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Abstract

Background—Both neurodegeneration of the cholinergic basal forebrain (BF) and deposition of 

beta-amyloid are early events in the course of Alzheimer's disease (AD). Associations between 

increased amyloid pathology and cholinergic atrophy have been described in autopsy studies.

Methods—We used structural MRI and AV45-PET amyloid imaging data of 225 cognitively 

normal or mildly impaired elderly subjects from the Alzheimer's Disease Neuroimaging Initiative 

to assess in-vivo associations between BF atrophy and cortical amyloid deposition. Associations 

were examined using region-of-interest (ROI) and voxel-based approaches with reference to 

cytoarchitectonic mappings of the cholinergic BF nuclei.

Results—ROI- and voxel-based approaches yielded complementary evidence for an association 

between BF volume and cortical amyloid deposition in presymptomatic and predementia stages of 

AD, irrespective of age, gender and ApoE4 genotype.
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Conclusions—The observed correlations between BF atrophy and cortical amyloid load likely 

reflect associations between cholinergic degeneration and amyloid pathology as reported from 

neuropathological examination studies.
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1. Background

Cholinergic neurons of the basal forebrain (BF) provide the cholinergic innervation of the 

entire cortical mantle (1). In normal aging these neurons are known to undergo moderate 

neurodegenerative changes, whereas Alzheimer's disease (AD) is characterized by severe 

cholinergic neuron loss and cortical cholinergic denervation (2-5).

However, the cholinergic deficit in AD does not arise in isolation. Cerebral amyloid 

deposition, as caused by altered processing of the membrane-bound amyloid precursor 

protein (APP), is widely considered to be a primary etiologic factor in AD. Thus, the 

amyloid cascade model proposes a sequence of pathological events in AD that begins with 

cerebral amyloid deposition several years to decades before the first symptoms appear. Over 

the years, the primary amyloid-related molecular pathology would initiate downstream 

pathologic events, such as the formation of intracellular neurofibrillary tangles, which 

ultimately lead to neuronal dysfunction, atrophy and cognitive decline (6).

An increasing body of evidence suggests that amyloid accumulation and cholinergic 

dysfunction are tightly interrelated and may mutually influence each other (7). Transgenic 

animal models of amyloid pathology develop alterations of the cholinergic system (8) and 

cortical cholinergic denervation leads to increased amyloid deposition in wild type animals 

(9). Histopathologic studies on the relationship between amyloid deposition and cholinergic 

decline in AD brain specimens found increased cortical amyloid load to be associated with 

degeneration of cholinergic BF neurons (10, 11) and reduced cortical choline 

acetyltransferase (ChAT) activity (4, 12). These findings could also be reproduced in 

nondemented elderly that showed AD pathology at autopsy (13, 14), but so far there is no 

in-vivo evidence for a relationship between cholinergic degeneration and increased amyloid 

deposition in humans.

In the present study, we combined novel amyloid-sensitive positron emission tomography 

(AV45-PET) (15) with morphometric analysis of structural MRI scans guided by 

cytoarchitectonic maps of the BF cholinergic nuclei (16-19) to assess the relationship 

between cortical amyloid deposition and BF atrophy in a large sample of nondemented 

subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

2. Methods

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 with the primary goal to test whether 
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neuroimaging, neuropsychological, and other biological measurements can be used as 

reliable in-vivo markers of AD pathogenesis. A fuller description of ADNI and up-to-date 

information is available at www.adni-info.org.

2.1. Subjects

(AV45)-amyloid-PET and structural MRI scans were retrieved from the ADNI-GO/-2 

extensions of the ADNI project and included imaging data of 57 cognitively normal elderly 

subjects (CN), 156 subjects with early stage mild cognitive impairment (EMCI) and 32 

subjects in a more advanced stage of MCI (LMCI). Detailed inclusion criteria for the 

diagnostic categories can be found at the ADNI web site (http://www.adni-info.org/

Scientists/AboutADNI.aspx). Briefly, CN subjects have MMSE scores between 24-30 

(inclusive), a CDR of 0, are non-depressed, non-MCI, and non-demented. EMCI subjects 

have MMSE scores between 24-30 (inclusive), a subjective memory concern reported by 

subject, informant, or clinician, objective memory loss measured by education adjusted 

scores on delayed recall (Wechsler Memory Scale Logical Memory II), a CDR of 0.5, 

absence of significant levels of impairment in other cognitive domains, essentially preserved 

activities of daily living, and an absence of dementia. Diagnosis of LMCI differs from that 

of EMCI only in a higher degree of impairment in the logical memory test.

2.2. Imaging data acquisition

ADNI-GO/-2 MRI data were acquired on multiple 3-T MRI scanners using scanner-specific 

T1-weighted sagittal 3D MPRAGE sequences. In order to increase signal uniformity across 

the multicenter scanner platforms, original MPRAGE acquisitions in ADNI undergo 

standardized image pre-processing correction steps.

(AV45)-amyloid-PET data were acquired on multiple instruments of varying resolution and 

following different platform-specific acquisition protocols. Similar to the MRI data, PET 

data in ADNI undergo standardized image pre-processing correction steps aimed at 

increasing data uniformity across the multicenter acquisitions.

More detailed information on the different imaging protocols employed across ADNI sites 

and standardized image pre-processing steps for MRI and PET acquisitions can be found on 

the ADNI website (http://adni.loni.ucla.edu/data-samples/).

2.3. MRI processing

Imaging data were processed using SPM8 (Wellcome Trust Center for Neuroimaging) 

implemented in MATLAB R2007a (MathWorks, Natick, MA). MRI scans were 

automatically segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) partitions using the segmentation routine of the VBM8-toolbox (http://dbm.neuro.uni-

jena.de/vbm/). The GM partitions were then high-dimensionally warped (20) to an 

aging/AD-specific reference template from a previous study (18). Voxel-values were 

modulated for volumetric changes and for voxel-based analyses modulated warped GM 

segments were smoothed with a Gaussian smoothing kernel of 8 mm full-width at half 

maximum (FWHM). All preprocessed GM maps passed a visual inspection for overall 

segmentation and registration accuracy.
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Individual GM volumes of regions-of-interest (ROIs) were extracted automatically from the 

warped GM segments by summing up the modulated GM voxel values within the respective 

ROI masks in the reference space (see below). For further analyses, extracted regional GM 

volumes were divided by the total intracranial volume (TIV), calculated as the sum of total 

volumes of the GM, WM and CSF partitions.

2.4. Definition of the BF and hippocampus regions-of-interest

According to Mesulam's nomenclature (1), the cholinergic BF is composed of four groups of 

cholinergic cells which correspond to the medial septum (Ch1), the vertical and horizontal 

limb of the diagonal band of Broca (Ch2 and Ch3), and the nucleus basalis Meynert (NBM, 

Ch4). The cholinergic nuclei lack clear anatomical borders that could be easily identified on 

MRI scans, rendering manual delineation impractical. The BF mask used in this study was 

therefore based on a cytoarchitectonic map of BF cholinergic nuclei (16), which was non-

linearly registered to the aging-AD specific reference template (Figure 1). Voxel-based 

results were further compared with previously published center-of-gravity coordinates of 

cholinergic BF nuclei based on probabilistic cytoarchitectonic maps (21).

For comparison, we also examined associations between amyloid deposition and 

hippocampus volume, as the best studied volumetric MRI marker of early AD-related GM 

atrophy (22). The ROI mask was obtained by manual delineation of the hippocampus in the 

reference template using the interactive software package Display (http://

www.bic.mni.mcgill.ca/ServicesSoftwareVisualization/Display) and a previously described 

protocol for segmentation of the medial temporal lobe (23).

2.5. PET processing

Cortical AV45 standardized uptake value ratios (SUVR) relative to cerebellar GM uptake 

were calculated by one of the ADNI PET core laboratories and are available on the ADNI 

server. Amyloid positivity (+) or negativity (−) was established based on this cortex-to-

cerebellar GM SUVR using a recommended cutoff of 1.28 (24). More detailed information 

on the PET processing, SUVR calculation and cut-off selection can be found on the ADNI 

website (http://adni.loni.ucla.edu/methods/pet-analysis/).

In order to examine associations between BF volume and regional AV45-uptake on a voxel-

level, we additionally processed the AV45-scans using SPM-based processing routines. 

Each subject's AV45-scan was rigidly coregistered to the corresponding structural MRI scan 

and warped to the aging/AD-specific reference space using the deformation fields derived 

from the registration of the MRI scans. In order to limit signal spill over from surrounding 

WM and CSF tissue, voxels with a GM probability of less than 50% in the aging/AD 

template were removed from the warped AV45-scans. Finally, warped and masked AV45-

scans were smoothed with a Gaussian smoothing kernel of 8mm FWHM. Cortex-to-

cerebellar GM SUVRs derived from the SPM-processed AV45-PET scans were highly 

consistent with the values reported on the ADNI server (correlation coefficient: r = 0.98).
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2.6. Statistical analysis

Statistical analyses were performed using the Statistics Software Package for the Social 

Sciences (SPSS v15.0). All statistical tests are two-tailed and statistical significance was set 

at p < 0.05. Group differences in demographics (Table 1) were analyzed using Fisher's exact 

test for categorical variables and group-wise t-tests for continuous variables.

2.6.1. Effects of diagnosis and amyloid-status on BF and hippocampus 
volumes—The overall effects of diagnosis and amyloid-status on volumes of the BF and 

the hippocampus were assessed using ANCOVA, controlling for age and gender. Pair-wise 

follow-up tests for differences in the estimated marginal means of the respective volumes 

were evaluated for the diagnosis-specific contrasts of interest: EMCI(+) < CN(−), LMCI(+) 

< CN(−), as well as for the amyloid-specific contrasts of interest: CN(+) < CN(−), EMCI(+) 

< EMCI(−), and LMCI(+) < LMCI(−). Reported p-values for the pair-wise group 

comparisons were not further corrected for multiple comparisons and should thus be 

considered exploratory.

2.6.2. Association between amyloid-load and regional brain volume—Partial 

correlations between cortical AV45-SUVR and BF and hippocampus volumes, respectively, 

were assessed within amyloid-positive subjects, controlling for diagnosis (2 dummy-coded 

covariates), age, gender, and ApoE4 genotype. Additional correlation analyses were 

performed within each diagnostic group separately. While the categorical comparison of BF 

volume between amyloid-stratified subgroups assessed associations between BF atrophy and 

presence of amyloid pathology, the complementary correlational analyses aimed at 

examining specific associations between BF atrophy and cortical amyloid load within 

preclinical and predementia stages of AD. Thus, amyloid-negative subjects were excluded 

from these analyses. Reported p-values of the correlation analyses were not further corrected 

for multiple comparisons and should thus be considered exploratory.

To test for regional specificity of the association, SPM8-software was used to compute two 

separate voxel-based regression analyses across the CN(+) and EMCI(+) subgroups, which 

were the only groups that showed a significant correlation between BF volume and global 

cortical AV45-SUVR in the previous analysis. First, associations between BF volume and 

regional AV45-uptake were assessed by regressing BF volume on the SPM-processed 

AV45-scans. AV45-maps were proportionately scaled to mean AV45-uptake in cerebellar 

GM and analysis was controlled for age, gender, ApoE4 genotype and diagnosis (binary 

coded). Based on the highly significant association between global cortical AV45-SUVR 

and volume of the BF ROI, voxel-wise effects were assessed at a conservative statistical 

threshold of p < 0.05, corrected for multiple comparisons using the family-wise error.

On the other hand, effects of global amyloid-load on regional GM volume throughout the 

whole brain were assessed in an exploratory way by regressing global cortical AV45-SUVR 

on the preprocessed GM maps, controlling for TIV, age, gender, ApoE4 genotype and 

diagnosis. These effects were assessed at an uncorrected threshold of p < 0.001 and a cluster 

extension threshold of 20 continuous voxels. Additionally, a more lenient statistical 
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threshold of p < 0.005, uncorrected, was applied to confirm the regional specificity of the 

findings.

3. Results

3.1. Amyloid deposition within diagnostic groups

Amyloid-positivity was detected in 36.8% of CN subjects, 42.3% of EMCI subjects and 

71.9% of LMCI subjects. The percentage of amyloid-positive subjects was significantly 

higher in the LMCI compared to both the CN group (p = 0.002) and the EMCI group (p = 

0.003), but did not differ significantly between the EMCI and CN groups. Table 1 

summarizes mean age, gender ratio, global neuropsychological profile, and ApoE4 

frequencies of the amyloid-stratified subgroups.

3.2. Effects of diagnosis and amyloid-status on BF and hippocampus volumes

Age- and gender-adjusted means of TIV-normalized BF and hippocampus volumes for each 

of the subgroups are illustrated in Table 2. There was a significant overall effect of group on 

BF (F = 2.68, p = 0.02) and hippocampus volume (F = 3.63, p = 0.003). When compared to 

the CN(−) control group, BF and hippocampus volumes showed significant reductions of 

7.6% (p = 0.02) and 9.0% (p < 0.001), respectively, in the LMCI(+) group, but not in the 

EMCI(+) group.

Regarding the amyloid-specific contrasts, BF volume was significantly reduced in EMCI(+) 

compared to EMCI(−) (p = 0.02), but not in CN(+) or LMCI(+) when compared to their 

respective amyloid-negative subgroups (Table 2). Hippocampus volume did not differ 

between amyloid-positive and negative subgroups within any diagnostic group.

3.3. Association between BF volume and cortical amyloid load

Cortical AV45-SUVR was significantly associated with normalized BF volume (rpart = 

−0.32, p < 0.001), but not hippocampus volume (rpart = −0.06, p > 0.1), across amyloid-

positive subjects, when controlling for diagnosis, age, gender and ApoE4 genotype. Figure 2 

plots normalized BF and hippocampus volume against cortical AV45-SUVR in amyloid-

positive subjects separately for each diagnostic group. Significant correlations between BF 

volume and cortical AV45-SUVR were found in CN(+) (r = −0.45, p = 0.04) and EMCI(+) 

(r = −0.45, p < 0.001), but not in LMCI(+). These correlations also remained significant 

when controlling for age, gender and ApoE4 status (CN(+): rpart = −0.57, p = 0.01; 

EMCI(+): rpart = −0.33, p = 0.008). In contrast, no significant association between cortical 

amyloid load and hippocampus atrophy could be detected in any subgroup.

Results from the voxel-based regression of cortical AV45-SUVR on preprocessed GM maps 

across the CN(+) and EMCI(+) groups are illustrated in Figure 3. Confirming the findings 

from the ROI-based analysis, unbiased voxel-based analysis revealed a large bilateral cluster 

in the basal forebrain, covering most parts of the BF ROI (16), particularly the NBM. The 

BF clusters also covered the center-of-gravity coordinates for nuclei Ch3, Ch4 and Ch4p 

reported in (21). Interestingly, subcortical GM structures bordering the cholinergic BF were 

largely spared, although the BF cluster extended anteriorly into the ventral striatum and 
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posteriorly into the putamen and dorsal amygdala. Most of the effects in the cholinergic BF 

also survived the statistical threshold of p < 0.001, uncorrected, especially in the right 

hemisphere. Cortical clusters were detected in the dorso- and ventromedial prefrontal cortex, 

ventral precuneus/retrosplenial cortex, bilateral middle frontal gyri and the bilateral 

temporoparietal junction.

Results from the voxel-based regression of BF volume on preprocessed AV45-maps are 

illustrated in Figure 4. Significant inverse associations between BF volume and regional 

AV45-SUVR were detected in several cortical paralimbic and heteromodal association areas 

including the bilateral precuneus/posterior cingulate, dorso- and ventromedial prefrontal 

cortex, anterior cingulate, inferior and middle temporal gyri, and the right temporoparietal 

junction. In addition, one subcortical cluster was detected corresponding to the left putamen, 

but no effects were seen within the BF proper.

4. Discussion

In the present study, we report the first in-vivo evidence for an association between BF 

atrophy and elevated cortical amyloid load in preclinical and predementia stages of AD, as 

defined by PET-evidenced amyloid pathology in addition to cognitive criteria (25). Given 

that the BF houses the cortically-projecting cholinergic cells known to be particularly 

vulnerable to age- and AD-related neurodegeneration (26), this in-vivo association is likely 

to reflect findings from several human autopsy studies that have described associations 

between amyloid pathology and cholinergic atrophy in AD (4, 10-12). Interestingly, 

associations between amyloid plaque load, cortical ChAT activity and cholinergic fiber loss 

have also been found in post-mortem brain tissue of elderly individuals who exhibited 

significant amyloid pathology but had died without a history of neurological disease or 

cognitive loss prior to death (13, 14).

Cross-sectional associations between PET-measured amyloid load and MRI-derived 

measures of brain atrophy have been examined before, both using correlational approaches 

as well as bivariate comparisons between amyloid-positive and negative subgroups (27-31), 

but none of these studies explicitly examined BF volumes. Interestingly, one study used a 

voxel-wise regression of global amyloid load on preprocessed GM maps, analogous to the 

approach employed in the present study, and found very similar regional effects in a group 

of healthy elderly subjects with subjective cognitive complaints, but not in subjects with 

MCI or clinically manifest AD (29). Besides similar neocortical effects, they also report a 

distinct subcortical cluster that clearly overlaps with the NBM. However, in the study by 

Chetelat et al. (29) this cluster further includes large parts of the amygdala and the head of 

the hippocampus, and no reference to the cholinergic system of the BF is made throughout 

the manuscript.

The missing association in advanced stages of MCI may be explained by the amyloid-

cascade theory, which states that amyloid pathology is only indirectly linked to measurable 

atrophy through the induction of downstream pathologic events, such as the formation of 

intracellular neurofibrillary tangles. As a consequence, associations between amyloid 

deposition and brain atrophy may be more likely to occur in very early and probably 
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presymptomatic stages of the disease process, whereas ongoing atrophy in symptomatic and 

clinically manifest stages of the disease may be governed by neurofibrillary processes in the 

face of saturating cerebral amyloid deposition (32, 33).

Surprisingly, despite the relatively strong negative association between amyloid load and BF 

volume in the amyloid-positive cognitively normal individuals, mean BF volume of this 

group was not significantly smaller compared to the amyloid-negative control group. This 

may be due to an overrepresentation of individuals with large brain volumes in amyloid-

positive healthy individuals, allowing these subjects to maintain normal cognition in the face 

of considerable brain pathology (34).

Although cross-sectional correlational studies do not allow for inference on the 

directionality of the effects, the observed associations between amyloid deposition and brain 

atrophy are usually interpreted as reflecting neurotoxic effects of the amyloid aggregates. In 

this regard, the higher correlation between amyloid load and BF volume compared to 

hippocampus volume observed here may reflect a reportedly high vulnerability of BF 

cholinergic cells to amyloid-induced neurodegeneration (35, 36). Accordingly, in post-

mortem brain tissue of AD patients, amyloid deposits within the BF were found to be 

entirely restricted to the cholinergic cell clusters and correlated with neuronal loss (37).

However, in the case of the cholinergic BF the observed correlation with cortical amyloid 

load may also be interpreted in the other direction, given that there is considerable 

experimental evidence that cholinergic degeneration may contribute to increased cortical 

amyloid deposition due to reduced cholinergic signaling (reviewed in (7)). Thus, in-vitro as 

well as in-vivo studies on animal models have shown that cholinergic receptor activation 

favors the non-amyloidogenic route of cortical APP processing (38, 39). Accordingly, 

experimental lesions to the cholinergic BF in wild type animals led to increased amyloid 

deposition with age (9, 40, 41).

The sequence of the underlying pathogenetic events cannot be derived from our data. 

However, the association between BF atrophy and amyloid accumulation could be either 

local in the BF or mediated via distant cortical projections. The voxel-based regression of 

BF volume on AV45-maps in the present study revealed associations in widespread areas of 

paralimbic and heteromodal association cortices, which are known to receive dense 

cholinergic innervation (42), but no local effects within the BF were observed. Hence, these 

findings suggest a distant rather than a local effect of the interaction between amyloid load 

and BF atrophy in our data. Due to the very small size of BF structures compared to the 

resolution of PET images, these negative findings have to be interpreted with caution. 

However, they agree with post mortem evidence that amyloid deposition in the cholinergic 

BF does not occur before relatively advanced stages of amyloid pathology (43). 

Alternatively, the cortically projecting cholinergic neurons of the BF may degenerate in a 

retrograde fashion due to neurotoxicity of amyloid deposits in their cortical target areas. 

Such a model is supported by transgenic animal models of altered APP metabolism and 

increased amyloid deposition. These animals show a selective degeneration of cortical 

cholinergic fiber terminals in proximity to amyloid plaques as well as reduced volumes but 

preserved numbers of BF cholinergic neurons compared to wild type animals (8, 44). On the 
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other hand, and with respect to evidence for cholinergic modulation of amyloidogenic APP 

processing, decreased cholinergic signaling from a degenerating BF cholinergic system 

would be expected to have a stronger effect on amyloid deposition in cortical projection 

sites compared to local deposition in the BF.

Our study has several limitations. First, the results may partly depend on the selection of the 

threshold for amyloid classification. The AV45-PET threshold used in our study 

corresponds to a previously established PiB-PET threshold of 1.47 SUVR (24). We repeated 

the main analyses using two alternative thresholds, which have been found in a recent 

neuropathological study to correspond to first signs of amyloid accumulation or 

pathologically relevant amyloid accumulation, respectively (15). Results were not 

significantly altered by the choice of classification threshold, the exception being the 

comparison of BF volume between EMCI(+) and EMCI(−) which reached only trend level 

significance at the lowest threshold.

A further limitation of our study is that the employed in-vivo marker of BF atrophy is 

necessarily an indirect marker of cholinergic degeneration, given that cholinergic cells 

cannot be distinguished directly on current MRI contrasts. The marker measures GM 

volume in a BF ROI that has been informed by histologic mapping of the forebrain's 

cholinergic nuclei (16). In the last years, the cytoarchitectonic mapping of the cholinergic 

nuclei into MRI standard space has been further refined by pooling information from a 

sample of 10 healthy subjects (21). To ensure that our findings did not critically depend on 

the definition of the cholinergic space in the employed BF ROI, we additionally conducted 

an unbiased voxel-based analysis. This analysis showed distinct bilateral clusters in the BF 

that overlapped considerably with the cholinergic space defined by our BF ROI as well as 

with the NBM coordinates reported by Zaborszky and collaborators (21). The use of 

cytoarchitectonic reference maps increases the confidence for addressing the cholinergic 

space of the BF compared to simpler measurements of the substantia innominata centered on 

the anterior commissure (45, 46). However, due to the indirect character of the measurement 

it cannot be excluded that differences in volume may also reflect changes in other neuronal 

or glial components of the BF.
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Abbreviations

AD Alzheimer's Disease

ADNI Alzheimer's Disease Neuroimaging Initiative

ANCOVA analysis of covariance

APP amyloid precursor protein

AV45-PET positron emission tomography using radiotracer AV45

BF basal forebrain

CDR clinical dementia rating

ChAT cholineacetyl transferase

CN cognitively normal

CSF cerebrospinal fluid

E/L MCI early/late mild cognitive impairment

FWHM full width half maximum

GM gray matter

MMSE mini mental State examination

MPRAGE magnetization prepared rapid gradient echo

MRI magnetic resonance imaging

NBM nucleus basalis Meynert

ROI region of interest

SPM statistical parametric mapping

SUVR standard uptake value ratio

TIV total intracranial volume

WM white matter
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Figure 1. Overview of the basal forebrain and hippocampus regions of interest
Basal forebrain (red) and hippocampus (blue) regions of interest (ROIs) superimposed on 

representative coronal sections of the gray matter partition of the aging-AD specific 

template, magnified to better depict the respective ROIs.
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Figure 2. Basal forebrain and hippocampus volume in relation to global cortical amyloid load
TIV-normalized basal forebrain (left column) and hippocampus volume (right column) are 

plotted against cortex-to-cerebellar gray matter AV45 standard uptake value ratios (SUVR) 

in amyloid-positive subjects (≥ 1.28 cortical AV45 SUVR), separately for each diagnostic 

group. Black line indicates linear regression trend. r = Pearson's correlation coefficients. Red 

color indicates statistical significance at p < 0.05. TIV = total intracranial volume.
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Figure 3. Effects of global cortical amyloid load on regional gray matter atrophy
Voxel-wise multiple linear regression of global cortical AV45 SUVR on preprocessed gray 

matter maps within combined CN(+) and EMCI(+) subgroups. Analysis was controlled for 

TIV, age, gender, ApoE4 genotype, and diagnosis. Statistical significance is color-coded 

from yellow (p < 0.001, uncorrected) to red (p < 0.005, uncorrected). Cluster extension 

threshold was set to a minimum of 20 continuous voxels. Top row: Effects superposed on 

rendered views of the right, ventral and left brain surfaces as well as on two sagittal sections 

of the reference template. Bottom row: Effects superposed on coronal sections of the 

reference template, magnified to better depict the basal forebrain region of interest. Blue 

arrows indicate locations of basal forebrain cholinergic nuclei as well as external landmarks 

for better anatomical orientation. Blue numbers indicate approximate levels of orthogonal 

sections in MNI space, based on a high-dimensional coordinate transformation from the 

aging-AD specific reference space of this study to the MNI152 standard template. AC = 

anterior commissure; AMG = amygdala; DB = diagonal band of Broca; CA = caudate; GP = 

globus pallidus; (a, i, p) NBM = (anterior, intermediate, posterior) nucleus basalis Meynert; 

PU = putamen; TH = thalamus.
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Figure 4. Effects of basal forebrain atrophy on regional amyloid deposition
Voxel-wise multiple linear regression of TIV-normalized basal forebrain (BF) volume on 

preprocessed AV45-maps within combined CN(+) and EMCI(+) subgroups. AV45-maps 

were proportionately scaled to cerebellar AV45-uptake to obtain voxel-wise standard uptake 

value ratios (SUVR). Analysis was controlled for age, gender, ApoE4 genotype, and 

diagnosis. Statistical threshold was set to p < 0.05, corrected for multiple comparisons using 

the family-wise error. Associations between BF volume and regional AV45-uptake are 

superimposed on rendered views of the right, ventral and left brain surfaces as well as a 

midsagittal section of the reference template. TIV = total intracranial volume.
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Table 1

Subject demographics for amyloid-stratified diagnostic groups

N Age Gender (F/M) MMSE ApoE4 –pos (%)

CN(−) 36 76.2 (SD 6.0) 18/18 29.1 (SD 1.1) 19.4%

CN(+) 21 77.6 (SD 5.6) 12/9 28.9 (SD 1.0) 42.9%

EMCI(−) 90 69.8 (SD 7.9) 49/41 28.7 (SD 1.3) 24.4%

EMCI(+) 66
73.1 (SD 6.9)

*,## 39/27
27.8 (SD 1.7)

**,##
57.6%

**,##

LMCI(−) 9 74.0 (SD 10.9) 6/3 28.4 (SD 1.5) 33.3%

LMCI(+) 23 73.4 (SD 8.9) 12/11
26.9 (SD 2.0)

**,#
82.6%

**,#

Diagnostic groups were dichotomized into amyloid-positive (+) and amyloid-negative (−) subgroups based on a cortex-to-cerebellar gray matter 
AV45 standard uptake value ratio (SUVR) threshold of 1.28. ApoE4-pos = carrier of the ApoE4 allele; F = female; M = male; MMSE = Mini-
Mental State Examination; SD = standard deviation.

*
significantly different (p < 0.05) from the control group of amyloid-negative healthy elderly (CN(−))

**
significantly different (p < 0.01) from the control group of amyloid-negative healthy elderly (CN(−))

#
significantly different (p < 0.05) from amyloid-negative subjects of same diagnostic category

##
significantly different (p < 0.01) from amyloid-negative subjects of same diagnostic category.
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Table 2

Group differences in basal forebrain and hippocampus volumes

BF Hippocampus

CN(−) 761 (730-793) 3622 (3510-3734)

CN(+) 771 (730-813) 3662 (3514-3809)

EMCI(−) 765 (745-785) 3545 (3473-3616)

EMCI(+)
730 (707-753)

# 3523 (3441-3604)

LMCI(−) 723 (661-785) 3426 (3205-3647)

LMCI(+)
703 (664-742)

*
3296 (3157-3434)

**

Group means of age- and gender corrected TIV-normalized basal forebrain (BF) and hippocampus volumes (estimated marginal means). 95% 
confidence interval in parenthesis. Diagnostic groups were dichotomized into amyloid-positive (+) and amyloid-negative (−) subgroups based on a 
cortex-to-cerebellar gray matter AV45 standard uptake value ratio (SUVR) threshold of 1.28. TIV = total intracranial volume.

*
significantly different (p < 0.05) from the control group of amyloid-negative healthy elderly (CN(−))

**
significantly different (p < 0.01) from the control group of amyloid-negative healthy elderly (CN(−))

#
significantly different (p < 0.05) from amyloid-negative subjects of same diagnostic category.
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