
Spatial Patterns of Atrophy, Hypometabolism,
and Amyloid Deposition in Alzheimer’s

Disease Correspond to Dissociable
Functional Brain Networks

Michel J. Grothe,1* and Stefan J. Teipel,1,2

for the Alzheimer’s Disease Neuroimaging
Initiative

1German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20,
Rostock, 18147, Germany

2Department of Psychosomatic Medicine, University of Rostock, Gehlsheimer Str. 20,
Rostock, 18147, Germany

r r

Abstract: Recent neuroimaging studies of Alzheimer’s disease (AD) have emphasized topographical
similarities between AD-related brain changes and a prominent cortical association network called the
default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN
compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association
cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET,
neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants
from the Alzheimer’s Disease Neuroimaging Initiative, including preclinical, predementia, and clini-
cally manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to
assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as
defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a
preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most
notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic
network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypome-
tabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of
modality-dependent network specificity were also observed in the predementia and, for amyloid depo-
sition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for
multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging
abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability
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profiles of these networks markedly differ for distinct aspects of AD pathology. Hum Brain Mapp
00:000–000, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: default mode network; intrinsic connectivity networks; resting-state functional MRI; AV45-
PET; FDG-PET; mild cognitive impairment; preclinical; predementia; voxel-based

r r

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain
disorder that is characterized by molecular alterations in
the form of amyloid plaques and neurofibrillary tangles,
which are accompanied by neuronal dysfunction, degener-
ation, and ultimately neuronal loss. Early neuropathologi-
cal studies have shown that the pathologic alterations in
AD are not randomly distributed throughout the entire
brain but appear to specifically affect discrete neuronal
systems corresponding to limbic and heteromodal associa-
tion areas of the cortex, whereas primary sensory-motor
areas are relatively spared [Braak and Braak, 1991]. How-
ever, the exact nature of these neuronal systems and the
shared characteristics that render them particularly vulner-
able to AD pathology has remained elusive so far.

Research on the regional specificity of AD-related brain
changes has been greatly facilitated by the development of
neuroimaging techniques that allow imaging diverse
aspects of AD pathology in the living human brain, most
notably PET-based imaging of amyloid deposition and
neuronal hypometabolism, as well as high-resolution MRI
for the assessment of regional gray matter atrophy. In
addition, recent advances in functional imaging techniques
have led to new insights regarding the network-level orga-
nization of interconnected neuronal systems in the human
brain. Thus, resting-state functional MRI (rs-fMRI) studies
have provided substantial evidence that the human brain
can be subdivided into consistent sets of functional brain
networks based on their interregional coherence of sponta-
neous activity fluctuations during rest [Power, et al., 2011;
Smith, et al., 2009; Yeo, et al., 2011]. Observations of topo-
graphical similarities between regional patterns of AD-
related imaging abnormalities and a specific network
called the default-mode network (DMN) have led to the

popular claim that AD pathology may specifically target
this functional brain network typically involved in intro-
spective cognition and autobiographical memory [Buckner,
et al., 2005; Fjell, et al., 2013; Oh, et al., 2014; Seeley, et al.,
2009; Shin, et al., 2010; Sperling, et al., 2009; Tosun, et al.,
2011].

However, although AD-related imaging abnormalities
within the DMN are well replicated research findings, the
specificity of the pathologic changes for the DMN com-
pared to other functional networks has received consider-
able less attention so far. Thus, if assessed at all, the
specificity of imaging abnormalities for the DMN was typ-
ically demonstrated in comparison to alterations in
sensory-motor networks, hence providing little evidence
for the increased vulnerability of the DMN compared to
other functional brain networks implicated in higher cog-
nitive functions [Drzezga, et al., 2011; Royall, et al., 2012;
Sala-Llonch, et al., 2010; Zhu, et al., 2013].

At least two recent observations warrant a more detailed
examination of the network-specificity of AD-related neuroi-
maging abnormalities. First, detailed mappings of the brain’s
functional network structure indicate that anatomically
broadly defined sites of AD-typical neurodegeneration, such
as posterior cingulate/precuneus, temporoparietal associative
cortex, or medial temporal lobe (MTL) [Villeneuve, et al.,
2015], are not functionally homogeneous structures but cover
distinct nodes of dissociable large-scale functional brain net-
works [Leech, et al., 2012; Mars, et al., 2012; Ranganath and
Ritchey, 2012; Yeo, et al., 2011]. Second, several studies using
multimodal imaging assessments of AD-related brain changes
have described noticeable divergences in the regional profiles
of amyloid deposition, hypometabolism, and gray matter
atrophy [Edison, et al., 2007; Kljajevic, et al., 2014; La Joie,
et al., 2012; Mosconi, et al., 2013], and it is not clear how these
inter-modality differences relate to the network-specificity of
imaging abnormalities in AD.

In the present study we used rich multimodal imaging data
of a large study sample, including preclinical, predementia,
and clinically-manifest AD stages, to robustly estimate AD-
related patterns of amyloid deposition, hypometabolism, and
gray matter atrophy, and assessed their correspondence with
the principle functional networks of the human brain as
defined by a standardized functional connectivity atlas based
on rs-fMRI data of 1000 healthy young adults. To test the sen-
sitivity of our findings for the a priori selection of a specific
functional network parcellation, we additionally used a com-
plementary data driven approach based on independent com-
ponent analysis (ICA) of rs-fMRI data from an independent
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AD Alzheimer’s disease
DMN default-mode network
FWHM full-width at half maximum
FPN frontoparietal-control network
GOF goodness-of-fit
ICA independent component analysis
ICNs intrinsic connectivity networks
SMN somatomotor networks
SUVR standard uptake value ratios
TIV total intracranial volume
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sample of healthy subjects spanning the age range from ado-
lescence to advanced age.

MATERIAL AND METHODS

Data Source

Data used in the preparation of this article were
obtained from the ADNI database (adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, pri-
vate pharmaceutical companies and non-profit organiza-
tions, with the primary goal of testing whether
neuroimaging, neuropsychologic, and other biologic meas-
urements can be used as reliable in-vivo markers of AD
pathogenesis. A fuller description of ADNI and up-to-date
information is available at www.adni-info.org.

Subjects

AV45- and FDG-PET as well as structural MRI scans
were retrieved from the ADNI-GO and ADNI-2 extensions
of the ADNI project and included imaging data of 179 cog-
nitively normal elderly subjects (CN), 269 subjects with
early stage mild cognitive impairment (EMCI), 134 subjects
in a more advanced stage of MCI (LMCI), and 85 subjects
with AD dementia.

Detailed inclusion criteria for the diagnostic categories
can be found at the ADNI website (http://www.adni.loni.
usc.edu/methods/). Briefly, CN subjects have Mini Mental
Status Examination (MMSE) scores between 24 and 30
(inclusive), a CDR 5 0, are non-depressed, non-MCI, and
non-demented. EMCI subjects have MMSE scores between
24 and 30 (inclusive), a subjective memory concern
reported by subject, informant, or clinician, objective mem-
ory loss measured by education adjusted scores on
delayed recall (one paragraph from Wechsler Memory
Scale Logical Memory II; education adjusted scores: �16
years: 9–11; 8–15 years: 5-9; 0–7 years: 3–6), a CDR 5 0.5,
absence of significant levels of impairment in other cogni-
tive domains, essentially preserved activities of daily liv-
ing, and an absence of dementia. Diagnosis of LMCI
differs from that of EMCI only in a higher degree of objec-
tive memory impairment (education adjusted scores:� 16
years:� 8; 8-15 years:� 4; 0-7 years:� 2). Subjects with AD
dementia have initial MMSE scores between 20-26 (inclu-
sive), a CDR 5 0.5 or 1.0 and fulfill NINCDS-ADRDA crite-
ria for clinically probable Alzheimer’s disease [McKhann,
et al., 1984].

Diagnostic groups were dichotomized into amyloid-
positive (1) and amyloid-negative (–) subgroups, based on
AV45-PET evidence of global amyloid pathology indicative
of AD. Cortex-to-whole cerebellum AV45 standard uptake
value ratios (SUVR) have been calculated and made avail-
able on the ADNI server by one of the ADNI PET core

laboratories (Jagust Lab, UC Berkley). Based on these val-
ues, amyloid-positivity was established using a recom-
mended threshold of SUVR� 1.11 [Landau, et al., 2013].

Amyloid-negative MCI and AD subjects were omitted
from analyses, which resulted in a final sample size of
473 subjects: 126 CN- subjects, representing the control
group, and 53 CN1, 126 EMCI1, 93 LMCI1, and 75
AD1 subjects, representing preclinical, early and late pre-
dementia, and clinically manifest AD groups, respectively
[Albert, et al., 2011; McKhann, et al., 2011; Sperling, et al.,
2011].

Imaging Data Acquisition

ADNI-GO/-2 MRI data were acquired on multiple 3-T
MRI scanners using scanner-specific T1-weighted sagittal
3D MPRAGE sequences. In order to increase signal uni-
formity across the multicenter scanner platforms, original
MPRAGE acquisitions in ADNI undergo standardized
image pre-processing correction steps. AV45- and FDG-
PET data were acquired on multiple instruments of vary-
ing resolution and following different platform-specific
acquisition protocols. Similar to the MRI data, PET data in
ADNI undergo standardized image pre-processing correc-
tion steps aimed at increasing data uniformity across the
multicenter acquisitions. More detailed information on the
different imaging protocols employed across ADNI sites
and standardized image pre-processing steps for MRI and
PET acquisitions can be found on the ADNI website
(http://adni.loni.usc.edu/methods/)

Imaging Data Processing

Imaging data were processed by using statistical para-
metric mapping (SPM8, Wellcome Trust Center for Neuro-
imaging) and the VBM8-toolbox (http://dbm.neuro.uni-
jena.de/vbm/) implemented in MATLAB R2013b (Math-
Works, Natick, MA) as described previously [Grothe,
et al., 2014; Teipel, et al., 2014].

MRI processing

First, MRI scans were automatically segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) partitions of 1.5 mm isotropic voxel-size using the
segmentation routine of the VBM8-toolbox. The resulting
GM and WM partitions of each subject in native space
were then high-dimensionally registered to an aging/AD-
specific reference template from a previous study [Grothe,
et al., 2013] using the DARTEL algorithm [Ashburner,
2007]. Individual flow-fields resulting from the DARTEL
registration to the reference template were used to warp
the GM segments and voxel-values were modulated for
volumetric changes introduced by the high-dimensional
normalization, such that the total amount of GM volume
present before warping was preserved. Finally, for
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voxel-based analyses modulated warped GM segments
were smoothed with a Gaussian smoothing kernel of
8 mm full-width at half maximum (FWHM). All prepro-
cessed GM maps passed a visual inspection for segmenta-
tion and registration accuracy.

PET data processing

Each subject’s AV45- and FDG-PET scans were rigidly
coregistered to a skull-stripped version of the correspond-
ing structural MRI scan and warped (without modulation)
to the aging/AD-specific reference space using the defor-
mation fields derived from the registration of the MRI scan.
Skull-stripping of the structural MRI scan was performed
by multiplication with a binary mask of the combined GM
and WM tissue partitions. In order to limit signal spill over
from surrounding WM and CSF tissue, voxels with a GM
probability of less than 50% in the aging/AD template
were removed from the warped PET scans. For voxel-based
analyses, preprocessed AV45- and FDG-PET scans were
proportionately scaled by mean uptake values within the
cerebellum and the pons, respectively, and smoothed with
a Gaussian smoothing kernel of 8 mm FWHM.

Definition of Intrinsic Connectivity Networks

Definition of ICNs was based on a recently published
functional parcellation scheme of the human brain into
seven major functional connectivity networks, including
the DMN, frontoparietal-control network (FPN), dorsal-
(DAN) and ventral attention networks (VAN), limbic net-
work (LIN), as well as visual- (VIS) and somatomotor net-
works (SMN) (Figure 1) [Yeo, et al., 2011] (http://yeolab.
weebly.com/software–data.html). These reference maps
represent one of the best currently available estimates of
the functional connectivity architecture of the human cere-
bral cortex, and were generated using a clustering
approach on individual whole-brain functional connectivity
profiles derived from rs-fMRI data of 1000 healthy young

adults. In this approach, each cortical voxel is assigned to a
single best fitting cluster, resulting in non-overlapping net-
works that consist of functionally interconnected brain
regions and together cover the whole cortical gray matter.
The so-defined networks were found to be highly repro-
ducible across independent discovery and replication data-
sets, and nicely converge with previous reports of
consistent large-scale functional connectivity networks
derived from rs-fMRI using a wide variety of analytic
methods, including seed-based functional connectivity
analysis [Fox, et al., 2006; Greicius, et al., 2003; Kahn, et al.,
2008; Pascual, et al., 2015; Seeley, et al., 2007; Vincent,
et al., 2008; Vincent, et al., 2006], ICA [Damoiseaux, et al.,
2006; Smith, et al., 2009], as well as different clustering and
graph theoretical methods [Bellec, et al., 2010; Cohen, et al.,
2008; Dosenbach, et al., 2007; Power, et al., 2011]. However,
it has to be noted that there is currently no established
way of unambiguously defining the most appropriate num-
ber of separate connectivity networks within the brain’s
functional connectivity architecture. Although the cluster-
ing results were found to be particularly stable for a seven
network solution, other numbers of clustering solutions are
also possible, resulting in fusion or further subparcellation
of these seven ICNs at lower and higher parcellation reso-
lutions, respectively [Andrews-Hanna, et al., 2010; Fox,
et al., 2005; Power, et al., 2011; Shirer, et al., 2012; Yeo,
et al., 2011]. The naming convention for the seven different
ICNs is based on common names associated with each net-
work in the wider neuroimaging literature [Yeo, et al.,
2011]. While most of these terms are suggestive of specific
cognitive functions believed to be associated with the
respective network, it is important to note that ICNs were
solely defined based on resting-state functional connectivity
characteristics, independent of any possible association
with cognition or behavior. Furthermore, alternative terms
for some of these networks (or subnetworks thereof) are
also found frequently in the literature, such as “central-
executive” or “executive-control” network for the FPN, and
“salience” or “cingulo-opercular” network for the VAN.

Figure 1.

Overview of the intrinsic connectivity networks. The fig-

ure shows standardized maps of seven intrinsic connectivity net-

works as published by Yeo et al. (2011), projected on the

cortical surface and a midsagittal section of the reference tem-

plate. Red: default mode network, yellow: frontoparietal-control

network, green: dorsal attention network, pink: ventral attention

network, blue: limbic network, purple: visual network, cyan:

somatomotor network. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Data Extraction and Statistical Analysis

Data extraction and statistical analyses were carried out
using SPM8 in combination with in-house written MAT-
LAB scripts, and the software package IBM SPSS Statistics
version 21, respectively. Demographic characteristics were
compared between each of the amyloid-positive groups
and the CN- control group using Student’s t tests for con-
tinuous variables and Fisher’s exact tests for categorical
variables.

Differences between AD stages and healthy controls

ROI-based analysis. Individual mean AV45- and FDG-
uptake values within each of the seven ICNs were
extracted from the preprocessed PET maps by averaging
the voxel values within the respective ICN template
masks. AV45- and FDG-uptake means were converted to
SUVRs by normalization to the mean uptake values within
the cerebellum and the pons, respectively. Individual GM
volumes of each of the seven ICNs were extracted from
the warped GM segments by summing up the modulated
GM voxel values within the respective ICN template
masks. These values were scaled by the total intracranial
volume (TIV), calculated as the sum of total volumes of
the GM, WM and CSF partitions. Group differences in
multimodal ICN values between the AD stages and the
amyloid-negative control group were assessed using
ANCOVA models, controlling for age, gender, and educa-
tion, with pair-wise follow-up tests for differences in the
estimated marginal means. Statistical significance for
group differences was set at P< 0.05 (two-tailed),
Bonferroni-corrected for the number of tested ICNs and
imaging modalities (acrit 5 0.0024).

Voxel-based analysis. Complementary voxel-wise analy-
ses were conducted to study imaging abnormalities in the
different AD stages across the entire brain. Significant
voxel-wise increases in regional amyloid load as well as
decreases in glucose metabolism and GM volume were
determined using a series of separate voxel-wise two-sam-
ple t-tests of the preprocessed imaging data, comparing
each AD stage with the CN- control group, while control-
ling for age, gender, and education as confounding varia-
bles. Voxel-based analyses of the GM maps were
additionally controlled for TIV. All analyses were
restricted to a GM mask of the reference template, thresh-
olded at 50% GM probability, and results were assessed at
a statistical threshold of P< 0.05, FWE-corrected at the
voxel-level.

Differences in the degree of imaging abnormalities

between intrinsic connectivity networks

To assess the regional distribution profiles of imaging
abnormalities in the different AD stages independently of
statistical thresholding of group differences, modality-
specific voxel-wise “Z-score” maps for each subject in the

CN1, EMCI1, LMCI1, and AD1 groups were calculated
using mean and standard deviation of the amyloid-
negative control group as reference values: [Z-score 5

(individual value 2 control mean)/control standard devia-
tion] [Chetelat, et al., 2008; Mosconi, et al., 2013]. Prior to
Z-score calculation all preprocessed AV45- and FDG-PET
scans were proportionately scaled by mean uptake values
within the cerebellum and the pons, respectively, and pre-
processed GM maps were scaled by TIV. Z-score maps
for GM and FDG-PET were reversed so that positive Z-
scores indicate GM atrophy and hypometabolism,
respectively.

The specificity of the imaging abnormalities for any par-
ticular ICN template was quantified for each AD stage
using two complementary metrics. First, individual voxel-
wise Z-score values, reflecting the degree of imaging
abnormality compared to the control group, were aver-
aged within each ICN template. Group-averaged Z-scores
are an effect size estimate of the deviance of the respective
group from the amyloid-negative control group and are
equivalent to Glass’ D. Second, the correspondence of the
spatial distribution of imaging abnormalities with each of
the seven ICN templates was quantified using goodness-
of-fit (GOF) analysis of the Z-score maps. For each imag-
ing modality and diagnostic group, ICN-specific GOF-
scores were calculated as the difference between the aver-
age Z-score values of voxels falling within this ICN tem-
plate and the average Z-score values of cortical voxels
outside the ICN template [Greicius, et al., 2004; Lehmann,
et al., 2013]. Thus, for a uniform distribution of a particu-
lar imaging abnormality across the cerebral cortex one
would expect GOF-scores of all ICNs to be close to zero,
independent of the overall degree of imaging abnormality,
whereas positive GOF-scores for a particular ICN would
indicate a relative preference of the imaging abnormality
to occur within this ICN.

Statistical significance of the differences in severity (Z-
scores) and spatial correspondence (GOF-scores) of imag-
ing abnormalities between the two highest ranking ICNs
was assessed for each imaging modality and AD stage by
using paired t-tests. Statistical significance was set at
p< 0.05 (two-tailed), Bonferroni-corrected for the number
of imaging modalities (acrit 5 0.017).

Complementary analysis using functional network

maps derived from group independent component

analysis

Given the inherent ambiguity of defining separate intrin-
sic connectivity networks within the global connectivity
architecture of the human brain and the partial depend-
ence of the derived networks on the analytic approach
[Power, et al., 2011; Smith, et al., 2009; Yeo, et al., 2011],
we examined whether the main findings of our study can
be replicated when using functional network maps
derived from ICA of rs-fMRI data [Allen, et al., 2011].
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Several studies have shown that spatial maps of known
ICNs can also be retrieved as independent components
(ICs) using ICA-based decompositions of rs-fMRI data
[Damoiseaux, et al., 2006; Smith, et al., 2009]. Here, we
used publicly available IC spatial maps derived from a 75-
component group ICA analysis using rs-fMRI data of 603
healthy subjects spanning the age range from adolescence
to advanced age (mean age: 23.4 6 9.2; data available at:
http://mialab.mrn.org/data/index.html). Detailed infor-
mation on the sample characteristics, rs-fMRI data, and
the employed group ICA approach can be found in the
corresponding publication [Allen, et al., 2011]. In order to
adopt the nomenclature of the standard ICN maps used
for our primary analysis [Yeo, et al., 2011], we labeled all
ICs based on their GOF scores with these seven ICNs
[Greicius, et al., 2004; Lehmann, et al., 2013] (see also defi-
nition of GOF score above). Maximum GOF scores for
each IC ranged between 0.9 and 38.5, and ICs that did not
show a GOF score� 10 for any of the seven principle ICNs
were considered to be artifactual (29 ICs). The remaining
46 ICs were used in spatial correlation analyses with the
group averaged Z-score maps of amyloid deposition,
hypometabolism, and gray matter atrophy, similar to
approaches used in previous studies [Buckner, et al., 2009;
Fjell, et al., 2014].

RESULTS

Demographic Characteristics

As outlined in Table I, CN- control subjects were signifi-
cantly younger than CN1 (P< 0.001) and AD1 subjects
(P 5 0.04). Gender distribution was comparable between
each of the amyloid-positive groups and the CN- control
group (all P> 0.3). Compared to CN-, years of education
were significantly less in AD1 (P 5 0.002) and EMCI1
subjects (P 5 0.001), but did not differ significantly in
LMCI1 (P 5 0.27) and CN1 (P 5 0.09). As expected,
EMCI1, LMCI1, and AD1 groups had significantly lower
MMSE scores compared to the CN- group (all P< 0.001),

but MMSE scores of CN1 subjects were comparable to the
control group (P 5 0.66).

Network-Specificity of Amyloid Deposition

across AD Stages

As expected by the group definition being based on
global amyloid pathology, increased amyloid load com-
pared to the control group was significant for all ICNs and
throughout the entire brain in voxel-wise analyses for all
AD stages (effects not shown). However, regional differen-
ces in the degree of amyloid deposition were evident in
the group-averaged Z-score maps (Figure 2). Amyloid
deposition was equally pronounced across wide parts of
the cerebral cortex and appeared to be similarly distrib-
uted across the different AD stages. Regions of highest
amyloid load corresponded to heteromodal association
areas of the frontal, parietal, and lateral temporal lobes,
whereas the MTL, pre- and postcentral gyri, and the occi-
pital lobe showed the lowest amount of amyloid deposi-
tion. Averaged Z-score values for amyloid deposition were
highest in the DMN and FPN, intermediate in DAN and
VAN, and lowest in LIN, VIS and SMN (Figure 3). The
difference in Z-score values for amyloid deposition
between the DMN and FPN was significant in the AD1

(P< 0.001) and LMCI1 groups (P< 0.001), but not in the
EMCI1 (P 5 0.09) and CN1 groups (P 5 0.67). Similarly,
GOF analyses across AD stages revealed that the regional
distribution profile of amyloid deposition showed the
highest spatial correspondence with the DMN template,
followed by the FPN template (Figure 4). The difference in
GOF-scores for the DMN compared to the FPN was signif-
icant in all AD stages (P< 0.001) with exception of the
CN1 group (P 5 0.23).

Network-Specificity of Hypometabolism

across AD Stages

Regions of significant hypometabolism across the AD
stages and the corresponding Z-score maps of regional
distribution profiles are depicted in Figure 5. In the AD1

TABLE I. Sample characteristics

N Age (years) Gender (F/M) Education (years) MMSE

CN- 126 72.7 (SD 6.4) 61/65 16.8 (SD 2.5) 29.1 (SD 1.2)
CN1 53 76.4 (SD 6.0)a 30/23 16.1 (SD 2.6) 29.0 (SD 1.0)
EMCI1 126 73.5 (SD 6.8) 52/74 15.7 (SD 2.9)a 28.0 (SD 1.7)a

LMCI1 93 72.3 (SD 7.4) 43/50 16.4 (SD 2.8) 27.1 (SD 1.9)a

AD1 75 75.0 (SD 8.5)a 35/40 15.6 (SD 2.8)a 22.9 (SD 2.1)a

aStatistically significant (P< 0.05) differences compared to the amyloid-negative cognitively normal control group (CN-).
N, number of participants in each diagnostic group; F/M, female/male; MMSE, Mini Mental Status Examination; SD, standard devia-
tion; CN1, group of amyloid-positive cognitively normal subjects; EMCI1, group of amyloid-positive subjects with early mild cognitive
impairment; LMCI1, group of amyloid-positive subjects with late mild cognitive impairment; AD1, group of amyloid-positive subjects
with clinically-manifest Alzheimer’s disease dementia.
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group, voxel-wise analysis revealed significant hypometab-
olism across wide parts of the limbic and heteromodal
association cortex, showing considerable overlap with all
ICNs except the VIS and SMN. In the ROI-based analysis,
hypometabolism in the AD1 group was significant for all
ICNs (P< 0.001), and the degree of hypometabolism across
ICNs showed a similar distribution as for amyloid deposi-
tion, with the exception of a relatively more pronounced
involvement of the LIN (Figure 3). Again, hypometabolism
was significantly more pronounced in the DMN compared
with the FPN (P 5 0.002). Furthermore, the highest GOF-
score of the hypometabolic pattern was obtained for the
DMN, and this was significantly higher compared to the
FPN (P< 0.001) (Figure 4).

In the LMCI1 group, significant hypometabolism
occurred in very similar regions as in the AD1 group,
albeit spatially more restricted, particularly within the lat-
eral frontal lobe (Figure 5). In the ROI-based analysis, all
ICNs (P< 0.001) with the exception of the SMN (P 5 0.003)
showed significant hypometabolism. Averaged Z-scores
and GOF-scores for the ICNs showed an identical
network-specific pattern of hypometabolic abnormalities as
in the AD1 group (Figures 3 and 4), with a statistically
significant preference for the DMN compared to the FPN,
both in terms of mean Z-score (P 5 0.001) and GOF score
(P< 0.001).

Significant voxel-wise hypometabolism in the EMCI1
group was mainly restricted to circumscribed lateral

Figure 2.

Voxel-wise patterns of amyloid deposition across AD

stages. Averaged voxel-wise Z-score maps of amyloid deposi-

tion as evidenced by AV45-PET in groups of clinically-manifest

(AD1), predementia (LMCI1 and EMCI1), and preclinical

(CN1) Alzheimer’s disease are projected on the cortical surface

and a midsagittal section of the reference template. Note that

these averaged Z-scores are equivalent to Glass’ D measure of

effect size and should not be confused with values of a Z statis-

tic. Voxel-wise effects are color-coded from black/blue to yel-

low/red with an identical range of Glass’ D values (0–4) for all

diagnostic groups. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

Severity of AD-related imaging abnormalities within

intrinsic connectivity networks. Plots depict means and 95%

confidence intervals of averaged Z-scores (corresponding to

Glass’ D) of amyloid deposition (top), hypometabolism (middle),

and gray matter atrophy (bottom) within the distinct intrinsic

connectivity networks for each AD stage. The network-

specificity of each imaging modality is largely preserved across

disease stages, but differs markedly between the different

imaging modalities. Note that the y-axes have been scaled to the

maximum observed value for each imaging modality, and thus

bar plots represent different effect sizes across modalities. Con-

siderably higher effect sizes for amyloid compared with GM

atrophy and hypometabolism are attributable to the group defi-

nitions based on presence/absence of global amyloid pathology.

Red: default mode network (DMN), yellow: frontoparietal-

control network (FPN), green: dorsal attention network (DAN),

pink: ventral attention network (VAN), blue: limbic network

(LIN), purple: visual network (VIS), cyan: somatomotor network

(SMN). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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temporoparietal areas, although smaller clusters were also
observed in the medial and lateral frontal lobe and the left
medial temporal lobe (Figure 5). In the ROI-based analysis,

hypometabolism in none of the ICNs met the corrected
level of statistical significance (acrit 5 0.0024), but in accord-
ance with the voxel-wise results there were trends for the

Figure 4.

Spatial correspondence between voxel-wise AD-related

imaging abnormalities and intrinsic connectivity net-

works. Plots depict the spatial correspondence of group-

specific voxel-wise pattern of amyloid deposition (top), hypo-

metabolism (middle), and gray matter atrophy (bottom) with

each of the intrinsic connectivity networks as quantified by a

goodness-of-fit index. Black bars denote 95% confidence inter-

vals. Note that similar to the plots of effect sizes (Figure 3),

the preference of each imaging modality to occur within par-

ticular networks is largely preserved across disease stages, but

differs markedly between the different imaging modalities. Red:

default mode network (DMN), yellow: frontoparietal-control

network (FPN), green: dorsal attention network (DAN), pink:

ventral attention network (VAN), blue: limbic network (LIN),

purple: visual network (VIS), cyan: somatomotor network

(SMN). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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DMN (P 5 0.006) and the LIN (P 5 0.007). However, aver-
aged Z-scores did not differ significantly between the DMN,
LIN, and FPN (all P> 0.1). Similarly, GOF-scores of these

networks were generally very low and did not differ among
each other, indicating little specificity of the hypometabolic
distribution profile for any of these three networks.

Figure 5.

Voxel-wise patterns of hypometabolism across AD

stages. Voxel-wise patterns of hypometabolism compared to

the healthy control group as evidenced by FDG-PET are

depicted for groups of clinically-manifest (AD1), predementia

(LMCI1 and EMCI1), and preclinical (CN1) Alzheimer’s dis-

ease in the form of binary thresholded statistical maps (upper

rows) as well as color-coded effect size maps (Glass’ D)

(lower rows). Statistical maps are corrected for age, gender,

and education, and are thresholded at P< 0.05, FWE-

corrected at the voxel-level. Note that the intensity range for

color-coding of effect size maps is identical for all diagnostic

groups (Glass’ D between 0 and 1), but differs from the range

used for color-coding of effect size maps of amyloid deposi-

tion (Figure 2). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 6.

Voxel-wise patterns of gray matter atrophy across AD

stages. Voxel-wise patterns of gray matter atrophy compared

to the healthy control group as evidenced by structural MRI

are depicted for groups of clinically-manifest (AD1), prede-

mentia (LMCI1 and EMCI1), and preclinical (CN1) Alzhei-

mer’s disease in the form of binary thresholded statistical

maps (upper rows) as well as color-coded effect size maps

(Glass’ D) (lower rows). Statistical maps are corrected for

age, gender, and education, and are thresholded at P< 0.05,

FWE-corrected at the voxel-level. Note that the intensity

range for color-coding of effect size maps is identical for all

diagnostic groups (Glass’ D between 0 and 1), but differs from

the range used for color-coding of effect size maps of amyloid

deposition (Figure 2). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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The CN1 group showed no significant effects of
regional hypometabolism in either voxel-wise or ROI-
based analyses, and both averaged Z-scores and GOF-
scores were close to zero.

No significant ROI-wise or voxel-wise increases in glu-
cose metabolism were present in any of the AD stages
(CN1, EMCI1, LMCI1, AD1) compared to the amyloid-
negative healthy reference group.

Figure 7.
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Network-Specificity of Gray Matter Atrophy

across AD Stages

The pattern of GM atrophy across AD stages was mark-
edly different from the pattern of amyloid deposition
(Figure 6). In the AD1 group, atrophy was most pro-
nounced in the MTL, but significant effects were also seen
in lateral temporoparietal areas, as well as anterior and
posterior parts of the cingulate cortex. In contrast to both
amyloid deposition and hypometabolism, large parts of
the lateral and medial frontal lobes appeared to be rela-
tively spared. GM atrophy in the AD1 group was signifi-
cant for all ICNs (P< 0.001), but the relative pattern of
atrophy severity across ICNs was strikingly different to
amyloid deposition and hypometabolism: Atrophy was
most pronounced in the LIN, followed by the DMN,
whereas the FPN was relatively less affected (Figure 3).
However, similar to the pattern of amyloid deposition
and hypometabolism, the VIS and SMN were the least
affected networks. Voxel-wise pattern of atrophy in the
LMCI1 group were similar to the pattern in the AD1

group, but with less involvement of the cingulate cortex
and lateral temporoparietal areas. In ROI-based analysis,
all ICNs with the exception of the VIS (P 5 0.12) and SMN
(P 5 0.021) showed significant atrophy compared to the
CN- control group at P< 0.001, and the pattern of atrophy
severity across the ICNs was identical to the AD1 group.
In the EMCI1 group significant voxel-wise atrophy was
limited to the MTL, and in the ROI-based analysis only
the LIN (P< 0.001) showed significant atrophy compared
to the CN- control group.

Across EMCI1, LMCI1, and AD1 groups, positive
GOF-scores were only observed for the LIN and DMN,
and within each group both averaged Z-scores and GOF-
scores were significantly higher for the LIN compared to
the DMN (P< 0.002 and P< 0.006 for averaged Z-scores
and GOF-scores, respectively) (Figures 3 and 4).

The CN1 group showed no significant effects of
regional atrophy in either voxel-wise or ROI-based analy-
ses, and both averaged Z-scores and GOF-scores were
close to zero.

No significant ROI-wise or voxel-wise increases in gray
matter volume were present in any of the AD stages

(CN1, EMCI1, LMCI1, AD1) compared to the amyloid-
negative healthy reference group.

Spatial Correlation Analysis with ICA-Derived

Functional Network Maps

Main results of the complementary spatial correlation
analysis are summarized in Table II, showing for each
imaging modality the five best and the five least correlated
ICs with the respective pathologic pattern in the AD
dementia group (AD1). Figure 7 illustrates the spatial
maps of the top four correlated ICs for each pathologic
pattern. Amyloid deposition was most correlated with a
component resembling the DMN (IC 53), but also showed
association with other ICs corresponding to heteromodal
association networks, such as the DAN and FPN. Overall,
spatial correlation coefficients were rather weak
(rmax 5 0.26), indicating that the regional pattern of amy-
loid deposition is not accurately reflected by any single IC
map. The pattern of hypometabolism correlated with simi-
lar ICs as the pattern of amyloid deposition, showing
highest correlation with the same DMN-associated compo-
nent as amyloid deposition (IC 53). However, in contrast
to the amyloid pattern, hypometabolism showed also posi-
tive correlation with a component representing a limbic
network centered on the medial and inferior temporal lobe
(IC 41). This same component showed highest correlation
with the pattern of gray matter atrophy, and additional
atrophy-correlated components represented further limbic
(sub)networks involving lateral, medial, and polar tempo-
ral regions with variable contributions from the orbitofron-
tal cortex.

Least correlated ICs of the hypometabolic and atrophic
patterns mainly corresponded to the primary sensory-
motor systems (VIS and SMN), whereas the amyloid pat-
tern also showed particularly low correlation with limbic
network-associated ICs, including those that showed high-
est positive correlation with the atrophic and hypometa-
bolic patterns (IC 41).

Amyloid deposition patterns in the CN1, EMCI1, and
LMCI1 groups, as well as atrophic and hypometabolic
patterns in the EMCI1 and LMCI1 groups, showed

Figure 7.

ICA-derived functional network maps that show highest

correspondence with spatial patterns of AD-related imag-

ing abnormalities. Figure shows selected functional network

maps (independent components [IC]) derived from a high-

dimensional group independent component analysis (ICA) of

resting-state fMRI data from healthy individuals (Allen, et al., 2011).

Depicted networks were selected based on their spatial correla-

tion with regional patterns of amyloid deposition (IC 53, IC 50, IC

71, IC 60), hypometabolism (IC 53, IC 34, IC 41, IC 71), or gray

matter atrophy (IC 41, IC 30, IC 65, IC 13) in AD dementia (see

Table II). Spatial patterns of amyloid deposition and gray matter

atrophy correspond to distinct functional network maps, whereas

the pattern of hypometabolism correlates with both amyloid- and

atrophy-related components. ICs related to the pattern of amyloid

deposition resemble large-scale heteromodal association networks

spanning the frontal, temporal, and parietal neocortex, most nota-

bly the DMN (IC 53). ICs related to the pattern of gray matter

atrophy resemble limbic networks centered on the medial tempo-

ral and temporopolar allocortex. Group IC maps are color-coded

from T 5 0 (black) to T 5 40 (red). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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highest spatial correlation with the same components as in
the AD1 group (IC 53 for amyloid and hypometabolic
pattern, IC 41 for atrophic pattern).

DISCUSSION

Understanding the heterogeneous distribution of patho-
logic alterations in AD and the precise nature of those
neuronal systems that are more vulnerable to certain
aspects of AD pathology than others is critical for a deeper
understanding of AD pathogenesis. Based on visual judg-
ments of thresholded voxel-wise maps of regional amyloid
deposition, hypometabolism, or atrophy in AD, several
previous imaging studies have emphasized the spatial cor-
respondence between these imaging abnormalities and the
DMN [Buckner, et al., 2005; Shin, et al., 2010; Sperling,
et al., 2009]. However, this correspondence has not yet
been formally quantified, and recent multimodal imaging
studies also point to considerable divergences between the
voxel-wise patterns of AD-related amyloid deposition,
hypometabolism, and atrophy [La Joie, et al., 2012; Mos-
coni, et al., 2013].

The overall voxel-wise patterns of multimodal imaging
abnormalities found in the present study were highly con-
sistent with previous multimodal imaging assessments in
subjects with AD dementia or MCI [Edison, et al., 2007; La
Joie, et al., 2012; Mosconi, et al., 2013; Shin, et al., 2010],
typically involving considerably smaller sample sizes.
Here, we used recently published standardized network
definitions and quantitative methods to systematically
assess the correspondence of these imaging abnormalities
with functional networks in the human brain. Corroborat-
ing the qualitative observations from previous studies

[Buckner, et al., 2005; Shin, et al., 2010; Sperling, et al.,
2009], the DMN was confirmed to be the most affected
brain network by amyloid deposition. However, high vul-
nerability was also noted for other heteromodal association
networks, particularly the FPN, and the brain-wide
regional profile of amyloid deposition could not be suffi-
ciently described by the pattern of the DMN alone. By
contrast, atrophic changes in AD were found to be most
pronounced in an anterior MTL-centered limbic network,
followed by the DMN, whereas other neocortical associa-
tion networks, such as the FPN, were relatively spared
from atrophic abnormalities. Of note, the highly atrophic
limbic network was found to be among the least affected
by amyloid deposition. Hypometabolism appeared to be a
mixture of both amyloid- and atrophy-related profiles,
showing high vulnerability for neocortical association net-
works, most notably the DMN, but also for the atrophic
limbic network. Similar patterns of modality-dependent
network specificity were also observed in the predementia
and, for amyloid deposition, in the preclinical stage. Nota-
bly, these findings of a differential network-specificity of
the distinct pathologic markers in AD were robust against
the particular definition of the functional network maps,
as identical patterns were also found when using spatial
maps of functional networks derived from a different sam-
ple and using an ICA-based approach.

The limbic network found to correspond most closely to
the AD-related atrophy pattern in this study resembles a
previously described anterior MTL network that differs
from a DMN-associated posterior MTL network in its neu-
ronal connectivity pattern and the specific memory proc-
esses it subserves [Ranganath and Ritchey, 2012]. This
network, encompassing bilateral regions of the anterior
MTL, the temporal poles, and orbitofrontal regions, can be

TABLE II. Spatial correlations between patterns of Alzheimer’s disease-related imaging abnormalities and ICA-

derived functional network maps

Amyloid Hypometabolism Gray Matter Atrophy

#IC R ICN(Yeo) #IC R ICN(Yeo) #IC R ICN(Yeo)

53 0.26 DMN 53 0.30 DMN 41 0.45 LIN
50 0.22 DAN 34 0.30 DMN/FPN 30 0.24 DMN/LIN
71 0.18 DMN/VAN 41 0.28 LIN 65 0.24 LIN/DMN
60 0.16 FPN 71 0.19 DMN/VAN 13 0.22 LIN
68 0.16 FPN 50 0.18 DAN 35 0.15 LIN
41 20.19 LIN 46 20.24 VIS 64 20.21 VIS
21 20.13 VAN 29 20.24 SMN 46 20.20 VIS
23 20.10 SMN/DAN 56 20.23 VAN/SMN 75 20.19 VIS
7 20.10 SMN 7 20.21 SMN/DAN 55 20.13 VAN/FPN
19 20.09 LIN 23 20.17 SMN 59 20.13 VIS

Rows 1–5 show the independent components that demonstrated highest spatial correlation with the respective pathologic pattern. Rows
6–10 show the independent components that were least correlated with the respective pathologic pattern. #IC: number of the independ-
ent component; R: (Pearson) spatial correlation coefficient; ICN(Yeo): intrinsic connectivity network as defined by Yeo et al. [2011] that
shows the highest Goodness-of-fit for the respective IC. Note that some ICs did not clearly correspond to one particular ICN (i.e.
showed positive GOF scores for more than one ICN). In these cases the ICN with the second highest GOF score is also listed.
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reliably reproduced by functional connectivity analysis
anchored in perirhinal/anterior entorhinal cortex seeds
[Das, et al., 2015; Fan, et al., 2014; Pascual, et al., 2015], and
similar spatial maps have also been reported from previous
ICA-based rs-fMRI studies [Gour, et al., 2011; Jones, et al.,
2012]. However, it has to be noted that temporobasal and
orbitofrontal regions are particularly prone to susceptibility
artifacts (signal loss and spatial distortions) in rs-fMRI
acquisitions, creating uncertainty about the neuronal origin
of the observed signals [Yeo, et al., 2011]. Thus, ICA com-
ponents showing high spatial overlap with these regions
are often attributed to artifactual sources rather than func-
tional brain networks [Allen, et al., 2011]. While the exis-
tence of such a neuronal network is also supported by
axonal tracing studies in non-human primates [Price, 2007;
Ranganath and Ritchey, 2012], the true nature of the limbic
ICN map and the corresponding ICs in our study cannot
finally be resolved and the respective network boundaries
should be interpreted with this caveat in mind.

Overall, our findings demonstrate that AD pathology
does not exclusively target the DMN. Several other func-
tional networks of the limbic and heteromodal association
cortex are also significantly affected, and the relative
degree to which a particular network is affected strongly
depends on the type of pathologic marker. In line with
previous voxel-wise analyses [La Joie, et al., 2012], these
inter-modality differences in network-specificity are partic-
ularly striking between amyloid deposition and gray mat-
ter atrophy, showing a remarkable double dissociation in
the limbic (high atrophy, low amyloid load) and
frontoparietal-control networks (high amyloid load, low
atrophy).

Network-specific alterations in AD have also been exten-
sively studied by means of functional connectivity disrup-
tions as assessed by rs-fMRI. While hypothesis-driven
examinations of the DMN have shown consistent connec-
tivity disruptions of this network in AD [Greicius, et al.,
2004; Koch, et al., 2012; Sheline, et al., 2010], more
unbiased analyses of functional connectivity alterations
throughout the whole brain revealed functional connectiv-
ity disruptions also within several other ICNs, some of
which showed similar effect sizes even in predementia
and mild AD stages [Brier, et al., 2012; Myers, et al., 2014;
Sorg, et al., 2007]. Interestingly, AD-related connectivity
alterations have also been observed in the form of abnor-
mally increased functional connectivity, particularly within
medial temporal and frontal (sub)networks, which may be
related to functional isolation and decoupling of these sys-
tems from regulating inputs within their wider network
[Damoiseaux, et al., 2012; Pasquini, et al., 2015; Salami,
et al., 2014]. While the hyperconnectivity within medial
temporal networks and anterior DMN components
appears to be an early, possibly compensatory, phenom-
enon that wanes as the disease progresses [Damoiseaux,
et al., 2012; Gour, et al., 2011], increased connectivity
within components of the salience/ventral attention and

frontoparietal networks has also been observed at more
advanced clinical AD stages [Gour, et al., 2014; Zhou,
et al., 2010].

Here we can only speculate about the underlying mech-
anisms that render some neuronal systems more vulnera-
ble to certain forms of AD pathology than others. For
amyloid deposition a “nodal stress” hypothesis has been
posited, stating that highly connected regions in the brain
(so called hubs) may be particularly vulnerable to amy-
loid deposition because of their increased synaptic activity
[Buckner, et al., 2009; Jagust and Mormino, 2011; Myers,
et al., 2014]. Thus, the degree to which a given functional
network is affected by amyloid deposition may depend
on its large-scale inter-connectedness within the brain,
which indeed appears to be lowest in primary sensory-
motor areas, intermediate in multimodal integration net-
works such as the VAN and DAN, and highest in the
FPN and DMN [Buckner, et al., 2009; Sepulcre, et al.,
2012].

Recent studies indicate that similar to amyloid deposi-
tion, AD-related atrophy pattern are spatially correlated
with a region’s total connectivity in the healthy brain
[Crossley, et al., 2014]. However, the strikingly different
pattern of atrophic changes compared with amyloid depo-
sition strongly suggests that both types of AD pathology
are governed by at least partly diverging mechanisms. The
MRI-based pattern of atrophic changes in the course of
AD appears to be closely related to the regional profile of
neurofibrillary tangle formation as revealed by neuropath-
ological examinations [Vemuri, et al., 2008; Whitwell,
et al., 2007], which clearly differs from neuropathological
estimates of regional progression of amyloid pathology
[Braak and Braak, 1991]. Zhou and colleagues tested the
potential of various properties of the human brain’s func-
tional connectome for predicting regional atrophy pattern
in AD [Zhou, et al., 2012]. The authors concluded that the
pattern may be best explained by a model of transneuro-
nal spread from a disease-specific seed region to intercon-
nected network nodes, although other factors, such as a
region’s brain-wide connectivity may independently con-
tribute to vulnerability. Interestingly, a prion-like neuron-
to-neuron transmission of tau pathology has been
described in transgenic animal models, where the regional
spread of pathology followed the pattern of synaptic con-
nectivity rather than spatial proximity [Ahmed, et al.,
2014].

With the striking exception of the MTL, hypometabolism
appeared to occur within regions of highest amyloid depo-
sition, and the progression of hypometabolism across
cross-sectionally modeled disease stages suggests a
spreading among regions most affected by amyloid depo-
sition. A similar association between the temporospatial
progression patterns of hypometabolism and amyloid dep-
osition has also been suggested based on observations in
longitudinal multitracer PET data of AD dementia patients
[Forster, et al., 2012]. Regional hypometabolism as
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measured by FDG-PET is believed to reflect synaptic dys-
function in AD, which may be influenced by both the
local toxic effects of amyloid pathology and tangle-related
neurodegeneration [Spires-Jones and Hyman, 2014]. This
may possibly explain the mixed regional pattern of hypo-
metabolism, with significant effects in widespread neo-
cortical networks characterized by high amyloid
deposition as well as in the amyloid-spared but highly
atrophic anterior limbic network. However, it has to be
noted that the FDG-PET signal in the highly atrophic
MTL regions may also be influenced by increased partial
volume effects in these areas. Thus, estimates of regional
FDG-PET uptake may be artificially decreased in atrophic
brain regions, due to a higher contamination of the true
gray matter signal with the low signal of surrounding
WM and CSF tissue. Although the use of high-
dimensional image normalization and restriction of the
measurement to areas of high gray matter probability
should theoretically reduce such effects, we did not apply
a formal correction of partial volume effects in this study,
and thus the pattern of regional hypometabolism should
be interpreted with this possible confounder in mind. Of
note, the voxel-based findings in our study are highly
consistent with those of previous FDG-PET studies of AD
and MCI that did use explicit partial volume correction,
equally demonstrating most pronounced hypometabolism
in the posterior cingulate cortex and less pronounced, but
significant, hypometabolism in the medial temporal lobe
[Chetelat, et al., 2008; La Joie, et al., 2012; Mevel, et al.,
2007; Mosconi, et al., 2013]. Given the overlapping pattern
of amyloid deposition and gray matter atrophy in the
posterior cingulate cortex, an intriguing hypothesis is that
the particularly high vulnerability of this region for hypo-
metabolism may be based on the regional convergence of
amyloid and neurofibrillary tangle pathology. However,
in addition to local effects, regional metabolism may also
be affected by lesions in remote but structurally and func-
tionally connected areas [Chetelat, et al., 2009; Glodzik,
et al., 2014; Grothe, et al., 2015]. More work needs to be
done to fully characterize the pathologic mechanisms
underlying the complex spatial distribution and progres-
sion pattern of neuronal hypometabolism in AD.

In summary, using quantitative methods and large mul-
timodal imaging datasets to robustly estimate AD-related
imaging abnormalities as well as functional network maps
in the human brain, we confirm a high vulnerability of the
DMN for AD-related imaging abnormalities. However,
rather than being selective for the DMN, AD pathology
appears to affect limbic and heteromodal association net-
works of the brain in a more general manner, and, impor-
tantly, the specific vulnerability profiles of these networks
markedly differ for distinct types of pathologic markers.
Future studies aiming to characterize neuronal networks
that are particularly vulnerable to AD should take differ-
ences in the regional vulnerability for distinct types of
pathologic markers into account.
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