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We propose a framework for feature extraction from learned low-dimensional subspaces that represent inter-
subject variability. The manifold subspace is built from data-driven regions of interest (ROI). The regions are
learned via sparse regression using themini-mental state examination (MMSE) score as an independent variable
which correlates better with the actual disease stage than a discrete class label. The sparse regression is used to
perform variable selection along with a re-sampling scheme to reduce sampling bias. We then use the learned
manifold coordinates to performvisualization and classification of the subjects. Results of the proposed approach
are shown using the ADNI and ADNI-GO datasets. Three types of classification techniques, including a new MRI
Disease-State-Score (MRI-DSS) classifier, are tested in conjunction with two learning strategies. In the first case
Alzheimer's Disease (AD) and progressive mild cognitive impairment (pMCI) subjects were grouped together,
while cognitive normal (CN) and stable mild cognitive impaired (sMCI) subjects were also grouped together.
In the second approach, the classifiers are learned using the original class labels (with no grouping). We show
results that are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably the most
clinically relevant subjects, sMCI and pMCI, is shown. Additionally, we present classification accuracies between
CN and early MCI (eMCI) subjects, from the ADNI-GO dataset, of 65%. To our knowledge this is the first time clas-
sification accuracies for eMCI patients have been reported.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is themost common form of dementia, usu-
ally associatedwith the elderly population (over 65 years of age). AD had
a worldwide prevalence of around 26.6 million cases reported in 2006,
and predictions suggest that this figure will increase fourfold to above
100 million by the year 2050 (Brookmeyer et al., 2007). If intervention
could achieve even a modest one year delay of both disease onset and
progression, therewould be nearly ninemillion fewer cases of the disease
by that time (Brookmeyer et al., 2007). Postulated interventions aremore
likely to be effective in early stages of the disease. These figures underline
the huge impact advances in early diagnosis might have on the overall
well-being of the population, the burden to caregivers and family mem-
bers, as well as the associated financial costs to the world's health
Enzra trust, the 7th Framework
uropa.eu/ist/) and SEP-DGRI.
ained from the ADNI database
ithin the ADNI contributed to
data but did not participate in
f ADNI investigators is available
ip_list.pdf.
systems. Several studies over recent years have concluded and confirmed
that AD can be diagnosed by clinical assessment alone accurately in 90%
of the cases when validated against neuropathological standards
(Ranginwala et al., 2008). However, by the time a patient is diagnosed
he/she may already suffer from substantial loss of quality-of-life and
chances for improvement, or even disease progression deceleration,
may have deteriorated. Hence, the importance of very early diagnosis of
the onset of dementia.

Several medications are currently approved by the U.S. Food and
Drug Administration (FDA) to treat people who have been diagnosed
with AD. Treating the symptoms of AD can provide patients with com-
fort, dignity, and independence for a longer period of time and can en-
courage and assist their caregivers as well. Disease modifying
treatments are more likely to have a significant impact in the earlier
stages of the disease. Population stratification is important to allow
the recruitment of appropriate subjects for clinical trials, and explore
the effects of novel treatments in subjects where results are expected
to be most effective, hence, reducing overall costs of the trial by remov-
ing false positives in an earlier stage. Of special interest are subjectswith
amnestic mild cognitive impairment (MCI), which is a prodromal form
of AD. Existing studies have suggested that about 10–12% of subjects
with amnestic MCI progress to probable AD per year (Petersen et al.,
1999). However, individual patients can remain in a stable MCI (sMCI)
condition for years. From a clinical perspective it is therefore
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particularly interesting to identify those subjects that are at immediate
or medium-term risk of progressing from MCI to AD (pMCI).

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a study
with the primary goal of testing whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of
MCI and AD. Recent studies focus on identifying subjects at risk at a
much earlier stage. In the ADNI Grand Opportunity (ADNI-GO) and
ADNI-2 studies, a group of early MCI (eMCI) patients is included
(Aisen et al., 2010) that represents individuals with milder degrees of
cognitive and functional impairment than the MCI subjects. With a
slower rate of progression, they form an especially interesting subject
group as biomarker manifestation could potentially be different at
such an early stage of the disease.

Imaging biomarkers play an increasingly important role in the early
diagnosis of neurodegenerative diseases like AD. Magnetic resonance
(MR) imaging examinations often form part of clinical assessment stan-
dards for patientswithMCI. Biomarkers based onMR imaging are consid-
ered to be more sensitive to change after symptoms from amyloid-based
biomarkers start to appear (i.e. accumulation of amyloid-β) (Frisoni et al.,
2010). Imaging biomarker measurements can be key in the development
of disease-modifying drugs. They can be used to explore themodifying ef-
fects these drugs may have on the disease trajectory through time, and
also as a screening tool to select a more homogeneous prodromal patient
population that are expected to have higher risk for rapid imminent clin-
ical progression, thus increasing the efficiency of clinical trials (Hampel
et al., 2010). Recently, there have been many studies with a main focus
on automatically identifying such imaging biomarker. Many of the well-
established and well-known biomarkers used in dementia that are de-
rived from MR imaging are based on morphological measurements of
specific brain structures (i.e. hippocampi, amygdalae, cortex, entorhinal
cortex), such as volumes or shapes (Cho et al., 2012; Chupin et al.,
2009; Coupé et al., 2012; Cuingnet et al., 2011; Koikkalainen et al.,
2011; Lerch et al., 2008; Querbes et al., 2009; Westman et al., 2011;
Wolz et al., 2010, 2011). However, neurodegeneration patterns may not
necessarily follow strict standard definitions of anatomical structures or
functional regions. Hence, limiting the analysis to predefined regions
could potentially reduce the power of the biomarker to detect differences
or changes over time.

More recently, the problem of learning clinically useful biomarkers
has been cast as amachine learning problem.Models that derive fromde-
velopments in the machine learning community have been put forward
as an alternative to seek for discriminative features that could act as AD
biomarkers independent from a predefined parcellation of structures
(Davatzikos et al., 2011; Eskildsen et al., 2013; Fan et al., 2007, 2008;
Gerardin et al., 2009; Misra et al., 2009; Vemuri et al., 2008; Wolz et al.,
2012; Zhang et al., 2012). This independence could potentially lead to a
better modeling of a disease trajectory for the whole brain and across
time. Furthermore, this would account for the fact that the disease trajec-
tory manifests itself at different regions at different times.

Some of the potential pitfalls when working with high-dimensional
data, such asmedical images, can be associatedwith the curse of dimen-
sionality. This describes a general paradox that occurs in high-
dimensional space, where if a neighborhood is considered “local”, then
it will be most likely “empty”, while a “non-empty” neighborhood will
probably be “non-local”. This implies that in high-dimensional space
the variance-bias trade-off cannot be accomplished very well, unless
there is a very large amount of samples available. That is, to keep the
variance low the neighborhood has to be made large enough to include
enough samples, but then a very large bias is introduced due to the large
neighborhood, and vice versa (Scott, 1992).

Learning a low-dimensional subspace representation of complex
very high-dimensional objects (i.e. images) is a central problem of
machine learning and pattern recognition. Several methods have been
proposed to find the underlying low-dimensional space of intrinsically
low-dimensional data that is embedded in a high-dimensional space.
A low-dimensional representation of the data allows the use of model-
ing techniques that suffer from the small sample size problem in high-
dimensional spaces. There is a long history in the use of linear dimen-
sionality reduction techniques, like principal component analysis
(PCA) andmultidimensional scaling (MDS) (Cox and Cox, 1994), across
different fields. Recently, nonlinear techniques like principal curves
(Hastie and Stuetzle, 1989), ISOMAP (Tenenbaum et al., 2000), locally
linear embedding (LLE) (Roweis and Saul, 2000), or Laplacian
eigenmaps (LE) (Belkin andNiyogi, 2002) have been proposed to better
capture the variation of highly nonlinear data. For a comprehensive re-
view of dimensionality reduction techniques see van der Maaten et al.
(2009).

Workingwith brainMR images and using concepts from dimension-
ality reduction, Aljabar et al. (2009) applied spectral analysis to pairwise
label overlaps obtained from a structural segmentation to discriminate
AD patients from CN subjects. Klein et al. (2010) used vectors defined
by the similarities between a given test subject and a set of training im-
ages as features from which to learn a classifier. Some dimensionality
reduction techniques aim to model global variability over the whole
dataset, which could potentially limit their generalization power of
the learned subspace when dealing with complex datasets. In recent
work, it has been suggested that this is indeed the case when dealing
with brain images, and that nonlinearmethods better capture the natu-
ral variability of such images (Gerber et al., 2010; Hamm et al., 2010).
Wolz et al. (2012) propose to classify a subject's disease state in a
manifold space that is learned from image similarities measured over
an a-priori defined region of interest (ROI) and (clinical) meta-
information related to the subject. However, as stated before, patterns
of neurodegeneration may not necessarily be best observed in the
predefined ROI, since useful information could potentially be ignored.
On the other hand the ROI will most likely contain regions that are not
associated with the neurodegeneration pattern, and this could con-
found the learned subspace. Furthermore, subject classification is per-
formed by applying a support vector machine (SVM) approach to
manifold coordinates. SVM finds a separation hyperplane defined by
only a subset of subjects (support vectors) that lie close to the hyper-
plane in the learned subspace.

There are two fundamental problems when dealing with high-
dimensional data such as 3D brain MR images: First, there is a large
amount of variables (voxels) available in images, and not all contribute
equally (or at all) to themodeling of the disease trajectory. Relevant var-
iable selection from this large pool of predictor variables is a way to
tackle this problem. We assume that the underlying disease trajectory
manifests itself on a small subset of variables in an image, and so it
can be modeled using a sparse set of voxels. The L1 norm has been pro-
posed as an effective solution to the variable selection problem
(Tibshirani, 1996; Zou and Hastie, 2005). Secondly, the variable selec-
tion process often is an ill-posed problem, where the sample size is
much smaller than the number of variables and variables are highly cor-
related. That is, the L1 norm can only select up to N uncorrelated vari-
ables, where N is the number of samples. Although the dimensionality
reduction techniques mentioned before can deal this issue, all variables
contribute to the manifold estimation process.

We propose to use sparse regression to learn a ROI in which a dis-
tancemeasure allows us to define amanifold space that better describes
the different stages of AD, by defining the ROI where the disease trajec-
tory can be better observed and quantified. The resulting compactman-
ifold representation has a sufficiently low dimensionality to allow us to
model different populations directly from the learned manifold coordi-
nates. The population distribution models of the observed data can be
used to infer the disease state of a new patient by embedding it in the
manifold and obtaining a probabilistic score on class correspondence
as opposed to a discrete label as in classification approaches. This prob-
abilistic estimation allows us to move away from a discrete decision
based on hyperplanes to a continuous characterization or modeling of
disease progression via the proposed MRI Disease-State-Score (MRI-
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DSS) formulation, that fully takes advantage of subspace coordinates
and yields a continuous variable on the disease trajectory.

This paper is organized as follows: In the following section we de-
scribe the characteristics and pre-processing steps of the datasets. We
also provide a detailed description of the methodology used in this
study (variable selection, manifold learning, population modeling and
disease state score). The Results section summarizes the experiments
carried out and the results obtained. Finally, a discussion of the results
obtained is presented, followed by conclusions and directions for future
work.

Material and methods

Data

Data used in this article was obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). ADNI
was launched in 2003 by the National Institute on Aging (NIA), the Na-
tional Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biologicalmarkers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials. The Principal
Investigator of this initiative isMichaelW.Weiner,MD,VAMedical Cen-
ter and University of California San Francisco. ADNI is the result of ef-
forts of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 adults aged 55 to 90, to participate in the research,
approximately 200 CN older individuals to be followed for 3 years,
400 people with MCI to be followed for 3 years and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

In this work, we used the subset of 523 subjects for which T1-
weighted 1.5 T MR images were available at baseline, 12 and
24 month follow-up, as of October 2011. 12 of those subjects where
discarded due to label ambiguities (subjects whose labels changed
from MCI to CN or from AD to MCI). The remaining 511 subjects
consisted of 106 patients diagnosed as probable AD, 230 as MCI (114
sMCI and 116 pMCI) and 175 CN (see Table 1 for a description of the de-
mographics). The remaining 315 images (56 CN, 119 sMCI, 49 pMCI and
91 AD) that did not contain all time points were used as training data in
the variable selection scheme (Section 2.2).

Additionally, experiments were carried out using the ADNI-GO
dataset (Aisen et al., 2010). The purpose of the ADNI-GO study is to
build upon the information obtained in the original ADNI, to examine
how brain imaging can be used with other tests to measure the progres-
sion of MCI and early AD. ADNI-GO seeks to define and characterize the
mildest symptomatic phase of AD, referred to in this study as early
amnestic MCI (eMCI). However, generally no formal sub-categorization
Table 1
Subject groups mean age, sample size, MMSE scores, gender, CDR scores and weight data
(with standard deviation in brackets) from ADNI.

N Age MMSE Men CDR Weight

CN 175 76.34 ± 5.11 29.17 ± 0.97 52% (91) 0 ± 0.1 74.43 ± 15.57
sMCI 114 75.12 ± 6.67 27.29 ± 2.25 66% (75) 0.49 ± 0.05 77.02 ± 12.83
pMCI 116 74.73 ± 6.93 26.64 ± 1.7 63% (73) 0.5 ± 0.05 74.56 ± 14.41
AD 106 75.4 ± 7.39 23.25 ± 1.97 53% (56) 0.77 ± 0.25 72.58 ± 13.81
between eMCI andMCI (or late MCI) exists. The eMCI subjects represent
individuals with milder degrees of cognitive and functional impairment
than the MCI subjects, and their rate of progression is slower (Aisen
et al., 2010). From this dataset, all the available images labeled as CN or
eMCI were selected and preprocessed in the same way as with ADNI
(see Table 2 for a description of the demographics).
Image preprocessing
In this study, all the images used were skull stripped using multi-

atlas segmentation (Leung et al., 2011) and intensity normalized at a
global scale using a piecewise linear function (Nyl andUdupa, 1999). In-
tensity normalization was carried out following an iterative scheme,
where all images are normalized to a common template/subject, then
the template was changed and all the images were re-normalized to
the new template. This was repeated N times, where N is the number
of subjects to aid in removing normalization bias (Coupé et al., 2012).
Also, all imageswere transformed to a common space, theMNI152 tem-
plate, and hence re-sliced and re-sampled to an isotropic voxel size of
1 mm. A coarse free-form-deformation (Rueckert et al., 1999), using a
control point spacing of 10 mm, was carried out to remove gross ana-
tomical variability while aligning anatomical structures in order to
focus onmore local variation. In order to account for diseasemanifesta-
tion and progression in left-handed and right-handed populations, and
hence find more generalizable regions, the selected variables from the
Relevant variable selection section are mirrored along left–right hemi-
spheres prior to the subsequent steps.
Relevant variable selection

Regression techniques allow the modeling and analysis of several
variables, where the focus is on modeling the relationship between a
dependent variable and one or more independent variables. Over the
years several regression methods have been proposed (Tibshirani,
1996; Tikhonov and Arsenin, 1977; Zou and Hastie, 2005), with argu-
ably the simplest method being ordinary least squares regression
(OLSR). In high-dimensional problems, however, the solution to OLSR
is not unique and so some form of regularization is required in order
for the model to generalize well beyond the training data. In ridge re-
gression, this is achieved by incorporating an L2 penalty into the OLSR
objective function, which leads to a unique solution in which correlated
predictors are given similar regression weights. LASSO regression, on
the other hand, uses an L1 penalty that regularizes the problem by en-
couraging a sparse solution in which most of the estimated regression
weights are zero. This is a highly desirable trait when dealing with
high-dimensional data because it allows for variable selection. Two of
the main problems with LASSO are that it does not perform well in
the presence of highly correlated variables (i.e. neighboring voxels in
an image would probably be very well correlated) and that it can only
select a number of variables that is up to the number of samples (a sig-
nificant problem for high-dimensional data). Elastic net regression (Zou
and Hastie, 2005) seeks to address the drawbacks of the LASSO
(Tibshirani, 1996), i.e. it allows selecting a number of variables that is
greater than the number of samples. This is done by adding an addition-
al L2 penalty term on the model's coefficients to the LASSO.
Table 2
Subject groups mean age, sample size, MMSE scores, gender and weight data (with stan-
dard deviation in brackets) from ADNI-GO.

N Age MMSE Men Weight

CN 134 73.77 ± 10.85 28.99 ± 1.23 51% (68) 75.68 ± 15.08
eMCI 229 67.42 ± 18.61 28.29 ± 1.53 54% (124) 81.47 ± 15.89

http://ucla.edu
http://www.adni-info.org
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Elastic net
The elastic net performs automatic variable selection and continuous

shrinkage. Additionally, it encourages the grouping of highly correlated
variables. It can be formulated as follows:

β̂ ¼ argmin
β

1−Xβk k22 þ λR βk k22 þ λL βk k1
n o

: ð1Þ

Here X is anN by pmatrix containing N vectorized images, β is an
N by p matrix of the regression coefficients, 1 is the vector of re-
sponse variables, λR and λL are the ridge regression and the LASSO
regression penalty weights, respectively. In Eq. (1), the L1 term en-
courages solutions that are sparse, while the L2 term promotes the
grouping of correlated variables. Grouping correlated variables can
be viewed as desirable in some applications. For example, as men-
tioned before neighboring voxels in an image are expected to be
correlated, hence their grouped selection as predictor variables
can be seen as an ROI learning algorithm. Viewed as an image re-
gression problem, the elastic net finds regions of interest (predictor
variables) within the images X that are useful to regress a variable 1
associated to each image. This could be the clinical label or the mini-
mental state examination (MMSE) score associated to a patient. The
elastic net objective function, Eq. (1), can be solved efficiently using
the LARS-EN algorithm (Zou and Hastie, 2005), which allows for the
number of steps or number of variables selected to be easily incor-
porated as early termination criteria. It is worth noting that
Eq. (1), in the special cases where λR and λL are set to zero, becomes
the ordinary least square regression. If λL is set to zero then it de-
scribes a ridge regression and if λR is set to zero we obtain a LASSO
regression. Another special case arises when λR → ∞: It can be
shown (Zou and Hastie, 2005) that for each predictor variable xi,
minimizing Eq. (1) has a closed-form solution that can be written
as:

β̂i
λR→∞

¼ lTxi

��� ���−λL

2

� �
þ
sign lTxi

� �
; i ¼ 1;2;…; p: ð2Þ

where (⋅)+ refers to the positive part.
This can be solved very efficiently, since lTxi is the univariate regres-

sion coefficient of the ith predictor, the estimates β̂i are obtained by ap-
plying a soft threshold to the univariate regression coefficients. Eq. (2) is
also known as univariate soft thresholding.

As stated before, the L2 regularization term (ridge) encourages
the selection of correlated variables. In medical images it can be ex-
pected that voxels (variables) that belong to the same anatomical
structure will have a high degree of correlation within each other.
Choosing λR → ∞ imposes a maximal grouping condition on Eq. (1).
In this setting elastic net regression can be used as a ROI learning
algorithm.

As λR → ∞, we are left with only one free parameter λL, from which
we will drop the subindex and refer to it only as λ from now on. Eq. (2)
can be solved for a range of regularization parameters λ when we find
the full regularization path, λmin ≤ λ ≤ λmax up to the desired stopping
criteria in the same way as one would using the LARS-EN algorithm. In
our case we limit the step size on the path such that we ensure that at
each step we add only one variable.

Training re-sampling
In order to increase robustness against sampling errors from the

dataset, we adopt a re-sampling scheme. In this approach, the reg-
ularization path is found on B random subsets, solving Eq. (2) over
a range of values λ ∈ [λmax, λmin], such that zero variables are in-
cluded at λmax, K variables are included at λmin and with each step
only one more variable is added. At each step k on a subset bwe ob-
tain a set of regression coefficients β̂b;k λb;k

� �
, where b = 1, 2, …, B

and k = 1, 2, …, K. We define an indicator variable Ψbk(λb,k)
which is set to one if the coefficient corresponding to variable xj is
non-zero, and is set to zero otherwise. The relevance of each vari-
able is measured by defining the probability of it being selected
by the regressor as

Pv j
λB;K

� �
¼ 1

BK

XB
b¼1

XK
k¼1

Ψb;k λb;k

� �
; j ¼ 1;2;…; p: ð3Þ

Thresholding the probabilities Pv at τ to keep the most relevant
voxels, yields a mask that defines a ROI that correlates with the disease
progression.

Manifold learning

One of the aims of this work is to produce continuous models of the
different discrete stages. For this purpose the learned ROI is still relative-
ly high-dimensional and hence the curse of dimensionality (Scott,
1992) would generally still impede the estimation of generalizable con-
tinuous model.

Manifold learning in general refers to a set of machine learning
techniques that aim at finding a low-dimensional representation of
high-dimensional data while trying to faithfully represent the intrin-
sic geometry of the data. For example, if we have an image dataset
and each image is considered a single point in a very high-
dimensional space, then this high-dimensional space is probably
overcomplete in the sense that a sub-manifold of far fewer dimen-
sions (that is most likely to be non-linear) may represent most of
the variation in the dataset. In manifold learning, a similarity or dis-
tance matrix is typically used to represent the relations between
pairs of data items, which can be assumed to be either the original
images or some set of features derived from the images. This matrix
may be viewed as a graph in which each node corresponds to an
image and the weight of each edge encodes a similarity or distance
between the images or derived features.

In our framework, given a set of N vectors of length D that define the
most relevant voxels (variables) V = {v1, v2, …, vN} ∈ ℝD from a set of
images, the aim is to learn the underlying manifold in ℝd (d ≪ D) that
best represents the population from V. Here vi = {v1, v2, …, vD} are
the weighted most relevant voxels in image i.

Laplacian eigenmaps
Laplacian eigenmaps can be used to derive a low-dimensional repre-

sentation of the data f : V→ Y, yi = f(vi) while preserving the local geo-
metric properties of the manifold (Belkin and Niyogi, 2002). Laplacian
eigenmaps uses a sparse, local neighborhood graph to approximate geo-
desic distances among data points. In Belkin and Niyogi (2002) a dis-
tance (dissimilarity) measure is used to identify the k-neighborhood
around each point. From these distances, a sparse neighborhood graph
G is constructed. A weight matrix W that converts distances to similar-
ities and assigns a value to each edge in G is computed using a Gaussian
heat kernel

wi; j ¼ K vi; v j

� �
¼ exp

− vi−v j

			 			2
2σ2

0B@
1CA; ð4Þ

with standard deviation σ.
In our work we use the cross-correlation (similarity) measure to

identify the k-neighborhood around each point and do not use a heat
kernel. From these similarities, the sparse neighborhood graph G is con-
structed and the edge weight matrix W simply uses the cross-
correlation values. Avoiding the use of the heat kernel eliminates the
need of its parameter σ.

Laplacian eigenmaps aims to place points vi and vj close together in
the low-dimensional space if their similarity or weightwi,j is high, i.e. if
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they are close in the original, high-dimensional space. This is achieved
by means of minimizing the following cost function

ϕ Yð Þ ¼ argmin
y

X
i; j

yi−y j

			 			2wi; j; ð5Þ

under the constraint that yTDy= 1 which removes an arbitrary scaling
factor in the embedding and prevents the trivial solutionwhere all yi are
zero. Theminimization of Eq. (5) can be formulated as an eigenproblem
(Anderson and Morley, 1985). This can be calculated from the weight
matrix W, the degree matrix M and the graph Laplacian L = M − W.
The degree matrix is a diagonal matrix that contains information
about the degree of each vertex of W, where mi,i = ∑jwi,j. Hence the
low-dimensional manifold Y that represents all the data points can be
obtained via solving a generalized eigenproblem

Lν ¼ μMν; ð6Þ

where v and μ are the eigenvectors and eigenvalues, respectively. In
turn the d eigenvectors corresponding to the smallest (non-zero) eigen-
values represent the new coordinate system.

Population distribution modeling

It is now widely accepted that both pathological processes and clin-
ical decline occur gradually over time, with AD being the end stage of
the accumulation and progression of these pathological changes. Addi-
tionally, the current consensus on AD is that these changes begin
years before the earliest clinical symptoms occur (Jack et al., 2010).
Hence, AD biomarkers need to reflect this temporal progression, and
imaging biomarkers are not an exception.

As stated before, part of the aim in this work is to producemodels of
the different discrete stages using continuous probabilistic Gaussian
mixture models in order to make predictions of group assignment or
disease evolution of unseen samples. This modeling is done using the
coordinates of the low-dimensional representation found using
Laplacian eigenmaps in order to avoid the curse of dimensionality asso-
ciated with the high-dimensional space. In Parzen kernel density esti-
mation (KDE), each observation sample is treated as a component in a
mixture model. See Scott (1992) and Wand and Jones (1994) for a de-
tailed description of multivariate kernel density estimation. Each sam-
ple in the manifold can be viewed as a single Dirac delta function,
which can be written as a Gaussian with zero covariance, with its prob-
ability concentrated at the point itself, we can define a multivariate and
N-component Gaussian mixture model of the sample distribution as
(Kristan et al., 2011):

Ps yð Þ ¼
XN
i¼1

¼ αiϕΣi
y−yið Þ; ð7Þ
Fig. 1. (a) Sagittal,(b) coronal and (c) axial orthogonal views of MM
whereϕΣi
defines a Gaussian ofmean yi and covarianceΣi that belong to

the sample mixture model distribution.
Defining the KDE, P̂KDE yð Þ, as the convolution between the sample

distribution Ps(y) and a Gaussian kernel with a covariance matrix (also
known as the bandwidth) H, we get:

P̂KDE yð Þ ¼ ϕH yð Þ � Ps yð Þ ¼
XN
i¼1

αiϕHþΣi
y−yið Þ; ð8Þ

where * denotes a convolution.
Considering the case where the sample distribution Ps is a Gaussian

mixture model, with Σi = 0 (Dirac delta functions), Eq. (8) can be re-
written as

P̂KDE yð Þ ¼
XN
i¼1

αiϕH y−yið Þ: ð9Þ

The asymptotic mean integrated squared error (AMISE) allows us to
measure thefit of the estimated distribution P̂KDE yð Þ to the unknownun-
derlying distribution Pu(y), and it is defined as

AMISE ¼ 4πð Þ−d=2 Hj j−1=2N−1
α þ 1

4
d2∫tr2 HGPu

yð Þ
n o

dy ð10Þ

where tr{⋅} is the trace, GPu
yð Þ is the Hessian of the unknown prob-

ability Pu(y) and Nα = (∑i = 1
N αi

2)−1.
We can use AMISE to determine the optimal bandwidth H (accord-

ing to the observable data) of the kernel used in P̂KDE yð Þ to estimate
Pu(y). Defining H in terms of scale ξ and structure F as H = ξ2F then
the AMISE measure is minimized at

ξopt ¼ d 4πð Þd=2Nα jFj1=2R Pu; Fð Þ
h i−1= dþ4ð Þ

; ð11Þ

with

R Pu; Fð Þ ¼ ∫tr2 FGPu
yð Þ

n o
dy; ð12Þ

and since Pu is unknown, R(Pu, F) is approximated as

R̂ Pu; F;Gð Þ ¼ ∫tr FGPG
yð Þgtr FGPs

yð Þg;
nn

ð13Þ

where Ps is the sample and PG is the so-called pilot distribution with co-
variance matrix Σgj = G + Σsj and G is the pilot bandwidth estimated
using the multivariate normal scale rule (Duong and Hazelton, 2003;
Wand and Jones, 1994) as

G ¼ Σ̂smp
4

dþ 2ð ÞNα

� �2= dþ4ð Þ
ð14Þ
SE probabilistic variable selection mask (best seen in color).
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Fig. 2. Diagram showing the three main stages of the method: variable selection, manifold learning and population modeling (best seen in color).
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where Σ̂smp is the estimated covariance from all available samples. The
structure F of the bandwidth H is approximated using the covariance
matrix of the samples as F ¼ Σ̂smp (Wand and Jones, 1994).

If the number of samples N is large and is made available to the
population density estimation procedure described above, then the
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Fig. 3. Boxplot of results from a grid search of the soft margin parameter C in linear SVM. Instan
The middle red line, box, whiskers and crosses represent the median, the 75th percentile, the
Gaussian mixture model defined by P̂KDE yð Þ can be unnecessarily com-
plex and over fitted to the data. Hence a model compression step can
be used to reduce the model components (Kristan et al., 2011) from N
to M, where M b N, as long as the compressed distribution bP0

KDE yð Þ
is within a certain Helliger distance (Pollard, 2002). This means that if
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 margin C 

tuning in sMCI vs pMCI

(paradigm B)

ces are an average of the accuracies obtained across 50manifolds (with 1–50 dimensions).
extremes and the outliers, respectively. 100 runs done for every value of C.
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Table 4
Classification results on the manifold built using the learned ROI (Learnedmask SVM and
LearnedmaskMRI-DSS) and on amanifold built from the hippocampalmask used inWolz
et al. (2011) (Hippocampal mask SVM and Hippocampal mask MRI-DSS). In all cases re-
sults for classifiers A and B are presented separated by “/”. Best results shown in bold num-
bers.

AD vs. CN pMCI vs. sMCI

ACC SEN SPE ACC SEN SPE

Learned mask SVM 84/86 84/86 85/85 69/71 77/75 60/67
Learned mask MRI-DSS 81/81 80/83 82/82 66/67 72/71 59/64
Hippocampal mask SVM 81/81 79/83 82/79 60/66 67/70 53/61
Hippocampal mask MRI-DSS 76/78 82/87 71/69 58/61 53/60 63/62
No manifold learning SVM 84/75 91/76 77/73 61/62 61/69 61/55
Elastic net 81/81 85/85 76/77 63/65 64/64 62/64
Elastic net + β stb. sel. 81/81 86/86 76/77 60/65 64/66 58/64

pMCI vs. CN

ACC SEN SPE

Learned mask SVM 82/81 81/86 83/76
Learned mask MRI-DSS 77/78 72/85 82/70
Hippocampal mask SVM 76/75 75/71 77/79
Hippocampal mask MRI-DSS 70/69 63/55 77/82
No manifold learning SVM 68/66 77/77 59/55
Elastic net 79/74 81/76 76/71
Elastic net + β stb. sel. 79/74 82/77 76/71
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K ∈ N sample points are close to each other, then their corresponding
Gaussians in themixturemodel can be combined into a single Gaussian
with a weight α̂i ¼ ∑K

j¼1α j.

MRI disease-state-score

We propose to model different stages in the disease trajectory using
the probabilistic distribution of different classes that can be estimated
from different class populations (Population distribution modeling sec-
tion) and from the samples' coordinates in the low-dimensional mani-
fold (Manifold learning section). We then construct a probabilistic
scoring function that determines the class likelihood in the low-
dimensional space, and hence, model the disease trajectory as a contin-
uous variable. Thus

f yð Þ ¼ PB yð Þ−PA yð Þ

f yð Þ ¼
XNB

v
αBiϕΣBi

yð Þ−
XNA

i¼1

αAiϕΣAi
yð Þ; ð15Þ

where PA and PB are the estimated probability distributions of classes A
and B, respectively,α∗i andΣ∗i are theweights and covariance associated
with the ith element in the Gaussian mixture model and NA and NB are
the number of components in each model.

The difference between class probability functions (mixture of
Gaussians) evaluated at a test point y (the unseen or test subject em-
bedded in the manifold), can be written as the logarithm of their divi-
sion. Normalizing the difference (logarithmic division) and rewriting
this using a sigmoid (logistic) function we obtain the following scoring
function:

S yð Þ ¼ 2
1þ PA yð Þ

PB yð Þ

 !
−1: ð16Þ

Here S(y) ranges from −1 to 1, and the sign represents the class
while the absolute value indicates the class likelihood probability. The
continuous nature of the proposed metric provides a richer variable
that can be used to define “heat” maps in the manifold associated
with a particular class, e.g. AD, CN, sMCI or pMCI. This could be used
to define high certainty regions in the manifold where predictions can
be made with a high degree of confidence. Additionally, the “heat”
maps provide a color-coded visualization tool of a patient's current
“state” for clinicians. Restricting classification/prediction to high confi-
dence areas can be used for patient enrollment in clinical trials, e.g. it
might be of particular interest to find subjects that with a certain
(high) degree of confidence will convert from MCI to AD in a certain
amount of time.

Results

Using sparse regression (elastic net) as described in the Elastic net
section, we obtain a probabilistic mask of the relevance of each variable
or voxel in the image. This mask relates the importance of each voxel in
a regression that models the MMSE score. MMSE scores were used
Table 3
Framework parameter setting summary. A parameter setting of automatic means that it was s
ported and set means it was empirically chosen.

Stage Variable Parameter

Variable selection λ L1 weight
τ Threshold

Manifold learning d Dimensionality
k Nearest neighbors

Population modeling G Kernel bandwidth
SVM C Soft margin

κ Kernel
instead of the disease label since they offer amore continuous represen-
tation of disease progression. Three orthogonal 2D views of the probabi-
listic mask obtained from the elastic net algorithm can be seen in Fig. 1.
In this image it can be observed that the variables with higher probabil-
ity cluster around the hippocampus, which is a well known marker of
AD. Thresholding this mask at a certain probability of a voxel being
“picked” by the sparse regression, produces an ROI. In our experiments
we found empirically that a 10% threshold produces the best results,
which yields a mask of 1331 voxels. This parameter can be also tuned
using cross validation.

Using the obtained mask to define the ROI in unseen labeled and un-
labeled images we learn a low-dimensional representation of these ROIs
using Laplacian eigenmaps (see Laplacian eigenmaps section) in a similar
way as Belkin and Niyogi (2004), with cross-correlation as a similarity
metric between subjects' ROIs. Then finally, the population distribution
modeling was carried out directly on the learned subspace using the
methodology described in the Population distribution modeling section.
An overview diagram of the methods main steps is shown in Fig. 2.

In order tomeasure the different aspects of the proposedmethodol-
ogy, different experiments were designed. Although the proposed MRI
Disease State Score (MRI-DSS) metric allows for a continuous disease
modeling, experiments based on classification tasks are presented in
order to allow easy comparison to previous work. In the following sec-
tions we report the classification performance for the clinically relevant
class separations of the ADNI and ADNI-GO datasets. Additionally, the
value of performing variable selection as well as manifold learning is il-
lustrated by showing an overall improved classification accuracy. We
also showaccurateMMSE score prediction using theproposedMRI-DSS.
et without any user input, explored means that the best result in a range of settings is re-

Value Setting Data

1000 Set 315 ADNI subjects
10% Set
1–50 Explored 511 ADNI subjects
20 Set
– Automatic
1 Set
Linear Set



Table 5
p-Values from McNemar's χ2 tests between classifier paradigms A and B.

AD vs. CN pMCI vs. sMCI pMCI vs. CN

Learned mask SVM p b 0.001 p = 0.051 p = 0.172
Learned mask MRI-DSS p = 0.488 p = 0.015 p b 0.001
Hippocampal mask SVM p = 0.852 p b 0.001 p = 0.474
Hippocampal mask MRI-DSS p = 0.557 p = 0.059 p b 0.001
No manifold learning SVM p b 0.001 p = 0.051 p = 0.027
Elastic net p = 0.233 p = 0.001 p = 0.011
Elastic net + β stb. sel. p = 0.915 p b 0.001 p b 0.001

Probability estimates: AD−PMCI red, CN−SMCI blue
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Fig. 5. 2D view of manifold's probability estimations for the ADNI dataset (best seen in
color).
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ADNI classification

Classification tasks were carried out in the manifold subspace
learned from the selected variables according to the Relevant variable
selection section and the hippocampal mask from Wolz et al. (2012),
aswell as outside themanifold to show the added value of this step. Ad-
ditionally, the regression model obtained from the variable selection
step was also used for classification. Three types of classifiers were ex-
plored in this work, an SVM (Cortes and Vapnik, 1995), a threshold on
the proposed probabilistic distribution (MRI-DSS) and a thresholded
elastic net regression.

SVM uses training data to find an optimal separating hyperplane be-
tween two subject classes in an n-dimensional feature space. Using this
n-dimensional hyperplane, test subjects are classified according to their
relative position in themanifold. In thisworkwe used SVMwith a linear
kernel function, soft-margin constant C = 1 and quadratic programing
optimization. Fine tuning the soft-margin constant provides slightly
better results, however results are generally robust for a very large
range of values (1e−6 b C b 1e5). Fig. 3 shows a boxplot of a grid search
of C for sMCI vs. pMCI classification using a type B classifier. Here, in-
stances are an average of the accuracies obtained in manifolds with 1–
50 dimensions, while the red line, box, whiskers and crosses represent
the median, the 75th percentile, the extremes and the outliers, respec-
tively, of 100 runs were done for every value of C. Preliminary experi-
ments showed that using non-linear kernels provided little to no
−0.03 −0.02 −0.01 0
−0.04
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−0.01

0
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2D manifold representa

Fig. 4. 2D view of estimated manifold th
improvement, while adding more tuning parameters to the framework.
Results for type A classifiers as well as other classification tasks show
similar robustness to the setting of C.

The probabilistic distribution threshold was obtained by combining
the estimated distribution from both classes and normalizing values to
form a sigmoid shaped MRI-DSS function. Values range from −1 to 1
and the absolute value indicates class likelihood probability. Thresholding
this scoring function, Eq. (15) at zero allows us to binarize the scores in
order to obtain a classification.

We used both methods to measure classification accuracy (ACC),
sensitivity (SEN) and specificity (SPE). These metrics are defined using
the true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) rates. These in turn represent the correctly identified,
0.01 0.02 0.03

tion: AD red, CN blue

e ADNI dataset (best seen in color).



Table 6
Classification results using selected variable mask from ADNI to learn manifold of ADNI-
GO at baseline.

eMCI vs. CN

ACC SEN SPE p-Value (MANOVA/Cramer)

SVM 61 76 46 0.0003/0.001
MRI-DSS 61 66 56 0.0002/0.004

Table 8
Classification using selected variable mask from ADNI to learn manifold of ADNI-GO at
baseline.

eMCI vs. CN

ACC SEN SPE p-value (MANOVA/Cramer)

SVM 65 61 69 b0.0001/b0.0001
MRI-DSS 61 50 72 b0.0001/b0.0001
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correctly rejected, incorrectly identified and incorrectly rejected
instances, respectively. The ACC, SEN and SPE are formulated as:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

;

SEN ¼ TP
TPþ FN

;

SPE ¼ TN
TNþ FP

:

ð17Þ

The results for the comparisons AD vs. CN, pMCI vs. sMCI and pMCI
vs. CN, using the ADNI dataset (see Table 1) are presented in Table 4. Re-
sults for the eMCI vs. CN, using the ADNI-GO dataset (see Table 2) are
shown in Table 6. In all experiments we used a leave 10% out testing
strategy, and the results presented reflect the average over 1000 runs.

Considering a disease progression that follows a trajectory from CN
to MCI to AD, and assuming that sMCI subjects tend to be more like
CN like, while at the same time pMCI subjects tend to be more AD
like, grouping them together in order to boost the classifier training
data can be justified. By doing so we can train a classifier or probability
distribution as a class that includes CN and sMCI, and another group that
includes pMCI and AD. From this point these two classification para-
digms will be referred to as classifier A and classifier B, respectively.

The parameters for the Laplacian eigenmaps algorithmwere set em-
pirically based on previous experience (Guerrero et al., 2011; Wolz
et al., 2011, 2012). The similarity measure of choice was cross-
correlation, since these providedmore robust results in previous exper-
iments, with the added benefit that we do not need to convert distances
to similarities, hence, avoiding the use of the heat kernel and eliminat-
ing the choice of the associated bandwidth parameter. The nearest
neighbors used to build the similarity graph were set to 20, although
similar results are obtained for values between 10 and 25. Finally, for
every case the dimensionality of the manifold was explored from 1 to
50 dimensions, the best values are reported. We also found that the re-
sults are robust against the choice of these parameters, with stable SVM
classification results in manifold dimensionalities from 10 to 30, and for
the case of MRI-DSS the best performing dimensionalities are consis-
tently in the 1–10 range, this is due to the relatively lownumber of sam-
ples used to learn the higher dimension probabilistic models. Table 3
gives a summary of theparameters involved in theproposed framework
along with their setting as well as the data used to set them.

Table 4 shows classification results on themanifold learned from the
selected variables, which in the table are referred to as learned mask
SVM and learnedmaskMRI-DSS. It can be seen that the results are com-
parable to the state-of-the-art. In general, results indicate that SVMper-
forms on average better than MRI-DSS, however, it must be noted that
the proposed metric tries to model a more complex variable (the
whole population distribution) with the added benefit of providing
good visualization capabilities of the results that can potentially be
used to show progression from a “low-risk” zone to a “mild” or “high-
Table 7
Classification results using hippocampal mask to learn manifold of ADNI-GO at baseline.

eMCI vs. CN

ACC SEN SPE p-Value (MANOVA/Cramer)

SVM 57 59 54 0.0041/0.004
MRI-DSS 57 54 59 0.0019/b0.0001
risk” zone in the manifold. In order to assess the value of doing variable
selection, as opposed to using a predefined structural mask, we repeat-
ed the experiments using the same structural mask used in Wolz et al.
(2011), which defines a ROI of around 30,000 voxels around the hippo-
campus. The results of classification on the manifold learned based on
this ROI and in the same manner as before are also presented in
Table 4 (Hippocampal mask SVM and Hippocampal mask MRI-DSS). It
can be seen that in every case using the learnedmask providesmore ac-
curate results.

Another important part of the proposed methodology is the use of
variable selection andmanifold learning.We have evaluated the impor-
tance of this by performing a comparison of classifiers trained and test-
ed on the subjects withoutmanifold learning aswell as using the sparse
regression model used in the variable selection step to directly classify
the data. The regression coefficientsβwere estimatedwith andwithout
the re-sampling technique described in the Training re-sampling sec-
tion. Results for this experiments are presented in Table 4. It can be ob-
served that for every case learning classifiers on the manifold space
outperform classifiers learned in their original space as well as using
the variable selection regression model for classification. Note that
only a classifier like SVM that is able to deal with relatively high-
dimensional data can be used for comparison.

Furthermore, we can notice that classifier paradigm B on average
produces a slightly higher accuracy than paradigm A in the AD vs. CN
and pMCI vs. sMCI classification tasks. We believe that this is due to
the added training samples, which should provide a more robust classi-
fier. However, this trend seems to reverse for the pMCI vs. CN classifica-
tion task. Following the recommendations given by Salzberg and Note
(1997), statistical significance between classifier paradigms A and B
was calculated using McNemar's χ2 test. This revealed mixed results
on the statistical significance between classifier paradigms (see
Table 5).We also note that the testing data belongs only to the specified
groups, regardless of classifier paradigm.

Fig. 4 shows a 2D visualization of the subjects using the best two ei-
genvectors of the learned subspace manifold, based on the learned ROI,
and Fig. 5 shows the probability distribution mixture of classes.

ADNI-GO classification

Experimentswere carried out using the learned ROI's from the ADNI
database to classify the ADNI-GO database performing manifold learn-
ing and population modeling, see Table 2. Preprocessing was carried
out in the same fashion as with ADNI. The results are presented in
Tables 6, 7, and 8. Table 6 presents the results obtained using the
same variable mask as for the ADNI experiments. The p-values indicate
the probability that the manifold coordinates from both classes belong
to the same distribution. Two permutation tests were used to assess
this, MANOVA and the Cramer test (Baringhaus and Franz, 2004). The
former assumes a normal distribution of the data, while the latter
does notmake such an assumption. As can be seen in Fig. 6, the normal-
ity assumption of the data distribution does not necessarily hold, none-
theless, results from both tests are presented. Table 7 presents the
results of using the hippocampal mask used in Wolz et al. (2011),
again to show the added value of the variable selection step. The results
shown in Table 8 use a ROI obtained from the variable selection proce-
dure with a threshold of 1% on the probabilistic soft mask. This
thresholding yielded 17,428 voxels, which includes more varied areas
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Fig. 6. 2D view of estimated manifold for the ADNI-GO dataset (best seen in color).
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of the brain other than the hippocampus and its vicinity. The improve-
ment in the results is hypothesized to be due to the subtle contributions
of areas of the brain other than the hippocampus. Fig. 6 shows the pop-
ulation in the manifold and Fig. 7 shows the class probability distribu-
tions. As expected, we see that the classes' probability distributions
pose more challenging questions, hence, accounting for the relatively
low classification accuracy.

MMSE prediction

An experiment was carried out to estimate MMSE scores from the
manifold. Using a linear regression model built from the MRI-DSS ob-
tained from the learned low-dimensional population distributions
yielded an average error of 1.5 points. From Table 1 we can see that in
ADNI class mean MMSE values are separated by 2.2 points for AD-MCI,
3.72 points for MCI-CN, and a smaller separation of 0.65 points exists
Probability estimates: EMCI red, CN blue
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Fig. 7. 2D viewofmanifold's probability estimations for the ADNI-GO dataset (best seen in
color).
between pMCI-sMCI mean MMSE values. Furthermore, in ADNI-GO
(Table 2) a separation between CN-eMCI mean MMSE scores of 0.7
points can be noted. When originally proposed, the MMSE (Folstein
et al., 1975)was shown to have test–re-testmean variation of 1.1 points
when the same tester did both examinationswithin a 24 hour period on
the same patients, while a slightly higher mean variation of 1.3 was ob-
served when one tester did the first test and another tester did the sec-
ond test. The prediction accuracy of the presented method is
comparable to the variability of the test itself.

Discussion

Recently the task of predicting conversion to AD has received a lot of
attention, particularly for subjects in theMCI group. Several approaches
that seek to classify the data in order to carry out this prediction task
have been proposed in the literature. The proposed method learns a
ROI using elastic net regression with a richer response variable
(MMSE scores) rather than what could be considered over-simplistic
class labels that do not fully explain the disease stage. In a database
such as ADNI the MMSE scores should be highly correlated with the
class labels sinceMMSE scores form part of the inclusion and diagnostic
criteria of the study. Another important point to note is that the pro-
posed MRI-DSS metric parameterizes the class likelihood as a continu-
ous score. This could potentially be used to define areas of high or low
diagnostic certainty. An added benefit of the proposed MRI-DSS is the
intuitive visualization of the probability maps in lower dimensional
spaces (1–3 dimensions). Classification results reported for other
methods are shown in Table 9. A direct comparison between methods
is difficult due to differences in the datasets, preprocessing steps, valida-
tion techniques, etc. However, some observations can be made about
the advantages and disadvantages of the different methods. Here we
focus the discussion studies that report results on the sMCI/pMCI classi-
fication task, as this is arguably the most clinically relevant one.

Cho et al. (2012) classified subjects based on cortical thickness fea-
tures using the same samples as Cuingnet et al. (2011), obtaining an ac-
curacy of 71% but with relatively low sensitivity of 63%. Chupin et al.
(2009) obtain a classification accuracy of 64% use hippocampal volumes
as features, they also have a low sensitivity of 60%. Coupé et al. (2012)



Table 9
Previous work results on classification of sMCI vs. pMCI.

Article Feature(s) Method Conversion period

Cho et al. (2012) Cortex Cortical thickness 0–18 months
Chupin et al. (2009) Hip. and amygdalae Atlas based 0–18 months
Coupé et al. (2012) Hip. and entorhinal cortex Atlas based (LNOCV) 0–48 months

– Atlas based (LOOCV) –

Cuingnet et al. (2011) Hippocampus Atlas based 0–18 months
Whole brain VBM (GM) –

Cortex Cortical thickness –

Davatzikos et al. (2011) Whole brain VBM 0–36 months
Eskildsen et al. (2013) Cortex TBM, Cortical ROIs 0–48 months
Koikkalainen et al. (2011) Whole brain TBM, combination of classifiers 0–36 months
Misra et al. (2009) Whole brain VBM, ROIs 0–36 months
Querbes et al. (2009) Cortex Cortical thickness 0–24 months
Westman et al. (2011) Cortical and subcortical Thickness and volume 0–12 months
Wolz et al. (2011) Hippocampus Atlas based 0–48 months

Whole brain TBM –

Hip. and amygdalae ROI Manifold learning –

Cortex Cortical thickness –

Combination Combination –

Zhang et al. (2012) Whole brain Whole brain ROIs 0–24 months

Article N (sMCI, pMCI) ACC (SEN/SPE) %

Cho et al. (2012) 131, 72 71 (63/76)
Chupin et al. (2009) 134, 76 64 (60/65)
Coupé et al. (2012) 238, 167 74 (73/74)

– 71 (70/71)
Cuingnet et al. (2011) 134, 76 67 (62/69)

– 71 (57/78)
– 70 (32/91)

Davatzikos et al. (2011) 170, 69 56 (95/38)
Eskildsen et al. (2013) 227, 161 68 (68/69)
Koikkalainen et al. (2011) 215, 164 72 (77/71)
Misra et al. (2009) 76, 27 82 (−/−)
Querbes et al. (2009) 50, 72 73 (75/69)
Westman et al. (2011) 256, 62 59 (74/56)
Wolz et al. (2011) 238, 167 65 (63/67)

– 64 (65/62)
– 65 (64/66)
– 56 (63/45)
– 68 (67/69)

Zhang et al. (2012) 50, 38 78 (79/78)
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use patch based segmentation to segment the hippocampuswhile at the
same time scoring them as AD-like or CN-like, to our knowledge pre-
sented the best results using all the available images from the ADNI co-
hort, with a reported accuracy of 74%, although they have a more
complex preprocessing pipeline. Cuingnet et al. (2011) evaluated vari-
ous structural methods, for which the obtained accuracies range from
57–71% with relatively low sensitivities. Davatzikos et al. (2011) used
voxel-based morphometry (VBM) to classify subjects, they achieved
an accuracy of 56% with a high sensitivity of 95% but at the cost of a
very low specificity of 38%. Eskildsen et al. (2013) used tensor based
morphometry (TBM) along with cortical ROI, also, subjects with similar
time to conversion were pooled together and tested independently
achieving high accuracies (~79%), however when the features selected
were used on the whole dataset the accuracy obtained was of 68%.
Koikkalainen et al. (2011) used TBM with a combination of classifiers
to achieve an accuracy of 72%, however it is suggested in Coupé et al.
(2012) and Eskildsen et al. (2013) that this high accuracy might be bi-
ased, since the ROI used is obtained using the training and testing
dataset.Misra et al. (2009) useVBMtofinddiscriminative ROI in the im-
ages, the highest accuracy reported is of 82%, however the low number
of subjects included in the study makes it hard to compare to other
methods. Querbes et al. (2009) used cortical thickness features within
ROI to achieve an accuracy of 73%, however, as in Koikkalainen et al.
(2011), the ROIs were learned from both training and testing dataset.
Westman et al. (2011) used predefined cortical ROI and subcortical
structure volumes to predict conversion, achieving and accuracy of
59%. Wolz et al. (2011) used a combination of methods and features
to obtain precision accuracies between 64 and 68%. Zhang et al.
(2012) use longitudinal data to learn ROI within the whole brain, the
highest accuracy reported is of 78%, however, as in Misra et al. (2009)
and Querbes et al. (2009), the small amount of subjects used in this
study makes it hard to compare with other methods.

As it can be seen, the proposed method offers comparable classifica-
tion and prediction results to other state-of-the-art techniques. One of
the main strengths of the proposed method is the ability to model the
entire population. This provides good visualization properties in the
learned manifold, which can also be used to define “hot” spots where
there is a high degree of confidence in the classification/prediction
made. However, as with any other method it has some disadvantages,
mainly the fact that the manifold and distribution have to be relearned
every time a new subject is added to the cohort. A potential pitfall of the
proposed methodology is that it requires the tuning of several parame-
ters, some of which can be automatically found or set according to em-
pirical knowledge. However, the dimensionality parameter in the work
presented here was explored within a given range, potentially limiting
the generalizability of the reported finds.

There are someunexplored avenues of research on this paper. In this
work we use a 10 mm free form deformation (FFD) (Rueckert et al.,
1999) grid, in order to remove coarse non-linear inter-subject anatom-
ical variations, while aligning smaller structures. There is no guarantee
that the selected level of deformation is optimal, or furthermore, there
is no guarantee that there exists any optimal one. Future work could
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include a multilevel variable selection step, using sparse regression to
select 4D variables, where 3 dimensionswould represent x y z voxel co-
ordinates and the fourth dimension represents the level of deformation
(i.e. from 20 to 5mm FFD control point spacing). Another avenue to ex-
plore is the incorporation of longitudinal features, variable selection
could be done also on longitudinal images in a similar fashion, and
using longitudinal images in the fourth dimension.
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