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A B S T R A C T

Functional modules in the human brain support its drive for specialization whereas brain hubs act as focal points
for information integration. Brain hubs are brain regions that have a large number of both within and between
module connections. We argue that weak connections in brain functional networks lead to misclassification of
brain regions as hubs. In order to resolve this, we propose a new measure called ambivert degree that considers
the node’s degree as well as connection weights in order to identify nodes with both high degree and high
connection weights as hubs. Using resting-state functional MRI scans from the Human Connectome Project, we
show that ambivert degree identifies brain hubs that are not only crucial but also invariable across subjects. We
hypothesize that nodal measures based on ambivert degree can be effectively used to classify patients from
healthy controls for diseases that are known to have widespread hub disruption. Using patient data for
Alzheimer’s Disease and Autism Spectrum Disorder, we show that the hubs in the patient and healthy groups are
very different for both the diseases and deep feedforward neural networks trained on nodal hub features lead to a
significantly higher classification accuracy with significantly fewer trainable weights compared to using func-
tional connectivity features. Thus, the ambivert degree improves identification of crucial brain hubs in healthy
subjects and can be used as a diagnostic feature to detect neurological diseases characterized by hub disruption.

1. Introduction

Evidence from several anatomical, physiological and neuroimaging
studies have shown that the brain is composed of functionally diverse
systems coordinating distinct inputs that result in cognition and beha-
vior (Power and Petersen, 2013). While functional specialization is a
key organization principle in the brain, there is increasing evidence of
significant dynamic integration among functional regions in order to
perform cognitive tasks as diverse as language perception
(Friederici and Gierhan, 2013) and vision (Behrmann and Plaut, 2013).
This integration or “coming together” of specialized brain regions de-
pends on information flow between neurons in these regions, which is
coordinated by a specific set of regions. These integrative or ‘hub’ re-
gions together form a backbone for information transmission in the
brain (Senden et al., 2018).

The functional brain organization is usually modeled using net-
works where brain regions consisting of a population of neurons are
represented by nodes and the functional connections (as given by
functional correlations) between brain regions are represented as edges
with weights. Previous studies indicate that human brain connectome
incorporates properties that promote functional specialization with a
modular structure (for review refer to Sporns and Betzel, 2016) and
efficient communication by virtue of network hubs (for review refer to
van den Heuvel and Sporns, 2013). A recent study found that hubs are
differentiated into three classes based on their connectivity to different
functional modules (Gordon et al., 2018) and were shown to modulate
different tasks. The central role of hubs in information processing
makes their identification an important research problem.

Brain hubs were initially characterized by the nodes having large
numbers of connections to other networks, that is, nodes having high
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nodal degrees (Buckner et al., 2009; Cole et al., 2010; Tomasi and
Volkow, 2011). However, later studies argued that since the brain
modules had heterogeneous sizes and nodes had high within-module
connections, simply taking the nodal degree would lead to giving undue
weightage to nodes from large modules (usually the default mode
network) (Power et al., 2013). Therefore, the nodes with high degree in
comparison to the nodes in the same module (Power et al., 2013) were
considered crucial for intra-modular communication and were termed
as modular hubs. Conversely, the participation coefficient, a measure
that quantifies the extent a node connects to other modules was pro-
posed to detect heteromodal nodes facilitating inter-modular commu-
nication known as connector hubs (Gordon et al., 2018; Nicolini et al.,
2017; Power et al., 2013). The weighted average of scores derived from
the two measures identified nodes with high intra-modular degree and
heterogeneous connections often termed as network hubs.

Studies involving brain functional networks involve network spar-
sification steps that remove weak brain functional connections that are
affected by experimental noise (van den Heuvel and Fornito, 2014).
However, this affects not only the number of weak connections in the
network but also the network’s underlying modular structure
(Bordier et al., 2017). This can in turn affect the detection of network
hubs because (i) disruption of brain modular structure leads to spurious
detection of hubs; and (ii) a node may possess a very large number of
weak connections and still be classified as a hub whereas a node with
fewer but stronger connections may be ignored. In order to account for
(i), we use the thresholding scheme proposed by Bordier et al. (2017),
which preserves the network’s modular structure; and (ii), we propose a
new measure called ambivert degree that considers both the nodal degree
and the strength of connections. We also consider an extension of the
participation coefficient, called gateway coefficient that considers in-
formation about the importance of a node’s neighbors in their module
and the uniqueness of the node’s inter-modular connections
(Vargas and Wahl, 2014). Considering both of these measures, we
provide a new definition for brain functional hubs and study their im-
portance in processing information in resting state brain functional
networks of the 589 subjects from the HCP. By considering the effect of
inducing artificial lesions in the brain functional networks, we found
that the ambivert degree gives the most crucial modular hubs and in-
stead of a node’s intra-modular degree (as previously thought), the
ambivert degree combined with participation coefficient gives the most
crucial network hubs.

Hubs are known to support brain information processing and al-
terations in the functional connectivity of hubs have global effect on
brain network and function (Fornito et al., 2015; Gratton et al., 2012).
Previous research has shown that various neurological ailments such as
Alzheimer’s disease (AD) (Guillon et al., 2017), Schizophrenia (Bordier
et al., 2018; Rubinov et al., 2013), and Autism Spectrum Disorder (ASD)
(Itahashi et al., 2014) affect brain functional hubs disproportionately
and more than the other brain regions. These disruptions reflected in
hub connectivity could be a result of the high information processing at
the hub regions, causing high baseline activity and metabolic require-
ments of hub regions (Liang et al., 2013; Tomasi et al., 2013) leaving
the hub neurons vulnerable to metabolic stress or degeration due to
high activity (Saxena and Caroni, 2011). In case of ASD, a develop-
mental disorder characterized by a range of heterogeneous symptoms
with varying degrees of severity, multiple resting state functional MRI
(rs-fMRI) studies have found widespread impairment in intrinsic func-
tional connectivity (for a review, see Hull et al., 2017), especially in the
hubs (Itahashi et al., 2014). Similarly, research suggests that highly
active heteromodal regions are preferentially affected in Alzheimer’s
disease (AD). Buckner et al. (2009) used node degree centrality to de-
fine brain hubs and demonstrated that these hubs of healthy human
brains overlap with regions showing higher Aβ deposition in patients
with AD. de Haan et al. (2012) found that excessive neuronal activity
that led to degeneration provides a possible explanation for hub vul-
nerability in AD. The Amyloid-β (Aβ) cascade hypothesis suggests that

Aβ have a toxic effect on adjacent neurons and synapses, disrupting
their normal functioning (Sheline and Raichle, 2013) in AD.

Based on prior studies, we hypothesized that nodal hub scores can
be used to classify AD and ASD subjects from their respective healthy
subject cohort. We apply our methods on rs-fMRI data for AD and ASD
subjects to demonstrate how brain hubs can aid in diagnosis of brain
diseases. We chose these AD and ASD for our analysis because of ex-
isting evidences of hub disruptions and availability of large sets of data
for deep neural network modeling. We detected brain hubs from the
functional scans and found that the brain hubs of AD and ASD patients
were different from cognitively normal controls. Using both the nodal
hub scores and functional connectivity as input features, we trained
neural networks and SVM classifiers, and show that using hub scores
gave a significantly higher classification accuracy with a much lower
number of trainable weights.

2. Methods

Let =G W(Ω, ) denote the functional brain network (connectome)
where Ω denotes the set of brain regions of interest (ROI) or nodes and

=W w{ }ij is the matrix of edge weights of the network with wi, j de-
noting the weight between brain ROI i and j, and i, j ∈ Ω.

2.1. Detecting brain functional modules

While some previous studies detected brain modules and hubs by
using subject averaged functional connectivity matrix (Bertolero et al.,
2017; Nicolini et al., 2017; Power et al., 2013), there are multiple
studies pointing out varied individual differences in the functional
connectome (Gordon et al., 2017). Therefore, inter-subject differences
in functional architecture need to be considered while detecting func-
tional modules (and subsequently network hubs) and combined group
results from all the subjects need to be reported (Gordon et al., 2018).
We, therefore, use the Iterative Consensus Spectral Clustering (ICSC)
algorithm (Gupta and Rajapakse, 2019) that maximizes the similarity
between group-level and subject-level modules, iterativly making them
more similar.

The ICSC algorithm finds a modularization that groups of brain ROI
into modules where connectivity among ROIs within modules are
higher than connectivity with other ROIs. The ICSC minimizes the
normalized-cut objective function to detect subject-level modulariza-
tions Wk of subject k. The group-level modularization � is obtained by
performing consensus clustering on the subject-level modules
(Lancichinetti and Fortunato, 2012). The ICSC algorithm then greedily
refines the subject-level modularizations such that they are most similar
to the group-level modularization by maximizing

=S S Ssim( , )k k (1)

where the Adjusted Mutual Information is used to measure similarity
between modularizations. The newly obtained subject-level modular-
izations are used to derive group-level modularizations using consensus
clustering and so on, till there is no change in the similarity cost
function given by (1).

Upon obtaining subject-level modularizations from ICSC, modular
labels assigned to nodes for each subject were aligned with those at the
group-level modularization. We align the subject-level modules, � ,k

with the group-level modules � by using the Jaccard Index (JI)
matching scheme (Lancichinetti and Fortunato, 2012). A module with
index b in �k is assigned to a group-level module label a if for both the
group-level module a,

�
> ∈ ∖JI a b JI a c( , ) ( , )c bk and subject-level module

b, �> ∈ ∖JI b a JI b c( , ) ( , )c b.

2.2. Thresholding connections

While our modularization method considers weighted un-
thresholded subject-level networks, weak connections that are most
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influenced by experimental noise (Birn, 2012; van den Heuvel and
Fornito, 2014) need to be removed for further analysis. Researchers
often select an a priori density for the network and compute a threshold
that retains the target density of edges (Bertolero et al., 2017; Gordon
et al., 2018; Power et al., 2013). Analyses over a range of densities have
been performed to show the stability of derived topological features
over a range of thresholds. However, weak correlations could still
contain significant functional information, and therefore it is important
to use methods that identify the optimal trade-off between the in-
formation gain by the removal of noisy edges and the loss due to re-
moval of potentially useful weak edges. Bordier et al. (2017) used
synthetic networks with known modular structure and noise similar to
brain functional networks and showed that percolation analysis
(Gallos et al., 2012), retains the minimum number of edges to keep the
network connected while maximizing information on brain functional
networks’modular structure. Also, fixing the same edge density in brain
functional networks of subject-groups may lead to inclusion of weak
and spurious connections in a subject-group with disrupted functional
connectivity and omission of strong connections in another subject-
group. The latter becomes especially significant in our case since we
perform analysis at the subject-level rather than at a group level. We
perform percolation analysis on each subject’s functional network to
determine the optimal threshold t for weights and assign zero weights
for connections with weights less than t.

2.3. Modular hubs

The brain regions most critical for information processing within a
brain module are known as modular hubs. While previous studies have
assumed that modular hubs are defined by their intra-modular degree,
we wanted to empirically find modular hubs.

2.3.1. Intra-modular degree
The nodal degree of a node i ∈ Ω in the functional connectome is

defined as

∑=
∈

θ wi
j

ij
Ω (2)

where functional connectivity matrix = ∈W w{ }ij i j, Ω. The number of
connections is given by = ∑ >∈n w1( 0)i j ijΩ . The nodal degree θi and
the number of connections ni represent a node’s global network prop-
erty.

With respect to a set of nodes in S, the degree θi,S for node i is given
by:

∑=
∈

θ wi S
j S

ij,
(3)

and = ∑ >∈n w1( 0),i S j S ij, where 1( · ) is the indicator function. The
nodes in the set S can represent a module from the network or all the
nodes in the network. When =S Ω. When the node i ∈ S, we refer to θi,S
as the intra-modular degree. Similarly, the number of intra-modular
connections to the node i ∈ S is given by = ∑ >∈n w1( 0)i S j S ij, .

2.3.2. Ambivert degree
Nodes with high intra-modular degree are characterized by a large

number of weak or strong intra-modular weights (determined by cor-
relations of brain activations), or a combination of both. Although,
nodes with a large number of weak correlations of brain activations do
not convey meaningful information, under the existing techniques,
these nodes are also classified as modular hubs. These nodes can be
thought to be extroverts in social networks, i.e., nodes with a large
number of weak ties to other nodes. We, on the other hand, are inter-
ested in ambiverts, i.e., nodes that not only connect with a sufficiently
large number of nodes but also share meaningful relationships with
them. For this purpose, we propose a measure called ambivert degree
that identifies high intra-modular degree nodes that are synchronized

with multiple nodes in the same module. The ambivert degree of node
i ∈ S in module S is defined as

⎜ ⎟= ⎛
⎝

⎞
⎠

α θ
θ
ni S i S

i S

i S
, ,

,

, (4)

The ambivert degree is the intramodular degree weighted by average
weight per connection.

2.3.3. Betweenness centrality
Besides the intra-modular degree, we also compute the intra-mod-

ular betweenness centrality βi,S of a node i in module S to find nodes that
lie on the shortest paths for information processing (Freeman, 1977):

∑=
∈

β
σ i

σ
( )

i S
i j k S

jk

jk
,

, , (5)

where σjk measures the number of shortest paths between j and k and
σjk(i) measures the number of shortest paths between j and k, which
pass through node i.

2.3.4. Detection of modular hubs
Modular hubs are characterised by nodes having significantly high

intra-modular connections and detected by using intra-modular degree,
ambivert degree, or betweenness centrality. We compute the z-score
ζ(mi) by considering a univariate normal distribution of different
modular hub measures mi ∈ {θi,S, αi,S, βi,S} for a node i ∈ S over the
module S. The modular hubs are characterized by the nodes that have
significantly higher hub measures than the other nodes in the module.

2.4. Connector hubs

Modular hubs are central to the information processing within their
respective modules. However, hubs not only play a role in intra-mod-
ular information processing but also act as bridges or connectors for
inter-modular information transmission. The connector hubs refer to the
nodes that represent heteromodal brain regions that participate in in-
formation processing between different functional modules.
Traditionally, the participation coefficient has been used to measure the
role of a node as a connector hub. Here we explore the participation
coefficient as well as the gateway coefficient, a recent extension of the
participation coefficient, to identify connector hubs.

2.4.1. Participation coefficient
Connector hubs are quantitatively identified using the participation

coefficient pi of the node i (Guimera and Amaral, 2005):

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠

p
θ
θ

1i
S

i S

i

,
2

(6)

2.4.2. Gateway coefficient
Although the participation coefficient has been widely used to

characterize connector hubs, it discounts information about the im-
portance of the neighbors of a node and the exclusivity of the node’s
connections to other modules. For example, two nodes can have the
same number of intra-modular connections and participation coeffi-
cient, but one of them may be more important since it may have the
only connection between two modules, or its neighbors in a module
could be more important in terms of degree or betweenness. This was
rectified by the gateway coefficient (Vargas and Wahl, 2014) that renders
an importance score to connections of a node to each module. The
gateway coefficient of a node is given by:

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠

−q
θ
θ

γ γ1 (1 )i
S

i S

i
i S i S

intra,
2

, ,
2

(7)

where γi,S measures the fraction of the edges of node i to the module S
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relative to other nodes in node i’s module; and γi S
intra
, measures the im-

portance of nodes that are adjacent to node i. γi,S and γi S
intra
, are given by:

=
∑

′ ∈ ′
γ

θ
θmaxi S

i S

S i j S j S
,

,

, , (8)

=
∑ >

∑
∈

′ ∈ ′ ′
γ

w β

β

1( 0)

maxi S
intra j S ij j S

S k S k S
,

,

, (9)

2.5. Network hubs

The modular hubs represent brain regions that participate in intra-
modular information processing while the connector hubs represent
heteromodal regions that facilitate inter-modular information proces-
sing. Network hubs represent key brain regions that are crucial for in-
formation processing both inside and outside functional modules. In
order to identify network hubs, we propose to combine modular and
connector hub measures, giving equal weights to the node’s role in
intra-modular and inter-modular information processing.

Given a node i, we define a network hub measure xi to identify
network hubs:

= +x ζ m c( )i i i (10)

where modular hub measure mi ∈ {θi,S, αi,S, βi,S} and connector hub
measure ci ∈ {pi, qi}. We explore different combinations of modular and
connector hub measures to detect network hubs.

In order to find the network hubs in a subject, we compute xi for
each node and classify it as network hubs if xi is in the top 2.5% to 20%
percentile of nodes (Bertolero et al., 2015; Gratton et al., 2016). We
investigated the efficacy of this threshold in steps of 2.5%.

2.5.1. Inter-subject variability of hubs
The heterogeneously distributed inter-subject variability of brain

functional architecture (Gupta and Rajapakse, 2019; Mueller et al.,
2013) introduces variability to the hubs detected across subjects. Since
we detect hubs for individual subjects and report group-level hubs, it
becomes imperative to study the consistency with which a node is
classified as a network hub over subjects. We define inter-subject
variability λi of a hub node i as:

= −λ k
K

1i
i

(11)

where ki is the number of subjects where node i is classified as a hub
and K is the total number of subjects in the dataset.

2.5.2. Artificial lesioning: efficacy of hubs
The hubs detected using different hub measures represent key brain

regions with specific roles in brain information processing, and in order
to understand their effects in detecting hubs at the modular and net-
work levels, we simulated brain lesions by removal of different cate-
gories of hubs and examining the effects on the network path length.
The path length of a network represents the efficiency of information
transmission of the network where networks with long path length are
inefficient in terms of information transmission. Given the shortest path
length dij between nodes i and j, the path length lS of a module S is given
by:

∑=
− ∈ ′ ≠

l
n n

d1
( 1)S

i j S i j
ij

, , (12)

If the module S is the brain network G, we refer to the path length as the
global network path length and if the network is a brain module, we
refer to the path length as modular path length.

We compute the change in path lengths after removal of hubs at
both the network and modular level to understand the effect of removal
of hubs on the network’s path length. For comparison between different

hubs, we used Tukey’s paired t-test. Since there is no consensus on what
percentage of nodes to denote as hubs, we repeat the hub removal for
different percentages of nodes.

2.6. Detecting AD and ASD using ambivert degree and participation
coefficient of nodes as features

Previous studies have shown evidence of hub disruption in several
brain diseases including AD Guillon et al. (2017) and ASD
Itahashi et al. (2014). We hypothesized that the large-scale disruption
of hubs and alterations in hub measures in these diseases can render
hub measures as effective biomarkers for these diseases. In order to
investigate this, we obtained data of patients suffering from AD and
ASD (along with their healthy age matched controls) and used deep
neural networks (DNN) to classify patients and healthy subjects by
using hub measures of functional nodes as input features. We compared
classification performances achieved using nodal hub measures with
those obtained using raw functional connectivity weights as features.

2.6.1. AD dataset
For AD, we used the ADNI dataset (URL: http://adni.loni.usc.edu/),

which is the largest publicly available dataset for AD. Functional and
structural MRI data were collected according to the ADNI acquisition
protocol using a Philips 3 Tesla scanner. The rs-fMRI data for each
subject consisted of 140 or 200 functional volumes, acquired with a
repetition time (TR) = 3000 ms; echo time (TE) = 30 ms; flip angle =
80∘; slice thickness = 3.313 mm; and 48 slices. Results included in this
manuscript come from data pre-processed using fMRIPprep
(Esteban et al., 2018) (details can be found in the appendix). We ob-
tained 88 subjects of which 49 were cognitively normal (CN, age: 76.6
± 5.5) and 29 subjects suffering from AD (age: 75.4 ± 8.2). Subjects
classified as AD have Mini-Mental State Examination (MMSE) scores
between 15.7 and 26.9, a Clinical Dementia Rating (CDR) between 0.5
and 3.0 and fulfilled the criteria for AD laid down by National Institute
of Neurological and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association (NINCDS/
ADRDA). The CN subjects did not suffer from depression, cognitive
impairment, or dementia, and had MMSE scores between 23.8 and 30.0
and a CDR of 0.0 and 1.0.

2.6.2. ASD dataset
For ASD, we used rs-fMRI data from the NYU Langone Medical

Center available at Autism Brain Imaging Data Exchange (ABIDE, URL:
http://fcon_1000.projects.nitrc.org/indi/abide/ (Di Martino et al.,
2014), a consortium of brain imaging data for sharing within the sci-
entific community. Specifically, rs-fMRI data of 73 ASD (age 13.9 ±
6.3) and 88 CN (age 15.8 ± 6.3) subjects were used, removing
subjects with mean framewise displacement greater than 0.2mm. The
data downloaded was preprocessed using the C-PAC pipeline from the
Preprocessed Connectomes Project. The preprocessing of the fMRI data
includes correction of slice timing, realignment of motion, voxel in-
tensity normalization, nuisance signal removal and band-pass filtering.

2.6.3. Deep neural networks for disease classification
We compared classification performances with nodal hub measures

and raw functional connectivity features. Considering a DNN with L
layers, the output yl of the hidden layer l ≠ L is given by:

= +−y f V y b( )l l
T

l l1 (13)

where Vl and bl denote the weights and biases of the layer l and f is the
rectified linear unit (ReLU) activation function. For the input layer,

=y xi0 .
The output layer =l L is a softmax layer and the output prob-

abilities y of the input x belonging to patient and healthy classes is
given by
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= +−y V y bsoftmax( ).L
T

L L1 (14)

The class label is assigned to the class with the highest probability.
We used a two-class classifier for patients and healthy subjects. The

weights and biases of the network are learnt using mini-batch stochastic
gradient descent learning that minimises the cross-entropy cost. The
networks were implemented in Python using the tensorflow library2.

3. Results

3.1. HCP dataset

The dataset included 589 healthy adults (males = 278, mean age =
28.33 years, range = 22 to 37 years) from the S900 release of the HCP
(Van Essen et al., 2012) available at https://www.humanconnectome.
org. All HCP rs-fMRI data were acquired on a Siemens Skyra 3T scanner
at the Washington University. We used preprocessed data that had
undergone image reconstruction with the R227 pipeline
Glasser et al. (2013). In addition, 24 head motion parameters were
regressed out of the time series. The functional connectivity of the brain
was calculated as Pearson correlations of fMRI time-series on the 264
functionally diverse ROI identified in the Power atlas (Power et al.,
2011).

3.2. Brain functional modules

We ran 100 independent runs of the ICSC algorithm on un-
thresholded subject matrices until convergence and selected the run
with the highest value for ICSC quality function. We used the subject-
level and group-level modularizations for this run. The ICSC algorithm
detected 19 group-level modules with the sizes of modules ranging from
6 to 18 (see Fig. 1), which correspond to previously defined functional
networks of the human resting-state brain (Heine et al., 2012; Power
et al., 2011; Sun et al., 2016; Yeo et al., 2011). Using the Jaccard Index
matching scheme, we assigned labels to subject-level modules and
computed modular hub and network hub measures for network nodes.

3.3. Artificial lesioning to identify the most crucial modular and network
hubs

Previous studies assumed that the most crucial modular hubs are
nodes with a high intra-modular degree (Nicolini et al., 2017; Power
et al., 2013). We tested this assumption since finding nodes that were
more crucial to inter-modular communication could also lead to de-
tection of crucial nodes responsible for overall network communication.
We computed the intra-modular degree θi,S, the ambivert degree αi,S,
and the betweenness centrality βi,S for nodes in all subjects. Following
the approach of (Bertolero et al., 2015; Gratton et al., 2016) we clas-
sified different percentile of nodes as modular hubs, ranging from top
2.5% to 20% (in steps of 2.5%) and inspected the change in the modular
path length l on their removal for a thorough analysis. In order to de-
termine which hubs were the most crucial, we performed Tukey’s
paired t-test on the path length of the network after removal of the
hubs.

We performed the above set of experiments on all subjects after
performing thresholding using percolation analysis. We found that for
all the modules except the attention, motor, and salience modules, re-
moval of nodes with a high ambivert degree led to a significantly higher
increase in the modular path length (paired t-test p < 0.05) than re-
moval of nodes with high intra-modular degree or betweenness cen-
trality (refer Fig. 2). After the ambivert degree, the intra-modular de-
gree gave the most crucial modular hubs.

Since the ambivert degree gives more crucial modular hubs than

those detected by intra-modular degree and betweenness centrality, we
hypothesize that considering nodes with high ambivert degree, taking
into weaker connections into considerations, as modular hub measure
would yield more important overall brain network hubs. This hypoth-
esis for each subject’s network tested by computing network hub
measures and removed the nodes with top 20% scores (in steps of 2.5%)
and inspected the change in the network path length l upon their re-
moval.

To understand which hub measure gives the most crucial, we first
compared the path length of different types of connector hubs with the
same modular hubs. For modular hubs detected by different measures,
we found that participation coefficient had a similar or larger impact on
the path length than different gateway coefficient measures
(Supplementary Fig. S1). We, therefore, compared the effect of removal
of modular hubs only along with their participation coefficient on the
network path length since these represented the most crucial network
hubs detected using different modular hub measures (Fig. 3). We found
that the removal of network hubs detected by ambivert degree led to a
statistically significant higher increase in network path length than the
removal of hubs detected by betweenness centrality (paired t-test p-
value < −10 9), and intra-modular degree (paired t-test p-value < −10 45).

We also computed the inter-subject variability of network hubs
across subjects, detected by different modular hub measures. For a
complete analysis, we determined the hub variability across different
percentiles ranging from 80 to 97.5 (with steps of 2.5). On comparison
of variability of hubs detected by ambivert degree with betweenness
centrality and intra-modular degree, we found that ambivert degree
found the hubs that are most invariable across subjects. The difference
in inter-subject variablity was statistically significant (p-value < 0.05)
for hubs detected by betweenness centrality but insignificant for those
detected by intra-modular degree (refer Fig. 4).

We computed the top 10% hubs given by ambivert degree and
participation coefficient for each subject and determined a consensus
over all the subjects. We found that the regions in the middle and su-
perior temporal gyrus; the cuneus and precuneus; inferior parietal lobe;
superior frontal gyrus, precentral and postcentral gyrus, and posterior
cingulate were most frequently identified by ambivert degree combined
with participation coefficient (Fig. 5).

3.4. Disruption of network hubs in AD and ASD

We ran 100 independent runs of the ICSC algorithm on un-
thresholded subject matrices for the CN and diseased subjects from the
ADNI and ABIDE datasets. We selected the run with the highest value
for the ICSC quality function for both and used the subject-level and
group-level modularizations from this run. We used the Jaccard Index
matching scheme described before and assigned labels to each subject’s
modules. We chose CN subjects taken from the respective datasets for
comparison, because the subjects are age-matched (which removes the
effect of age related changes), and the scans were collected on the same
scanner. We observed that across thresholds hubs were disrupted in
patients suffering from AD and ASD.

The top 10% ambivert participation coefficient hubs for the CN
subjects were located in the cingulate gyrus, middle temporal pole (R:
right), supplementary motor, precuneus, thalamus, calcarine (R), insula
(R), superior medial frontal (L: left) and middle frontal (L) regions,
whereas the hubs for the subjects suffering from AD were located in the
middle cingulum, calcarine, anterior cingulate (L), inferior parietal,
supplementary motor, precuneus, and fusiform gyrus. We observed that
the CN hubs located in the middle temporal (R), insula (R), lingual (L),
middle frontal (L), inferior temporal (R), thalamus (R), calcarine (R)
and precuneus were disrupted in AD subjects (Fig. 6(a)).

For the ASD subjects, the top 10% hubs detected by the ambivert
degree were located in the supplementary motor area (L and R), ante-
rior (L) and middle (R) cingulum, calcarine (L and R), angular gyrus (L),
middle occipital (L and R) and insula (L and R); whereas the hubs for2 www.tensorflow.org
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CN subjects were in supplementary motor area (L and R), frontal su-
perior medial (L and R), anterior (R) and middle (L) cingulum, pre-
cuneus (L and R), middle occipital (R), and angular gyrus (L and R). We
observed that the hubs located in the angular gyrus (R), anterior

cingulum (L), precuneus (L), and medial superior frontal (L), and
middle occipital (R) in normal subjects were disrupted in ASD subjects
(Fig. 6). For other thresholds, please refer to Supplementary Fig. S3 (for
AD) and S4 (for ASD).

Fig. 1. The group-level modules detected by the ICSC algorithm on resting-state fMRI scans from the HCP dataset. 1(a) shows the functional ROI colored according to
the modules they belong to. 1(b) the group consensus matrix with reordered node indices to bring nodes in the same module together. ROIs belonging to modules are
ordered in the descending order of module size. The modules are given names based on functional networks identified by earlier studies or on the anatomical location
of constituent regions.

Fig. 2. The changes in path lengths of brain functional modules after artificial lesioning of modular hubs detected by different hub measures. Except the motor,
attention and salience modules the removal of hubs detected by the ambivert degree led to significantly greater increase in path than the other modular hubs. The
memory retrieval module was excluded from the analysis because it was found in fewer than 50 subjects.
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We studied the regions with the highest disruption for both AD and
ASD patients in comparison to their normal counterparts. For this, we
computed the difference between the nodal hub measures (average
ambivert degree and participation coefficient) for patients and cogni-
tively normal subjects. For AD, we found that the network hubs were
disrupted for regions in the middle and medial temporal gyrus, frontal
orbital lobe, and occipital lobe (Table 1) whereas for ASD we found that
regions in the thalamus, posterior cingulate cortex, and supplementary
motor areas were most affected (Table 2).

3.5. Classification of patients and healthy controls

We hypothesize that as there is widespread hub disruption in the
patients suffering from AD and ASD, hub measures can be used as
features to train deep neural networks to classify patients and healthy
controls. We therefore used each node’s ambivert degree (z-score) and
participation coefficient as features to perform classification with deep
neural networks (DNN). The performance was also compared with a
classifier trained on functional connectivity features from each subject’s
unthresholded connectivity matrix W. Since W is symmetric, we formed
a vector of its lower triangular elements, which results in a vector of 34,
716 functional connectivity features for each subject.

For DNN, we empirically set the number of hidden layers, number of
neurons in each layer, batch size, and learning rate in the experiments.
We added dropouts to the hidden layers and imposed early stopping
criteria to prevent overfitting. For SVMs, we experimented with a range
of parameters (C ∈ {0.001, 0.01, 0.1, 1, 10}, γ ∈ {0.001, 0.01, 0.1, 1})
and different kernels. The best hyperparameters were selected by per-
forming a grid search on the average accuracy of different folds ob-
tained from 5-fold cross validation.

The performance of the 5-layer DNN along with the best SVM model
for different kernels are shown in Tables 3 and 4. All samples were
included in the test set at least once and the experiment was repeated
for 10 random seeds. We observed that the highest accuracy for both
AD and ASD were obtained for a 3 hidden layer feedforward DNN using
ambivert degree and participation coefficient as features. The SVM
models gave a consistently poor classification accuracy. The improve-
ment in classification accuracy by using hub score features in com-
parison to functional connectivity features was statistically significant
for both AD (one tailed t-test, p-value = 0.0048) and ASD (one tailed t-
test, p-value= 0.045). We also observed that usage of hub scores (that is,
the sum of ambivert degree and participation coefficient) as features led
to a significant increase in classification accuracy for ASD in compar-
ison to their individual usage, which means that both measures carry
crucial information.

4. Discussion

4.1. Considering brain functional modules while detecting network hubs

Multiple studies have shown the modular nature of brain’s func-
tional architecture with regions in the same modules having high syn-
chronization with each other and thus high corresponding functional
connectivity (Sporns and Betzel, 2016). It has also been shown that
modules in brain functional networks have heterogeneous sizes (Gupta
and Rajapakse, 2018; Nicolini and Bifone, 2016), leading to higher
degree for nodes in a large module and vice versa (Power et al., 2013).
Therefore, if only global degree of a node is considered to detect hubs,
nodes in large modules would be invariably favored (Power et al.,
2013), making it imperative to detect hubs at a modular level, con-
sidering the inherent brain functional modular structure.

A weak connection signifies weak correlation between neuronal
activity of the brain regions involved, which in turn points to low
probability of signaling and communication between neurons in the
regions. However, several studies have pointed out the importance of
considering weak functional correlations while analyzing brain func-
tional networks (Bassett et al., 2012; Cole et al., 2012; Santarnecchi
et al., 2014). Therefore, weak connections should be given due im-
portance while computing brain functional network topology. In order
to account for this, previous studies detecting modular hubs have
thresholded the networks such that only a fraction of initial connections
in the network are retained. However, thresholding strategies used in
previous studies do not consider whether the underlying modular
structure in functional networks is preserved. We took several measures
to consider the modular architecture and considered the effect of weak
connections on detection of hubs: (i) we used the ICSC algorithm which
performs modularization on unthresholded networks; (ii) while com-
puting network hub metrics, we used percolation analysis (Gallos et al.,
2012) to find the threshold which preserves modular structure in brain
functional networks (Bordier et al., 2017); and (iii) we proposed a new
measure called the ambivert degree that incorporates the average
weight per connection information to the node’s intra-modular degree.

Using the ICSC algorithm, we detected 19 group-level modules that
corresponded to well-known functional systems. On performing per-
colation analysis, we found that even the functional networks derived
from HCP subjects, which were in a narrow age range (mean 28.3 ±
3.7) and acquired on the same scanner with an average signal-to-noise
ratio of 728, have a varied percentage threshold (mean 75.6 ± 10.3).

Fig. 3. The increase in the path length after artificial lesioning of different
percentiles of network hubs determined by different modular hub measures and
their participation coefficient.

Fig. 4. The inter-subject variability of hubs detected by different hub measures
and the participation coefficient at different percentiles.
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Fig. 5. The axial and sagittal views of the top 10% of the regions identified as network hubs by ambivert degree and participation coefficient. The size and color of the
node correspond to its inter-subject variability and its functional module, respectively.

Fig. 6. The differences between brain regions that are identified as top 10% network hubs, using ambivert degree and participation coefficient in cognitively normal
(CN) and diseased subjects. For Fig. 1(a) the subjects suffer from Alzheimer’s Disease (AD); and for Fig. 6(b) the subjects suffer from Autism Spectrum Disorder. The
regions in red were identified as hubs in the diseased subjects but not in CN subjects whereas the regions in green were identified as hubs in CN subjects but not in the
diseased subjects.
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Previous studies studying subject networks (Gordon et al., 2018) did
not consider this, since they performed their analysis using the same
percentage threshold for all subjects.

4.2. Using ambivert degree to detect modular and network hubs

We compare the detection of modular hubs for within module
processing by using intra-modular degree, ambivert degree and be-
tweenness centrality. We systematically analyzed the importance of
nodes for intra-modular processing and global network processing by
performing artificial lesioning where we remove a range of hubs and
observe changes in the modular or network path length. We found that

ambivert degree gives significantly more crucial modular hubs across
different thresholds. At the global network level, we found that hubs
detected by combining ambivert degree and participation coefficients
are significantly more crucial than network hubs detected by intra-
modular degree and betweeness centrality. It is to be noted that the
gateway coefficient, an extension of the participation coefficient in-
troduced to detect better connector hubs (Vargas and Wahl, 2014) did
not have a significant impact on detecting crucial network hubs. This
means that as long as the degree and weight per connection are being
considered to derive network hubs, the participation coefficient is suf-
ficient to detect network hubs.

The variability in hub locations is a by-product of widespread inter-
subject variation prevalent in brain functional architecture. However,
since we considered fMRI scans of healthy subjects in a narrow age
range from the same scanner, the location of hubs should be relatively
stable over subjects. On studying the variability of network hubs over
multiple subjects, we found that while the hubs detected by ambivert
degree hubs were more invariable than those detected by betweenness
centrality significantly and intra-modular degree insignificantly.

Since many previous studies have reported nodes with high intra-
modular degree and participation coefficient as functional brain hubs
(Nicolini et al., 2017; Power et al., 2013), it is important to understand
the differences in anatomical locations of these hubs and the network
hubs characterized by ambivert degree and participation coefficients.
We found that regions from the middle frontal gyrus (L) and superior
temporal gyrus (R) which were classified as brain hubs using the old
scheme are dropped, and instead regions from the cuneus (L), middle
occipital gyrus (R) and inferior parietal lobe are added (Supplementary
Fig. S2). While newly detected regions are known to be primarily in-
volved in the dorsal and the ventral stream visual processing
(Milner and Goodale, 2008), recent studies have also pointed to the role
of the cuneus for internal directed attention activity in the brain during
resting state (Benedek et al., 2016; 2018).

4.3. Disruption of network hubs in AD and ASD

Numerous studies have investigated the changes in the brain func-
tional and structural networks caused by AD and Mild Cognitive
Impairment (Dai et al., 2019; Gupta et al., 2019; Meszlényi et al., 2017;
Wang et al., 2013), specifically the disruption of brain hubs (Buckner
et al., 2009; Dai et al., 2014; Mutlu et al., 2017). The changes in
modular structure with cognitive decline and AD has been extensively
studied with major alterations being reported in the default mode
network, the salience network, and the fronto-parietal control network
(Brier et al., 2012; Dickerson and Sperling, 2009; Weiler et al., 2014).
Similarly, alterations in modular structure have been reported for ASD

Table 1
Disrupted brain regions in AD. MNI coordinates of the most disrupted regions
(R: Right, L: Left) detected by ambivert degree. Hub measures are given as the
sum of ambivert degree and participation coefficient.

MNI Hub measure

x y z CN AD Anatomical Location

50 3 -24 1.39 0.67 Temporal Pole (R)
-20 36 -15 0.55 -0.06 Frontal Mid Orbital (L)
53 -48 12 0.80 0.27 Temporal Mid (R)
44 -48 -15 0.89 0.42 Fusiform (R)
8 42 -9 0.86 0.40 Rectus (R)
35 -81 0 1.07 0.65 Occipital Mid (R)
-44 27 -9 0.42 0.01 Frontal Inferior Orb (L)
23 -87 21 0.59 0.19 Occipital Superior (R)
-31 -78 -15 0.99 0.59 Occipital Inferior (L)
-50 0 -24 0.93 0.55 Temporal Mid (L)

Table 2
Disrupted brain regions in ASD. MNI coordinates of the most disrupted regions
(Right, L: Left) detected by ambivert degree. Hub measures are given as the sum
of ambivert degree and participation coefficient.

MNI Hub measure

x y z CN ASD Anatomical Location

8 -7 8 0.76 0.43 Thalamus (R)
-2 -16 13 0.63 0.31 Thalamus (L)
51 -45 22 0.37 0.68 Temporal Superior (R)
9 17 30 0.54 0.85 Cingulum Anterior (R)
-7 -72 38 1.18 0.88 Precuneus (L)
-53 -15 -9 0.50 0.80 Temporal Mid (L)
-2 10 45 1.44 1.14 Suppl Motor (L)
-1 25 30 1.09 1.38 Cingulum Anterior (L)
5 3 51 1.46 1.16 Suppl Motor (R)

Table 3
Accuracies of classification of AD and NC using deep neural networks and
nodal hub scores as features. * refers to a statistically significant result in
comparison to all the others.

Model Accuracy
Features: Ambivert degree + Part. coeff.

DNN (3 hidden layer of 50,32,10) 79.4%
SVM (Linear, C = 0.1) 66.5%

Features: (Ambivert degree, Part. coeff.)
DNN (3 hidden layers of 50,32,10) 81.2%*
SVM (Linear, C = 0.1) 64.5%

Features: Ambivert degree
DNN (3 hidden layers of 50, 20, 10) 77.5%
SVM (Linear, C = 0.1) 67.1%

Features: Part. coeff.
DNN (3 hidden layers of 40,20,10) 71.7%
SVM (Linear, C = 0.01) 62.8%

Features: Functional connectivity W
DNN (3 hidden layer sizes: 500, 50, 10) 76.7%

Table 4
Classification of ASD and CN with deep neural networks with nodal hub
measures and connectivity featues. * refers to a statistically significant result
in comparison to all the others.

Model Accuracy
Features: Ambivert degree + Part. coeff.

DNN (3 hidden layers of 40,20,10) 74.1%*
SVM (Poly, C = 0.01, =γ 0.1) 59.1%

Features: (Ambivert degree, Part. coeff.)
DNN (3 hidden neurons layers of 50,32,10) 71.6%
SVM (Poly, C = 0.001, =γ 0.1) 57.9%

Features: Ambivert degree
DNN (3 hidden neurons of 40,20,10) 71.3%
SVM (Poly, C = 0.01, =γ 0.1) 59.2%

Features: Part. coeff.
DNN (3 hidden neurons layers of 40,20,10) 66.1%
SVM (Sigmoid, C = 1.0, =γ 0.01) 53.7%

Features: Functional connectivity W
DNN (3 hidden layers of 1000,100,10) 72.1%
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(Padmanabhan et al., 2017; Zielinski et al., 2012). Therefore, the
modular structure of functional networks needs to be considered while
detection of hubs, but previous studies investigating disruption of hubs
in diseases either used traditional thresholding methods and did not
consider preservation of network modular structure or used the global
degree as a measure to find network hubs (Buckner et al., 2009; Dai
et al., 2014; Itahashi et al., 2014; Mutlu et al., 2017), thus giving biased
results. This warranted a fresh look at the disruption of hubs in the
functional networks derived from AD and ASD subjects.

The hubs detected for the CN subjects from the disease datatsets are
different from the healthy subject group from the HCP dataset. Besides
factors like different scanner acquisition protocol, preprocessing, and
gender ratio of participants the difference in network hubs between
HCP subject cohort and CN subject cohorts (from the ADNI and ABIDE)
can be primarily attributed to the difference in the age of the partici-
pants (Tomasi and Volkow, 2012; Yang et al., 2016). The average ages
for HCP, ADNI CN, and ABIDE CN participant cohorts are 28.3 years,
76.6 years, and 15.8 years, respectively. On computing hubs of subjects
suffering from AD and ASD, we found that the network hubs for the
patients were different from those for CN subject-group. Specifically,
the hubs in the medial and inferior temporal lobe, precuneus, and
posterior cingulate cortex in the CN subject group were found to be
disrupted in the AD subject group. Atrophy in the medial temporal lobe
has long been shown to be a biomarker for AD (Hu et al., 2019) whereas
the functional connectivity of the precuneus with the default mode
network and posterior cingulate cortex with the ventral attention net-
work is known to be disrupted in AD patients (Klaassens et al., 2017;
Yamashita et al., 2019) which validates our findings. Similarly, our
results for hub disruptions in ASD subject group were corroborated by
multiple previous studies, where disruption in connectivity of the an-
gular gyrus (Kennedy and Courchesne, 2008; Padmanabhan et al.,
2017; Zielinski et al., 2012) and precuneus (Itahashi et al., 2014;
Padmanabhan et al., 2017; Zielinski et al., 2012) regions participating
in the DMN have been studied and alterations of both functional and
structural fibers in the anterior cingulum (Ikuta et al., 2014; Itahashi
et al., 2014; Jou et al., 2011; de Lacy et al., 2017; Thakkar et al., 2008)
have been reported.

4.4. Brain hubs as diagnostic features for AD and ASD

We hypothesized that the disruption of hubs in AD and ASD can be
used as a potential diagnostic tool for detecting these diseases. Using
multiple machine learning models, we found that a 3 hidden layer
feedforward DNN using nodal hub measures as features were capable of
detecting AD and ASD patients from CN subjects with an accuracy of
81% and 74%, respectively. We also found that combining both the
inter-modular and intra-modular hub measures improves the classifi-
cation accuracy.

Previous studies in the area have used functional connectivity
measures (Iidaka, 2015; Ju et al., 2019; Wang et al., 2012) or additional
graph measures (Khazaee et al., 2016; Li et al., 2013) to perform
classification of AD and ASD. The large number of training features not
only causes overfitting of the models because of few available training
samples but also uses high resources due to the large number of
trainable weights (Gupta et al., 2019). In this study, we employed novel
hub features including ambivert degree features for AD and ASD and
demonstrated their use as diagnostic features for diseases. We observed
that the hub disruption was more widespread in case of AD than ASD
(refer Fig. 6), and correspondingly the difference in classification ac-
curacy based on nodal hub measures and functional connectivity fea-
tures was more for AD than ASD. While previous studies have used
functional connectivity features for disease state classification, but For
example: using just 0.09% (for AD) and 0.03% (for ASD) of the total
number of trainable weights used in functional connectivity based
models, we obtained a significantly higher classification accuracy. This
work paves the way for using hub scores instead of functional

connectivity as input features for diseases where hub disruption is a
trademark.

5. Conclusion

Brain hubs are crucial for information processing and are often
susceptible to neurological diseases. Previous studies did not consider
the effect of weak connections and modular structure for detection of
functional hubs. Using artificial lesioning, we showed that weak con-
nections in the weighted brain functional networks can lead to the
detection of sub-optimal hubs, and the newly proposed measure, am-
bivert degree, detect hubs that are more crucial for both intra-modular
and whole network information processing. We use the ambivert degree
to find widespread perturbation in the hubs in AD and ASD patients. We
used this property to develop effective classifiers for these diseases and
showed that these classifiers perform significantly better than func-
tional connectivity based classifiers, with negligible number of train-
able weights in comparison. The affected hubs detected by our methods
could be used as biomarkers for neuropsychiatric and neurodegenera-
tive diseases where hub disruption is a hallmark.
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