵ and techniques for obtaining
valid standard errors or interval estimates are not provided. The primary contribution of
this article is to provide an approach for doing this.

Resampling methods such as the bootstrap are a natural starting point for this problem;
however, as discussed in Kyung et al. (2010) the bootstrap estimates of the standard error
for the lasso or lasso variations such as the estimator (1) might be unstable and not perform
well. An alternative way forward is to exploit the connection between penalized regression
methods and hierarchical modeling formulations. Following the ideas of Park and Casella
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(2008) and Kyung et al. (2010) we develop a hierarchical Bayesian model that allows for full
posterior inference. The spread of the posterior distribution then provides valid measures of
posterior variability along with credible intervals for each regression parameter. Along similar
lines, Bae and Mallick (2004) develop a two-level hierarchical model for gene selection that
incorporates the univariate Laplace distribution as a prior that favors sparsity and employ
the representation of the Laplace distribution as a Gaussian scale mixture in their model
hierarchy. In our work, we use a multivariate prior based on a Gaussian scale mixture
representation which is assigned independently to the set of coefficients corresponding to
each gene. The prior is chosen so that the corresponding posterior mode is exactly the Wang
et al. (2012) estimator. To our knowledge this specific form of multivariate shrinkage prior
has not been considered previously, though the formulation is related to the general ideas
developed in Kyung et al. (2010).

The remainder of the paper proceeds as follows. In Section 2 we specify the hierarchical
model and its motivation based on the estimator (1). The scale mixture representation
is specified and a Gibbs sampling algorithm for computing the posterior distribution is
presented. Section 3 presents a study of computation time and scaling, while simulation
studies are presented in Section 4. Section 5 applies our methodology to a dataset obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, where we relate
MRI based structural brain summaries at 56 ROIs to 486 SNPs belonging to 33 genes. The
final section concludes with a discussion of potential model extensions.

2 Methods

Let W(k) = (wij)i∈πk denote the mk × c submatrix of W containing the rows corresponding
to the kth gene, k = 1, . . . , K. The hierarchical model corresponding to the estimator (1)
takes the form

y` |W, σ2 ind∼ MVNc(W
Tx` , σ

2Ic) ` = 1, . . . , n, (2)

with the coefficients corresponding to different genes assumed conditionally independent

W(k)|λ21, λ22, σ2 ind∼ p(W(k)|λ21, λ22, σ2) k = 1, . . . , K, (3)

and with the prior distribution for each W(k) having a density function given by

p(W(k)|λ21, λ22, σ2) ∝ exp

−λ1σ
√√√√∑

i∈πk

c∑
j=1

w2
ij


×
∏
i∈πk

exp

−λ2σ
√√√√ c∑

j=1

w2
ij

 .

(4)

The shrinkage prior (4) is not a multivariate Laplace distribution; however, each term of
the product on the right-hand side of (4) is the kernel of a form of the multivariate Laplace
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distribution discussed in Kotz et al. (2001), and so we refer to this prior as the product mul-
tivariate Laplace distribution. The prior is specified conditional on σ and the dependence
of the prior density on σ follows the parameterization of the univariate Laplace distribution
considered in Park and Casella (2008) who show that this parameterization guarantees a
unimodal posterior for the Bayesian lasso. By construction, the posterior mode, conditional
on λ21, λ

2
2, σ

2, corresponding to the model hierarchy (2) - (4) is exactly the estimator (1)
proposed by Wang et al. (2012) with γ1 = 2σλ1 and γ2 = 2σλ2. This equivalence be-
tween the posterior mode and the estimator of Wang et al. (2012) is the motivation for
our model; however, we note that generalizations that allow for a more flexible covariance
structure in (2) could also be considered. For the current model each component of y` is
scaled to have unit variance across subjects, making the assumption of a single variance
component σ2 tenable. We also note that while (2) assumes conditional independence across
imaging phenotypes, the prior distribution (4) induces dependence in the regression coeffi-
cients across the imaging phenotypes for coefficients corresponding to the same gene (group).

PROPOSITION 1. (Prior Propriety) The prior for W based on (3) and (4) is proper.

Proof: For each k ∈ {1, . . . , K} we define Ik as

Ik =

∫
exp

−λ1σ
√√√√∑

i∈πk

c∑
j=1

w2
ij


×
∏
i∈πk

exp

−λ2σ
√√√√ c∑

j=1

w2
ij

 dW(k).

It is sufficient to show that
∏K

k=1 Ik is finite. We note that

Ik ≤
∫

exp

−λ1σ
√√√√∑

i∈πk

c∑
j=1

w2
ij

 dW(k) (5)

since exp(−x) ≤ 1 for x ≥ 0. The integrand on the right-hand-side of (5) is proportional to
the probability density function of a particular form of the multivariate Laplace distribution
discussed in Kotz et al. (2001). Given this form, the integral can be evaluated as

∫
exp

−λ1σ
√√√√∑

i∈πk

c∑
j=1

w2
ij

 dW(k) = π(mkc−1)/2

× Γ((mkc+ 1)/2)2mkc(λ21/σ
2)−mkc/2 <∞,

so that Ik <∞ and therefore
∏K

k=1 Ik <∞ as required.
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If the hyper-parameters σ2, λ1, and λ2 are fixed or assigned proper priors then Proposition
1 is sufficient to ensure that the posterior distribution is proper. The following proposition
provides a stochastic representation of the prior based on a Gaussian scale mixture. This
representation is important as it facilitates computation of the posterior distribution using
a simple Gibbs sampling algorithm.

PROPOSITION 2. (Scale mixture representation) For each
i ∈ {1, . . . , d} let k(i) ∈ {1, . . . , K} denote the gene associated with the ith SNP. The prior
(4) can be obtained through the following scale mixture representation:

wij | σ2, τ 2, ω2 ind∼ N

(
0, σ2(

1

τ 2k(i)
+

1

ω2
i

)−1

)
, (6)

with continuous scale mixing variables τ 2 = (τ 21 , . . . , τ
2
K)′ and ω2 = (ω2

1, . . . , ω
2
d)
′ distributed

according to the density

p(τ 2,ω2|λ21, λ22)

∝
K∏

k=1

(
λ21
2

)(mkc+1

2 )
(τ 2k )(

mkc+1

2 )−1 exp

{
−
(
λ21
2

)
τ 2k

}

×
∏
i∈πk

(
λ22
2

)( c+1
2 )

(ω2
i )

( c+1
2 )−1 exp

{
−
(
λ22
2

)
ω2
i

}
× (τ 2k + ω2

i )
− c

2 .

(7)

Proof: From Kyung et al. (2010, Appendix 2) we have the following:

exp

{
−λ1
σ
||W (k)||2

}
∝
∫ ∞
0

(
1

2πσ2τ 2k

)mkc

2

× exp

{
−||W

(k)||22
2σ2τ 2k

}
(
λ2

1

2
)(

mkc+1

2 )

Γ
(
mkc+1

2

) (τ 2k )(
mkc+1

2 )−1

× exp

{
−
(
λ21
2

)
τ 2k

}
dτ 2k ,

(8)

and

exp

{
−λ2
σ
||wi||2

}
∝
∫ ∞
0

(
1

2πσ2ω2
i

) c
2

exp

{
−||w

i||22
2σ2ω2

i

}
×

(
λ2

2

2
)(

c+1
2 )

Γ
(
c+1
2

) (ω2
i )

( c+1
2 )−1 exp

{
−
(
λ22
2

)
ω2
i

}
dω2

i ,

(9)
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where wi denotes the ith row of W . Beginning with (4) we substitute (8) and (9), apply
some algebra, and simplify to obtain p(W(k)|λ21, λ22, σ2)

∝
∫ ∞
0

· · ·
∫ ∞
0

∏
i∈πk

(σ2

(
1

τ 2k
+

1

ω2
i

)−1)− c2

× exp

−
∑
i∈πk

 ∑c
j=1w

2
ij

2σ2
(

1
τ2
k

+ 1
ω2
i

)−1

 exp

{
−λ

2
1

2
τ 2k

}

×

∏
i∈πk

(
σ2

(
1

τ 2k
+

1

ω2
i

)−1) c
2

× (
λ21
2

)(
mkc+1

2 )(τ 2k )−
1
2

×

[∏
i∈πk

(
λ22
2

)(
c+1

2 )(ω2
i )
− 1

2 exp

{
−λ

2
2

2
ω2
i

}
dω2

i

]
dτ 2k

From (3), we are able to take the product of the expression above over k ∈ {1, . . . , K}, and
after simplification we obtain p(W|λ21, λ22, σ2)

∝
∫ ∞
0

· · ·
∫ ∞
0

K∏
k=1

∏
i∈πk

N(wij; 0, σ2

(
1

τ 2k
+

1

ω2
i

)−1
)

×
K∏
k=1

(
λ21
2

)(
mkc+1

2 )(τ 2k )
mkc+1

2
−1 exp

{
−λ

2
1

2
τ 2k

}

×

[∏
i∈πk

(
λ22
2

)(
c+1

2 )(ω2
i )

c+1
2
−1 exp

{
−λ

2
2

2
ω2
i

}]

×

[∏
i∈πk

(τ 2k + ω2
i )
− c

2dω2
i

]
dτ 2k ,

(10)

where N(x;µ, σ2) denotes the density of a normal distribution with mean µ, variance σ2

evaluated at x. The first line of the integrand in (10) corresponds to (6), while the remain-
ing lines of (10) correspond to (7), and the integration is over the scale mixing variables τ 2

and ω2. It follows that (3)-(4) can be represented through the Gaussian scale mixture (6)-(7).

This hierarchical representation of the shrinkage prior (7) introduces gene specific la-
tent variables τ 21 , . . . , τ

2
K as well as SNP specific latent variables ω2

1, . . . , ω
2
d that modulate

the conditional variance of each regression coefficient in (6). Unlike other formulations for
Bayesian lassos the scale mixing variables are not assumed independent. The dependence in
the joint distribution arises from the term (τ 2k + ω2

i )
− c

2 in (7) and this is required to ensure

7



that the resulting marginal distribution for W has the required form (4). The parameter σ2

is assigned a proper inverse-Gamma prior

σ2 ∼ Inv −Gamma(aσ, bσ), (11)

and the hierarchical model (2), (6), (7), and (11) has a conjugacy structure that facilitates
posterior simulation using a Gibbs sampling algorithm. As the normalizing constant associ-
ated with (7) is not known and may not exist, we work with the unnormalized form which
yields proper full conditional distributions having standard form. Our focus of inference does
not lie with the scale mixing variables themselves, rather, the use of the scale mixture rep-
resentation is a computational device that leads to a fairly straightforward Gibbs sampling
algorithm which enables us to draw from the marginal posterior of W . By Proposition 1 and
the fact that (11) is proper we are assured that this posterior distribution is always proper.
The Gibbs sampler is presented in Algorithm 1 while the corresponding derivations are pre-
sented in the supplementary material. Starting values for the algorithm can be obtained in
part by first computing the estimator (1) and using these to initialize the MCMC sampler.
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Algorithm 1 Gibbs Sampling Algorithm

1. Set tuning parameters λ21 and λ22.

2. Initialize W , τ 2, ω2 and repeat steps (3) - (6) below to obtain the desired Monte Carlo sample size
after burn-in.

3. Update σ2 ∼ Inv-Gamma(a∗σ, b
∗
σ), a∗σ = c

2 (n+ d) + aσ

b∗σ =
1

2

n∑
l=1

||y`−WTx` ||22

+
1

2

d∑
i=1

(
1

τ2k(i)
+

1

ω2
i

)

c∑
j=1

w2
ij + bσ.

4. For k = 1, . . . ,K update τ2k , through

1/τ2k ∼ Inverse-Gaussian(

√
λ2
1σ

2

||W(k)||2F
, λ21).

5. For i = 1, . . . , d update ω2
i , through

1/ω2
i ∼ Inverse-Gaussian(

√
λ2
2σ

2∑c
j=1 w

2
ij
, λ22).

6. For k = 1, . . . ,K update W(k), based on
vec(W(k)′) ∼MVNmkc(µk,Σk) where

µk = −A−1k
n∑
l=1

(x
(k)
` ⊗ Ic)(x

(−k)′
` ⊗ Ic)vec(W(−k)′)

+A−1k

n∑
l=1

(x
(k)
` ⊗ Ic) y`, Σk = σ2A−1k , Ak =

n∑
l=1

(x
(k)
` ⊗ Ic)(x

(k)′

` ⊗ Ic) + Diag{ 1

τ2k
+

1

ω2
i

}i∈πk
⊗ Ic

and where W(−k) = (wij)i 6∈πk,j , x
(k)
` = (x`j)j∈πk

,

and x
(−k)
` = (x`j)j 6∈πk

.

The tuning parameters γ1, γ2 in (1) and λ21, λ
2
2 in the hierarchical model (2), (6), (7), and

(11) control the strength of the regularization terms and thus the structure of the penalty
that governs the bias-variance tradeoff associated with the estimator of W. Wang et al.
(2012) suggest the use of five-fold cross-validation (CV) over a discrete two-dimensional grid
{10−5, 10−4, . . . , 104, 105}2 of possible values. A problem with the use of CV when MCMC
runs are required to fit the model is that an extremely large number of parallel runs are
needed to cover all points on the grid for each possible split of the data. To avoid some
of this computational burden we approximate leave-one-subject-out CV using the WAIC
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(Watanabe, 2010; Gelman et al., 2014)

WAIC = −2
n∑
l=1

logEW,σ2 [p(y` |W, σ2)|y1, . . . ,yn]

+2
n∑
l=1

V ARW,σ2 [log p(y` |W, σ2)|y1, . . . ,yn]

where p(y` |W, σ2) is the probability density function associated with (2) and the required
posterior means and variances are approximated based on the output of the MCMC sampler
at each point of the grid. These samplers are run in parallel using a high performance
computing cluster. The values of λ21 and λ22 are then chosen as those values that minimize the
WAIC across the grid and no data-splitting is required. We note that alternative approaches
based on either empirical Bayes (EB) or hierarchical Bayes (HB) could also be used to choose
the tuning parameters; however, for the model under consideration we have found (Nathoo
et al., 2016) that using both EB and HB to select the tuning parameters can lead to severe
over-shrinkage of the posterior mean of the regression coefficients when d > n or when the
genetic effects are weak.

3 Computation Time and Scaling

In this section we report on computation times and scaling as the number of subjects n,
the dimension of the phenotype c, and the number of SNPs d changes. Three experiments
are performed with each examining how the computation time scales with one of the three
input dimensions. The computation times reported here are based on a total of 10,000
MCMC iterations (5,000 iterations was a sufficient burn-in in all cases considered) with each
run employing 49 cores (each 2.66-GHz Xeon x5650) on a computing cluster with 20GB of
RAM requested for each job. To be clear on the parallel aspect of the computing, each
core is simply used to run the Gibbs sampler with a different value of (λ21, λ

2
2) and the value

minimizing the WAIC is used for inference in each case. The computational algorithm itself
runs on a single core. When multiple cores are not available, our R package ’bgsmtr’ provides
alternative approaches for choosing the tuning parameters with computations using only a
single core.

We choose baseline values of c = 12, d = 500, n = 600, and in each of the three exper-
iments the data are simulated from the model with one dimension varying while the other
two are fixed at the baseline values. The results from the three experiments are displayed
in Figure 1 and Figure 2. In each case the computation time scales approximately linearly
with the given input. For a fully Bayesian approach with implementation based on MCMC,
the computation time is not extensive even for the most extreme values (d = 5, 000, c = 100,
n = 10, 000) and larger values can be considered if more memory is available, or alternatively,
thinning can be applied to the MCMC chains to reduce the memory requirements.
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Figure 1: Computation time in minutes as a function of the number of SNPs d (c = 12,
n = 600) and the number of phenotypes c (d = 500, n = 600).

Figure 2: Computation time as a function of the number of subjects n (c = 12, d = 500).

4 Simulation Studies

We conduct four simulation studies in which our proposed methodology is evaluated with
the primary objective of evaluating the coverage probabilities of the 95% equal-tail credible
intervals for the regression coefficients W . We focus on evaluating coverage probabilities as
the ability to quantify uncertainty through interval estimation is the primary value-added
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of our methodology over and above the estimator proposed by Wang et al. (2012). We also
compare our approach to a more standard approach, the nonparametric bootstrap applied
to the estimator (1).

The application of the nonparametric bootstrap involves resampling the data with re-
placement and recomputing the estimator (1) for each bootstrap sample. The bootstrap
distribution of the resulting estimators over a large number B = 1000 bootstrap samples
is then used to construct approximate 95% confidence intervals. In this case the bootstrap
resampling is done at the level of subjects. The tuning parameters γ1 and γ2 are recomputed
for each simulated dataset in the simulation study but they are fixed across all bootstrap
replicates corresponding to a single simulated dataset. The selection for these tuning pa-
rameters is based on five-fold CV.

The simulation studies are based on genetic data obtained from the ADNI database. The
data comprise information on d = 486 SNPs belonging to K = 33 genes obtained from a total
n = 632 subjects (179 cognitively normal (CN), 144 Alzheimers disease (AD), 309 late mild
cognitive impairment (LMCI) stage). The genes for which we have information along with
the number of SNPs included for each gene are depicted in Figure 1 of the supplementary
material.

We include all 486 SNPs and simulate imaging data from c = 12 ROIs, with Study I
having n = 632 subjects, and Study II having n = 250 (83 CN, 83 AD, 84 LMCI) subjects.
Study II differs from Study I in that we move to a high-dimensional setting by reducing the
value of n so that n < d. In each case we set the true values as λ21 = λ22 = σ2 = 2, and set the

true values for W by first simulating τ 2k | λ21
ind∼ Gamma

(
mkc+1

2
,
λ2

1

2

)
, k = 1, . . . , K, and

ω2
i | λ22

ind∼ Gamma
(
c+1
2
,
λ2

2

2

)
, i = 1, . . . , d, and then simulating the regression coefficients

from (6), and finally, the true values for W are obtained by setting the entries of all but 50
rows ofW to zero. This adds additional sparsity to the SNP effects and makes the simulation
setup more realistic. We note that the simulation of τ 2 and ω2 from Gamma distributions
is not based on our assumed model and the additional sparsity added after simulation from
(6) does not correspond to the prior from our model, so that we are not assuming that the
model is correctly specified. The non-zero rows correspond to 5 genes containing exactly 14,
10, 6, 4, and 1 SNP(s) respectively (for a total of 35 SNPs), along with an additional 15
rows corresponding to additional SNPs. The imaging data are simulated from (2) and we
note that the model assumption (2) is common to both of the approaches being compared,
so neither has an advantage.

To further investigate the robustness of our approach relative to the bootstrap in settings
where the model assumptions do not match the model from which the data have been
generated we conduct two additional simulation studies, labelled Study III and Study IV,
which have the same settings as Study I and Study II, respectively, with the exception that
the regression errors are drawn from a heavy-tailed multivariate t4 distribution.

For each of 100 simulation replicates we compute the bootstrap 95% confidence interval
based on the estimator (1) and the posterior distribution from our Bayesian model using the
Gibbs sampling algorithm. In total each simulation study involves d× c = 5, 832 regression
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Table 1: Simulation studies - interval estimation. The coverage probability of each approx-
imate 95% credible/confidence interval is estimated based on 100 simulation replicates and
then averaged (MCP) overall and also separately over the parameters that correspond to
active SNPs.

Study I
Method MCP (overall) MCP (wij 6= 0)
Bayesian Model 0.95 0.83
Nonparametric Bootstrap 0.85 0.45

Study II
Method MCP (overall) MCP (wij 6= 0)
Bayesian Model 0.94 0.72
Nonparametric Bootstrap 0.85 0.42

Study III
Method MCP (overall) MCP (wij 6= 0)
Bayesian Model 0.97 0.77
Nonparametric Bootstrap 0.86 0.49

Study IV
Method MCP (overall) MCP (wij 6= 0)
Bayesian Model 0.95 0.73
Nonparametric Bootstrap 0.84 0.41

parameters and we use the 100 simulation replicates to estimate the coverage probability of
the 95% equal-tail confidence/credible intervals for each parameter. The results are presented
in Table 1.

In Study I we find that the mean (over all 5, 832 parameters) coverage probability is
95% for intervals constructed based on our approach, while that for the nonparametric
bootstrap applied to the estimator of Wang et al. (2012) is 85%, below the nominal level.
Considering only those 600 parameters with non-zero effects the mean coverage probability
for our approach drops to 83%, while that for the nonparametric bootstrap drops to an
unreasonable 45%. In Study II (n < d) we find that the mean (over all 5, 832 parameters)
coverage probability is 94% for our approach while that obtained for intervals constructed
using the nonparametric bootstrap is 85%. Considering only those parameters with non-
zero true values the mean coverage probabilities associated with both approaches drops as in
Study I, to 72% for our approach and to 42% for the nonparametric bootstrap. The results
for Studies III and IV generally indicate the same patterns as those seen in Studies I and II,
demonstrating that our comparisons exhibit some robustness to model misspecification.

We find that the Bayesian approach is clearly outperforming the estimator of Wang et al.
(2012) combined with the nonparametric bootstrap in all cases. In all four studies the mean
coverage probability drops when considering only active SNPs, but in this case the values
obtained from the nonparametric bootstrap are unreasonably low while those obtained from
our approach are still somewhat reasonable, in particular since these coverage probabilities
pertain to active SNPs, and therefore, under-coverage will not lead to a false rejection of the
null hypothesis.
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Table 2: Imaging phenotypes defined as volumetric or cortical thickness measures of
28 × 2 = 56 regions of interest (ROIs) from automated Freesurfer parcellations. Each of
the phenotypes in the table corresponds to two phenotypes in the data: one for the left
hemisphere and the other for the right hemisphere.

ID Measurement Region of interest
AmygVol Volume Amygdala
CerebCtx Volume Cerebral cortex
CerebWM Volume Cerebral white matter
HippVol Volume Hippocampus
InfLatVent Volume Inferior lateral ventricle
LatVent Volume Lateral ventricle
EntCtx Thickness Entorhinal cortex
Fusiform Thickness Fusiform gyrus
InfParietal Thickness Inferior parietal gyrus
InfTemporal Thickness Inferior temporal gyrus
MidTemporal Thickness Middle temporal gyrus
Parahipp Thickness Parahippocampal gyrus
PostCing Thickness Posterior cingulate
Postcentral Thickness Postcentral gyrus
Precentral Thickness Precentral gyurs
Precuneus Thickness Precuneus
SupFrontal Thickness Superior frontal gyrus
SupParietal Thickness Superior parietal gyrus
SupTemporal Thickness Superior temporal gyrus
Supramarg Thickness Supramarginal gyrus
TemporalPole Thickness Temporal pole
MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate,

posterior cingulate,rostral anterior cingulate
MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal,

lateral orbitofrontal, and medial orbitofrontal gyri, frontal pole
MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri
MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri,

temporal pole and transverse temporal pole
MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus,

and precuneus
MeanSensMotor Mean thickness Precentral and postcentral gyri
MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal,

fusiform, parahippocampal, lingual gyri, temporal pole,
transverse temporal pole

5 Application to ADNI Data

We illustrate our methodology by applying it to a dataset obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI-1) database. This dataset includes both genetic and
structural MRI data and is similar to a dataset analyzed by Wang et al. (2012); however, we
use a larger number of regions of interest in our analysis leading to 56 imaging phenotypes
rather than the 12 imaging phenotypes analyzed by Wang et al. (2012). The imaging
phenotypes used in our analysis are listed in Table 2.

Registered ADNI investigators may obtain the preprocessed data used in this analysis
by contacting the corresponding author. These data can be used in conjunction with our R
package ’bgsmtr’ implementing our methodology to reproduce the results presented here.

The data are available for n = 632 subjects (179 CN, 144 AD, 309 LMCI), and among all
possible SNPs we include only those SNPs belonging to the top 40 Alzheimer’s Disease (AD)
candidate genes listed on the AlzGene database as of June 10, 2010. The data presented
here are queried from the most recent genome build as of December 2014, from the ADNI-1
data.

After quality control and imputation steps, the genetic data used for this study includes
486 SNPs from 33 genes and these genes along with the distribution of the number of
SNPs within each gene is depicted in Figure 1 of the supplementary material. The freely
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available software package PLINK (Purcell et.al., 2007) was used for genomic quality control.
Thresholds used for SNP and subject exclusion were the same as in Wang et. al. (2012),
with the following exceptions. For SNPs, we required a more conservative genotyping call
rate of at least 95% (Ge et al. 2012).

For subjects, we required at least one baseline and one follow-up MRI scan and excluded
multivariate outliers. Sporadically missing genotypes at SNPs in the HapMap3 reference
panel (Gibbs et. al., 2003) were imputed into the data using IMPUTE2 (Howie et. al.,
2009). Further details of the quality control and imputation procedure can be found in Szefer
(2014). The MRI data from the ADNI-1 database are preprocessed using the FreeSurfer V4
software which conducts automated parcellation to define volumetric and cortical thickness
values from the c = 56 brain regions of interest that are detailed in Table 2. Each of the
response variables are adjusted for age, gender, education, handedness, and baseline total
intracranial volume (ICV) based on regression weights from healthy controls and are then
scaled and centered to have zero-sample-mean and unit-sample-variance.

We fit our model, which for the current dataset has 27,216 regression parameters, by
running a total of 49 Gibbs sampling chains in parallel on a computing cluster with each
chain corresponding to a different value of (λ21, λ

2
2), and the WAIC is applied to select which

of the 49 chains to use for posterior inference. The Wang et al. (2012) estimator is also
computed with tuning parameters γ1 and γ2 in (1) set based on γ1 = 2σλ1 and γ2 = 2σλ2,
where the values of λ1 and λ2 chosen using WAIC and the posterior mean for σ from the
Gibbs sampler are used.

To select potentially important SNPs we evaluate the 95% equal-tail credible interval for
each regression coefficient and select those SNPs where at least one of the associated credible
intervals excludes 0. In total there are 45 SNPs and 152 regression coefficients for which this
occurs. Table 1 in the supplementary material lists each of the 152 SNP-ROI associations
along with the corresponding point and interval estimates.

The 45 selected SNPs and the corresponding phenotypes at which we see a potential
association based on the 95% credible interval are listed in Table 3. Three SNPs, rs4311
from the ACE gene, rs405509 from the APOE gene, and rs10787010 from the SORCS1
gene stand out as being potentially associated with the largest number of ROIs. The 95%
credible intervals for the coefficients relating rs4311 to each of the c = 56 imaging measures
are depicted in Figure 3, while similar figures for rs405509 and rs10787010 are presented in
Figure 2 and Figure 3 of the supplementary material.

In the original methodology of Wang et al. (2012) the authors suggest ranking and
selecting SNPs by constructing a SNP weight based on the point estimate Ŵ and a sum of
the absolute values of the estimated coefficients of each single SNP over all of the tasks. Doing
so, the top 45 highest ranked SNPs contains 21 of the SNPs chosen using our approach and
these 21 SNPs are highlighted in Table 3. The number 1 ranked (highest priority) SNP using
this approach is SNP rs3026841 from gene ECE1. In Figure 4 we display the corresponding
point estimates along with the 95% credible intervals (obtained via our Gibbs sampler)
relating this SNP to each of the c = 56 imaging measures. We note that all 56 of the
corresponding 95% credible intervals include the value 0. This result demonstrates
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Table 3: The 45 SNPs selected from the Bayesian model along with corresponding phe-
notypes where (L), (R), (L,R) denote that the phenotypes are on the left, right, and both
hemispheres respectively. SNPs also ranked among the top 45 using the Wang et al. (2012)
estimate are listed in bold.

SNP Gene Phenotype ID (Hemisphere)
rs4305 ACE LatVent (R)
rs4311 ACE InfParietal (L,R), MeanPar (L,R), Precuneus (L,R), SupParietal (L), SupTemporal (L), CerebCtx (R),MeanFront (R),

MeanSensMotor (R), MeanTemp (R), Postcentral (R), PostCing (R), Precentral (R), SupFrontal (R), SupParietal (R)
rs405509 APOE AmygVol (L), CerebWM (L), Fusiform (L), HippVol (L), InfParietal (L,R),SupFrontal (L,R), Supramarg (L,R),

InfTemporal (L), MeanFront (L,R), MeanLatTemp (L,R), MeanMedTemp (L,R), MeanPar (L,R),
MeanSensMotor (L,R), MeanTemp (L,R), MidTemporal (L,R), Postcentral (L,R), Precuneus (L,R)
SupTemporal (L,R), Precentral (R), SupParietal (R)

rs11191692 CALHM1 EntCtx (L)
rs3811450 CHRNB2 Precuneus (R)
rs9314349 CLU Parahipp (L)
rs2025935 CR1 CerebWM (R), Fusiform (R), InfLatVent (R)
rs11141918 DAPK1 CerebCtx (R)
rs1473180 DAPK1 CerebCtx (L,R) ,EntCtx (L), Fusiform (L), MeanMedTemp (L), MeanTemp (L), PostCing (L)
rs17399090 DAPK1 MeanCing (R), PostCing (R)
rs3095747 DAPK1 InfLatVent (R)
rs3118846 DAPK1 InfParietal (R)
rs3124237 DAPK1 PostCing (R), Precuneus (R), SupFrontal (R)
rs4878117 DAPK1 MeanSensMotor (R), Postcentral (R)
rs212539 ECE1 PostCing (R)
rs6584307 ENTPD7 Parahipp (L)
rs11601726 GAB2 CerebWM (L), LatVent (L)
rs16924159 IL33 MeanCing (L), PostCing (L), CerebWM (R)
rs928413 IL33 InfLatVent (R)
rs1433099 LDLR CerebCtx.adj (L), Precuneus (L,R)
rs2569537 LDLR CerebWM (L,R)
rs12209631 NEDD9 CerebCtx (L), HippVol (L,R)
rs1475345 NEDD9 Parahipp (L)
rs17496723 NEDD9 Supramarg (L)
rs2327389 NEDD9 AmygVol (L)
rs744970 NEDD9 MeanFront (L), SupFrontal (L)
rs7938033 PICALM EntCtx (R), HippVol (R)
rs2756271 PRNP EntCtx (L), HippVol (L,R), InfTemporal (L), Parahipp (L)
rs6107516 PRNP MidTemporal (L,R)
rs1023024 SORCS1 MeanSensMotor (L), Precentral (L)
rs10787010 SORCS1 AmygVol (L), EntCtx (L,R), Fusiform (L), HippVol (L,R), InfLatVent (L), InfTemporal (L), MeanFront (L),

MeanMedTemp (L,R), MeanTemp (L), Precentral (L), TemporalPole (R)
rs10787011 SORCS1 EntCtx (L,R), HippVol(R)
rs12248379 SORCS1 PostCing (R)
rs1269918 SORCS1 CerebCtx (L), CerebWM (L), InfLatVent (L)
rs1556758 SORCS1 SupParietal (L)
rs2149196 SORCS1 MeanSensMotor (L), Postcentral (L,R)
rs2418811 SORCS1 CerebWM (L,R), InfLatVent.adj (L)
rs10502262 SORL1 MeanCing (L), InfTemporal (R), Supramarg (R)
rs1699102 SORL1 MeanMedTemp (R), MeanTemp (R)
rs1699105 SORL1 MeanCing (L), Precuneus (L)
rs4935774 SORL1 CerebWM (L,R)
rs666004 SORL1 InfTemporal (L)
rs1568400 THRA Precentral (L), TemporalPole (R)
rs3744805 THRA MeanSensMotor (R), Postcentral (R), Precentral (R)
rs7219773 TNK1 MeanSensMotor (L), Precentral (L), Postcentral (R)
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Figure 3: The 95% equal-tail credible intervals relating the SNP rs4311 from ACE to each
of the c = 56 imaging phenotypes, represented on the x-axis in the same order as they are
listed in the rows of Table 2, first for the left hemisphere followed by the right.

clearly the importance of accounting for posterior uncertainty beyond the point estimate and
illustrates the potential problems that may arise when estimation uncertainty is ignored. It
thus serves to illustrate the practical value of our proposed methodology.

6 Conclusion

We have proposed a framework for the analysis of data arising in studies of imaging genomics
that extends a previously developed regularization approach in order to allow for the quan-
tification of estimation (posterior) uncertainty in multi-task regression with a G2,1 − norm
penalty. The value added of our approach has been demonstrated using both simulation
studies as well as the analysis of a real dataset from the ADNI database. We have compared
our approach to the nonparametric bootstrap applied to (1) and have demonstrated that
our methodology clearly outperforms the latter in terms of mean coverage probability, for
the settings considered. We note that our implementation of the bootstrap estimates the
tuning parameters from the dataset using cross-validation and subsequently these parame-
ters are fixed across all bootstrap replicates. To keep the computational burden down, it
is routine to fix tuning parameters when bootstrapping; however, fixing these parameters
does ignore the uncertainty associated with the estimated tuning parameters and this may
be contributing to the bias towards below-nominal coverage in the bootstrap intervals. Re-
estimating the tuning parameters for each bootstrap replicate is computationally infeasible
without massively parallel computers.

It should be noted that we have not addressed statistical adjustments for multiplicity;
however, our contribution is a step forward in moving from point estimation to posterior
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Figure 4: The 95% equal-tail credible intervals relating the SNP rs3026841 from ECE1 to
each of the c = 56 imaging phenotypes represented on the x-axis in the same order as they
are listed in the rows of Table 2, first for the left hemisphere followed by the right.

distributions for this regression model. Bayesian false discovery rate procedures (Morris et
al., 2008) can be used to adjust for multiplicity in the selection of SNPs based on the output
of the Gibbs sampler and this will be considered in future work.

We are currently investigating an extension of the model that allows for a more flexible
covariance structure in the specification (2), and alternative shrinkage prior formulations such
as the horseshoe prior (Carvalho et al., 2010) that could potentially be further developed for
the type of bi-level penalization we have considered here. An alternative approach that is
potentially of interest in allowing for increased scalability of the proposed model is the use of
a low-rank approximation to the regression coefficient matrix W as considered in Marttinen
et al. (2014), though this would require an appropriate choice for the rank of the regression
model. The sparsity structure we propose in this article could then be incorporated into such
an approximation as an extension to the current approach. In addition, extending our model
to accommodate potential hidden confounding factors through a joint modelling approach
as considered in Fusi et al. (2012), and the incorporation of terms allowing for gene-gene
interactions are interesting avenues for future work.
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Supplemental Materials: ’A Bayesian Group Sparse
Multi-Task Regression Model for Imaging Genetics’

1 Derivations for the Gibbs Sampling Algorithm

Here we derive the full conditional distributions required for Gibbs sampling. In what follows
we make use of the vectorisation of a matrix, A, a linear transformation of A to a column
vector in which the columns of A are stacked one under the other to form a single column.
Eg. If A is a d× c matrix, then vec(AT ) = [A1,1, . . . , A1,c, A2,1, . . . , A2,c, . . . , Ad,1, . . . , Ad,c]

T .
We will further make use of the result vec(AB) = (BT ⊗ Ik)vec(A), where k is the number
of rows in A and ⊗ denotes the Kronecker product.

Assuming the scale mixture representation of the product multivariate Laplace distribu-
tion presented in Proposition 2, the joint posterior distribution can be expressed up to a
normalizing constant as
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Full conditional distribution of W (k)
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Split W into W (k) and W (−k) and rewrite the first exponent of (S1) as
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We vectorise the terms that include either W (k) or W (−k) and simplify based on:
1) vec(W (k)Tx

(k)
` ) = (x

(k)T
` ⊗ Ic)vec(W (k)T )

2) vec(W (−k)Tx
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` ⊗ Ic)vec(W (−k)T ).

These results give an equivalent expression for (S2)
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Using (A⊗B)T = (AT ⊗BT ) the above is simplified to
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It is now possible to expand the expression. Only those terms that include W (k) are kept,
as the other terms are considered to be constants that can be factored out to become part
of the normalising constant. We have

exp

{
−1

2σ2

n∑
`=1

(
−yT` (x

(k)T
` ⊗ Ic)vec(W (k)T )− vec(W (k)T )T (x

(k)
` ⊗ Ic)y`

+vec(W (k)T )T (x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic)vec(W (k)T )

+vec(W (k)T )T (x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T )

+ vec(W (−k)T )T (x
(−k)
` ⊗ Ic)(x(k)T

` ⊗ Ic)vec(W (k)T )
)}

which can be expressed as

exp

{
−1

2σ2

[
vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic)vec(W (k)T )

+2vec(W (k)T )T
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T )− 2vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)y`

]}
.
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Next, consider the second exponent in (S1),

exp

 −1

2σ2

∑
i∈πk

∑c
j=1w

2
ij(

1
τ2
k

+ 1
ω2
i

)−1 ,


and define a matrix, Hk, such that Hk =

[
diag

{
1
τ2
k

+ 1
ω2

i

}
i∈πk
⊗ Ic

]
.

Notice that, ∑
i∈πk

∑c
j=1w

2
ij(

1
τ2
k

+ 1
ω2
i

)−1 = vec(W (k)T )THkvec(W (k)T ).

We can then rewrite (S1), up to its normalising constant, as,

p(W (k)
∣∣Y ,W (−k), τ ,ω, σ2, λ21, λ

2
2) ∝

exp

{
−1

2σ2

[
vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic)vec(W (k)T ) +vec(W (k)T )THkvec(W (k)T )

+2vec(W (k)T )T
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T )

−2vec(W (k)T )T
n∑
`=1

(x
(k)
` ⊗ Ic)y`

]}
. (S3)

Expression (S3) is a quadratic form in vec(W (k)T ) in the exponent. Therefore, the full condi-
tional distribution of vec(W (k)T ) is multivariate normal of dimension mkc, with parameters,
say, µk

∼
and Σk. After expanding, the exponent of a multivariate normal distribution is of

the form,

exp

{
−1

2

[
vec(W (k)T )TΣ−1k vec(W (k)T )− 2vec(W (k)T )TΣ−1k µk

∼
+ constant

]}
. (S4)

The next steps involve matching (S3) to (S4).
Solving for Σk:
Consider the terms of (S3) that are quadratic in vec(W (k)T ). We have

exp

{
−1

2σ2

[
vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic)vec(W (k)T ) + vec(W (k)T )THkvec(W (k)T )

]}
.

Rearrange to obtain

exp

{
−1

2

[
vec(W (k)T )T

(
1

σ2

(
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic) +Hk

))
vec(W (k)T )

]}
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We now observe that

Σ−1k =
1

σ2

(
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic) +Hk

)
,

Σk =σ2

(
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic) +Hk

)−1
.

This gives Σk = σ2A−1k ,

where Ak =

(∑n
`=1(x

(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic) +

(
diag

{
1
τ2
k

+ 1
ω2

i

}
i∈πk
⊗ Ic

))
.

Solving for µk
∼

:

Consider the term −1
2

(
−2vec(W (k)T )TΣ−1k µk

∼

)
within the density of the multivariate nor-

mal density. We have the expression,

− 1

2σ2

(
2vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T )− 2vec(W (k)T )T

n∑
`=1

(x
(k)
` ⊗ Ic)y`

)

= vec(W (k)T )T

(
1

σ2

(
−

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T ) +

n∑
`=1

(x
(k)
` ⊗ Ic)y`

))
.

Match up the expressions.

Σ−1k µk
∼

=
1

σ2

(
−

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T ) +

n∑
`=1

(x
(k)
` ⊗ Ic)y`

)
.

Isolate µk
∼

to obtain

µk
∼

=Σk

(
1

σ2

(
−

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T ) +

n∑
`=1

(x
(k)
` ⊗ Ic)y`

))

=A−1k

(
−

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T ) +

n∑
`=1

(x
(k)
` ⊗ Ic)y`

)
.

Finally, the full conditional distribution of W (k) is expressed as

vec(W (k)T )
∣∣Y ,W (−k), τ ,ω, σ2, λ21, λ

2
2 ∼MVNmkc( µk

∼
, Σk),

where

µk
∼

= A−1k

(
−

n∑
`=1

(x
(k)
` ⊗ Ic)(x

(−k)T
` ⊗ Ic)vec(W (−k)T ) +

n∑
`=1

(x
(k)
` ⊗ Ic)y`

)
,
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Ak =

(
n∑
`=1

(x
(k)
` ⊗ Ic)(x

(k)T
` ⊗ Ic) +

(
diag

{
1

τ 2k
+

1

ω2
i

}
i∈πk
⊗ Ic

))
, and Σk = σ2A−1k .

Full conditional distribution of σ2:

p(σ2
∣∣Y ,W , τ ,ω, λ21, λ

2
2)

∝ |σ2 Ic|−
n
2 exp

{
− 1

2σ2

n∑
`=1

(y` −W Tx`)
T (y` −W Tx`)

}
K∏

k=1

(σ2
)−mkc

2

∏
i∈πk

[(
1

τ 2k
+

1

ω2
i

)−1]− c2
exp

− 1

2σ2

∑
i∈πk

∑c
j=1w

2
ij(

1
τ2
k

+ 1
ω2
i

)−1

 · (σ2)−aσ−1 exp

{
− bσ
σ2

}

=
K∏

k=1

∏
i∈πk

[(
1

τ 2k
+

1

ω2
i

)−1]− c2 (
σ2
)− cn

2
(
σ2
)− dc

2
(
σ2
)−aσ−1

exp

−
1

2σ2

n∑
`=1

||y` −W Tx`||22 −
1

2σ2

d∑
i=1

∑c
j=1w

2
ij(

1
τ2
k(i)

+ 1
ω2
i

)−1 − bσ
σ2

 .

Since
∏K

k=1

∏
i∈πk

[(
1
τ2
k

+ 1
ω2
i

)−1]− c2
does not depend on σ2, it can be factored out of the

expression. This step leaves,

p(σ2
∣∣Y ,W , τ ,ω, λ21, λ

2
2) ∝

(σ2)−( cn2 + dc
2
+aσ)−1 exp

−
1

σ2

1

2

n∑
`=1

||y` −W Tx`||22 +
1

2

d∑
i=1

∑c
j=1w

2
ij(

1
τ2
k(i)

+ 1
ω2
i

)−1 + bσ


 ,

so that

σ2
∣∣Y ,W , τ ,ω, λ21, λ

2
2 ∼ Inv −Gamma (a∗σ, b

∗
σ) ,

where a∗σ =

(
cn

2
+
dc

2
+ aσ

)
, b∗σ =

1

2

n∑
`=1

||y` −W Tx`||22 +
1

2

d∑
i=1

∑c
j=1w

2
ij(

1
τ2
k(i)

+ 1
ω2
i

)−1 + bσ

 .

Full Conditional of ω2, τ 2
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We consider a joint update of the scale mixing variable based on the corresponding full
conditional distribution. We have p(τ 2,ω2

∣∣Y ,W , σ2, λ22, λ
2
1)

∝
K∏

k=1

∏
i∈πk

(σ2

(
1

τ 2k
+

1

ω2
i

)−1)− c2 exp

−
∑
i∈πk

 ∑c
j=1w

2
ij

2σ2
(

1
τ2
k

+ 1
ω2
i

)−1




×
K∏

k=1

(
λ21
2

)(mkc+1

2 )
(τ 2k )(

mkc+1

2 )−1 exp

{
−
(
λ21
2

)
τ 2k

}

×

[∏
i∈πk

(
λ22
2

)( c+1
2 )

(ω2
i )

( c+1
2 )−1 exp

{
−
(
λ22
2

)
ω2
i

}
(τ 2k + ω2

i )
− c

2

]
.

∝
K∏

k=1

(τ 2k )−
1
2 exp

{
−
(
λ21
2

)
τ 2k −

||W (k)||22
τ 2k2σ2

}

×
K∏

k=1

∏
i∈πk

(ω2
i )
− 1

2 exp

{
−
(
λ22
2

)
ω2
i −
||wi||22
ω2
i 2σ

2

}
where wi denotes the ith row of W . The above expression shows that the scale mixing
variables are conditionally independent given Y ,W , σ2, λ22, λ

2
1. We next apply a transfor-

mation of variables νk = (τ 2k )−1, Jacobian =
∣∣ d
dνk
τ 2k (νk)

∣∣ = ν−2k ; ηi = (ω2
i )
−1, Jacobian =∣∣ d

dηi
ω2
i

∣∣ = η−2i which yields p(ν,η
∣∣Y ,W , σ2, λ22, λ

2
1)

∝
K∏

k=1

(νk)
− 3

2 exp

{
−
(
λ21
2νk

)
− νk||W (k)||22

2σ2

}
×

K∏
k=1

∏
i∈πk

(ηi)
− 3

2 exp

{
−
(
λ22
2ηi

)
− ηi||wi||22

2σ2

}
and from this we see that the conditional distributions lie within the Inverse Gaussian family.
More specifically we have

νk =
1

τ 2k

∣∣∣ Y ,W , σ2, λ21, λ
2
2
ind∼ Inverse-Gaussian

(√
λ21 σ

2

||W (k)||22
, λ21

)
, k = 1, . . . , K

independent of

ηi =
1

ω2
i

∣∣∣ Y ,W , σ2, λ21, λ
2
2 ∼ Inverse-Gaussian

(√
λ22 σ

2

||wi||22
, λ22

)
, i = 1, . . . , d.

2 Supplementary Figures and Tables
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Figure S1: Each of the 33 genes partitioning the 486 SNPs included in the simulation studies
and data analysis.
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Figure S2: Analysis of the ADNI data: The 95% equal-tail credible intervals relating the
SNP rs405509 from APOE to each of the c = 56 imaging phenotypes along with the posterior
mean estimate (blue) and the Wang et al. (2012) estimate (green). The imaging measures
are represented on the x-axis in the same order as they are listed in the rows of Table 2, first
for the left hemisphere followed by the right hemisphere.

Table S1: Analysis of ADNI Data - SNP-ROI regression roefficients with 95% equal-tail
credible interval excluding the value 0.

SNP Gene ROI Posterior.Mean X95..CI.Lower X95..CI.Upper Wang et al. Estimate
rs405509 APOE Left AmygVol 0.123 0.022 0.229 0.119
rs2327389 NEDD9 Left AmygVol 0.189 0.004 0.383 0.080
rs10787010 SORCS1 Left AmygVol −0.127 −0.240 −0.014 −0.120
rs1473180 DAPK1 Left CerebCtx −0.198 −0.340 −0.055 −0.168
rs1433099 LDLR Left CerebCtx 0.212 0.058 0.365 0.182
rs12209631 NEDD9 Left CerebCtx 0.165 0.020 0.318 0.092
rs1269918 SORCS1 Left CerebCtx 0.155 0.026 0.286 0.118
rs405509 APOE Left CerebWM 0.125 0.023 0.224 0.106
rs11601726 GAB2 Left CerebWM 0.145 0.004 0.287 0.077
rs2569537 LDLR Left CerebWM −0.173 −0.316 −0.032 −0.103
rs1269918 SORCS1 Left CerebWM 0.158 0.031 0.293 0.118
rs2418811 SORCS1 Left CerebWM 0.201 0.020 0.380 0.127
rs4935774 SORL1 Left CerebWM −0.148 −0.265 −0.032 −0.114
rs405509 APOE Left HippVol 0.156 0.057 0.258 0.144
rs12209631 NEDD9 Left HippVol 0.168 0.019 0.311 0.104
rs2756271 PRNP Left HippVol 0.121 0.013 0.230 0.102
rs10787010 SORCS1 Left HippVol −0.135 −0.250 −0.021 −0.123
rs10787010 SORCS1 Left InfLatVent 0.126 0.014 0.242 0.105
rs1269918 SORCS1 Left InfLatVent −0.133 −0.264 −0.003 −0.085
rs2418811 SORCS1 Left InfLatVent −0.192 −0.375 −0.008 −0.116
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rs11601726 GAB2 Left LatVent −0.155 −0.299 −0.021 −0.072
rs11191692 CALHM1 Left EntCtx −0.108 −0.218 −0.001 −0.071
rs1473180 DAPK1 Left EntCtx −0.191 −0.335 −0.049 −0.132
rs2756271 PRNP Left EntCtx 0.155 0.041 0.268 0.124
rs10787010 SORCS1 Left EntCtx −0.131 −0.244 −0.020 −0.110
rs10787011 SORCS1 Left EntCtx −0.148 −0.288 −0.008 −0.081
rs405509 APOE Left Fusiform 0.131 0.026 0.230 0.116
rs1473180 DAPK1 Left Fusiform −0.156 −0.300 −0.015 −0.107
rs10787010 SORCS1 Left Fusiform −0.152 −0.263 −0.041 −0.129
rs4311 ACE Left InfParietal −0.212 −0.366 −0.056 −0.160
rs405509 APOE Left InfParietal 0.106 0.008 0.211 0.098
rs405509 APOE Left InfTemporal 0.120 0.018 0.220 0.108
rs2756271 PRNP Left InfTemporal 0.114 0.002 0.225 0.099
rs10787010 SORCS1 Left InfTemporal −0.114 −0.228 −0.002 −0.104
rs666004 SORL1 Left InfTemporal 0.208 0.018 0.395 0.136
rs405509 APOE Left MidTemporal 0.110 0.009 0.209 0.103
rs6107516 PRNP Left MidTemporal 0.141 0.019 0.263 0.109
rs9314349 CLU Left Parahipp −0.095 −0.187 −0.003 −0.049
rs6584307 ENTPD7 Left Parahipp 0.148 0.010 0.289 0.088
rs1475345 NEDD9 Left Parahipp −0.185 −0.344 −0.033 −0.104
rs2756271 PRNP Left Parahipp 0.112 0.004 0.224 0.085
rs1473180 DAPK1 Left PostCing −0.169 −0.312 −0.029 −0.140
rs16924159 IL33 Left PostCing 0.174 0.015 0.340 0.160
rs405509 APOE Left Postcentral 0.138 0.041 0.240 0.107
rs2149196 SORCS1 Left Postcentral −0.262 −0.477 −0.049 −0.174
rs1023024 SORCS1 Left Precentral 0.182 0.009 0.366 0.088
rs10787010 SORCS1 Left Precentral −0.117 −0.230 −0.006 −0.103
rs1568400 THRA Left Precentral 0.111 0.009 0.214 0.092
rs7219773 TNK1 Left Precentral 0.114 0.022 0.207 0.082
rs4311 ACE Left Precuneus −0.237 −0.398 −0.079 −0.185
rs405509 APOE Left Precuneus 0.100 0.000 0.205 0.089
rs1433099 LDLR Left Precuneus 0.173 0.021 0.328 0.156
rs1699105 SORL1 Left Precuneus −0.156 −0.304 −0.003 −0.103
rs405509 APOE Left SupFrontal 0.122 0.022 0.220 0.116
rs744970 NEDD9 Left SupFrontal 0.142 0.001 0.285 0.098
rs4311 ACE Left SupParietal −0.235 −0.391 −0.076 −0.178
rs1556758 SORCS1 Left SupParietal −0.240 −0.465 −0.007 −0.156
rs4311 ACE Left SupTemporal −0.210 −0.366 −0.057 −0.142
rs405509 APOE Left SupTemporal 0.100 0.000 0.199 0.093
rs405509 APOE Left Supramarg 0.145 0.043 0.249 0.132
rs17496723 NEDD9 Left Supramarg 0.193 0.013 0.378 0.154
rs16924159 IL33 Left MeanCing 0.184 0.024 0.346 0.149
rs10502262 SORL1 Left MeanCing 0.205 0.014 0.395 0.130
rs1699105 SORL1 Left MeanCing −0.156 −0.304 −0.010 −0.095
rs405509 APOE Left MeanFront 0.127 0.027 0.232 0.112
rs744970 NEDD9 Left MeanFront 0.154 0.012 0.296 0.102
rs10787010 SORCS1 Left MeanFront −0.112 −0.224 −0.003 −0.100
rs405509 APOE Left MeanLatTemp 0.121 0.019 0.225 0.111
rs405509 APOE Left MeanMedTemp 0.139 0.036 0.242 0.119
rs1473180 DAPK1 Left MeanMedTemp −0.193 −0.337 −0.049 −0.142
rs10787010 SORCS1 Left MeanMedTemp −0.172 −0.284 −0.057 −0.153
rs4311 ACE Left MeanPar −0.220 −0.383 −0.064 −0.171
rs405509 APOE Left MeanPar 0.118 0.018 0.219 0.109
rs405509 APOE Left MeanSensMotor 0.116 0.018 0.218 0.101
rs1023024 SORCS1 Left MeanSensMotor 0.183 0.007 0.359 0.087
rs2149196 SORCS1 Left MeanSensMotor −0.221 −0.445 −0.003 −0.125
rs7219773 TNK1 Left MeanSensMotor 0.093 0.000 0.186 0.067
rs405509 APOE Left MeanTemp 0.131 0.029 0.234 0.117
rs1473180 DAPK1 Left MeanTemp −0.154 −0.299 −0.009 −0.114
rs10787010 SORCS1 Left MeanTemp −0.141 −0.254 −0.029 −0.125
rs4311 ACE Right CerebCtx −0.172 −0.324 −0.016 −0.139
rs11141918 DAPK1 Right CerebCtx −0.194 −0.381 −0.009 −0.096
rs1473180 DAPK1 Right CerebCtx −0.160 −0.302 −0.015 −0.146
rs2025935 CR1 Right CerebWM −0.152 −0.290 −0.013 −0.139
rs16924159 IL33 Right CerebWM −0.164 −0.334 −0.002 −0.117
rs2569537 LDLR Right CerebWM −0.152 −0.294 −0.011 −0.096
rs2418811 SORCS1 Right CerebWM 0.198 0.020 0.379 0.128
rs4935774 SORL1 Right CerebWM −0.180 −0.296 −0.064 −0.134
rs12209631 NEDD9 Right HippVol 0.157 0.013 0.301 0.086
rs7938033 PICALM Right HippVol −0.167 −0.330 −0.002 −0.125
rs2756271 PRNP Right HippVol 0.126 0.017 0.242 0.111
rs10787010 SORCS1 Right HippVol −0.158 −0.274 −0.044 −0.138
rs10787011 SORCS1 Right HippVol −0.138 −0.273 −0.001 −0.111
rs2025935 CR1 Right InfLatVent 0.199 0.060 0.341 0.155
rs3095747 DAPK1 Right InfLatVent −0.162 −0.289 −0.038 −0.126
rs928413 IL33 Right InfLatVent −0.134 −0.268 −0.001 −0.055
rs4305 ACE Right LatVent 0.143 0.009 0.280 0.076
rs7938033 PICALM Right EntCtx −0.185 −0.358 −0.019 −0.113
rs10787010 SORCS1 Right EntCtx −0.125 −0.236 −0.014 −0.106
rs10787011 SORCS1 Right EntCtx −0.141 −0.282 −0.003 −0.106
rs2025935 CR1 Right Fusiform −0.144 −0.287 −0.005 −0.121
rs4311 ACE Right InfParietal −0.197 −0.356 −0.031 −0.151
rs405509 APOE Right InfParietal 0.126 0.021 0.231 0.103
rs3118846 DAPK1 Right InfParietal 0.173 0.001 0.349 0.179
rs10502262 SORL1 Right InfTemporal 0.193 0.005 0.378 0.113
rs405509 APOE Right MidTemporal 0.121 0.021 0.222 0.099
rs6107516 PRNP Right MidTemporal 0.121 0.000 0.244 0.088
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rs4311 ACE Right PostCing −0.172 −0.332 −0.015 −0.140
rs17399090 DAPK1 Right PostCing 0.189 0.043 0.338 0.135
rs3124237 DAPK1 Right PostCing −0.165 −0.332 −0.007 −0.141
rs212539 ECE1 Right PostCing −0.214 −0.424 −0.009 −0.098
rs12248379 SORCS1 Right PostCing 0.188 0.027 0.362 0.092
rs4311 ACE Right Postcentral −0.238 −0.396 −0.080 −0.172
rs405509 APOE Right Postcentral 0.108 0.008 0.208 0.084
rs4878117 DAPK1 Right Postcentral −0.134 −0.259 −0.008 −0.080
rs2149196 SORCS1 Right Postcentral −0.231 −0.448 −0.014 −0.125
rs3744805 THRA Right Postcentral 0.177 0.051 0.306 0.112
rs7219773 TNK1 Right Postcentral 0.111 0.018 0.204 0.075
rs4311 ACE Right Precentral −0.175 −0.330 −0.014 −0.139
rs405509 APOE Right Precentral 0.108 0.008 0.208 0.096
rs3744805 THRA Right Precentral 0.166 0.040 0.295 0.112
rs4311 ACE Right Precuneus −0.230 −0.386 −0.073 −0.180
rs405509 APOE Right Precuneus 0.109 0.005 0.213 0.093
rs3811450 CHRNB2 Right Precuneus −0.133 −0.269 −0.001 −0.115
rs3124237 DAPK1 Right Precuneus −0.182 −0.342 −0.015 −0.110
rs1433099 LDLR Right Precuneus 0.159 0.003 0.318 0.139
rs4311 ACE Right SupFrontal −0.237 −0.392 −0.081 −0.181
rs405509 APOE Right SupFrontal 0.144 0.044 0.243 0.130
rs3124237 DAPK1 Right SupFrontal −0.177 −0.343 −0.014 −0.112
rs4311 ACE Right SupParietal −0.254 −0.410 −0.099 −0.191
rs405509 APOE Right SupParietal 0.108 0.008 0.214 0.101
rs405509 APOE Right SupTemporal 0.126 0.026 0.226 0.103
rs405509 APOE Right Supramarg 0.154 0.055 0.255 0.125
rs10502262 SORL1 Right Supramarg 0.193 0.004 0.381 0.117
rs10787010 SORCS1 Right TemporalPole −0.118 −0.233 −0.001 −0.110
rs1568400 THRA Right TemporalPole −0.106 −0.212 −0.004 −0.088
rs17399090 DAPK1 Right MeanCing 0.187 0.038 0.336 0.142
rs4311 ACE Right MeanFront −0.200 −0.361 −0.044 −0.156
rs405509 APOE Right MeanFront 0.150 0.049 0.253 0.126
rs405509 APOE Right MeanLatTemp 0.124 0.022 0.223 0.107
rs405509 APOE Right MeanMedTemp 0.119 0.017 0.223 0.100
rs10787010 SORCS1 Right MeanMedTemp −0.144 −0.263 −0.028 −0.139
rs1699102 SORL1 Right MeanMedTemp −0.246 −0.481 −0.020 −0.110
rs4311 ACE Right MeanPar −0.240 −0.395 −0.082 −0.183
rs405509 APOE Right MeanPar 0.133 0.035 0.234 0.113
rs4311 ACE Right MeanSensMotor −0.210 −0.367 −0.052 −0.161
rs405509 APOE Right MeanSensMotor 0.118 0.019 0.220 0.098
rs4878117 DAPK1 Right MeanSensMotor −0.133 −0.261 −0.007 −0.080
rs3744805 THRA Right MeanSensMotor 0.185 0.058 0.313 0.123
rs4311 ACE Right MeanTemp −0.160 −0.316 −0.003 −0.126
rs405509 APOE Right MeanTemp 0.125 0.021 0.229 0.106
rs1699102 SORL1 Right MeanTemp −0.245 −0.468 −0.024 −0.117
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Figure S3: Analysis of the ADNI data: The 95% equal-tail credible intervals relating the
SNP rs10787010 from the SORCS1 gene to each of the c = 56 imaging phenotypes along
with the posterior mean (blue) estimate and the Wang et al. (2012) estimate (green). The
imaging measures are represented on the x-axis in the same order as they are listed in the
rows of Table 2, first for the left hemisphere followed by the right hemisphere.
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