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a b s t r a c t

In a previous report, we proposed a method for combining multiple markers of atrophy caused by
Alzheimer’s disease into a single atrophy score that is more powerful than any one feature. We applied
the method to expansion rates of the lateral ventricles, achieving the most powerful ventricular atrophy
measure to date. Here, we expand our method’s application to tensor-based morphometry measures. We
also combine the volumetric tensor-based morphometry measures with previously computed ventric-
ular surface measures into a combined atrophy score. We show that our atrophy scores are longitudinally
unbiased with the intercept bias estimated at 2 orders of magnitude below the mean atrophy of control
subjects at 1 year. Both approaches yield the most powerful biomarker of atrophy not only for ventricular
measures but also for all published unbiased imaging measures to date. A 2-year trial using our measures
requires only 31 (22, 43) Alzheimer’s disease subjects or 56 (44, 64) subjects with mild cognitive
impairment to detect 25% slowing in atrophy with 80% power and 95% confidence.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Imaging biomarkers of Alzheimer’s disease (AD) must offer
sufficient power to detect brain atrophy in subjects scanned
repeatedly over time (Cummings, 2010; Ross et al., 2012; Wyman
et al., 2012). The expected cost of a drug trial may be prohibi-
tively high, unless we can reasonably expect disease-slowing effects
to be detected quickly enough and with reasonably few subjects.
Imaging measures from standard structural magnetic resonance
imaging (MRI) show considerable promise. Their use stems from
the premise that longitudinal changes may be more precisely and
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reproducibly measured with MRI than comparable changes in
clinical, cerebrospinal fluid (CSF), or proteomic assessments;
clearly, whether that is true depends on the measures used. The use
of MRI in a drug trial has some caveats; most MR studies from
published drug trials have detected no effect or even a small, and
possibly irrelevant but significant, increase in atrophy in the
treatment group. Brainmeasures that are helpful for diagnosis, such
as positron emission tomography (PET) scanning, may not be stable
for large multicenter (N ¼ several hundred) longitudinal trials that
aim to slow disease progression. Other markers, such as CSF mea-
sures of amyloid and tau proteins to assess brain amyloid, may
suffer the opposite problem of showing too little change during the
clinical AD period. As a result, there is interest in testing the
reproducibility of biomarkers, as well as methods to optimally
combine them (Yuan et al., 2012).

Recent studies have tested the reproducibility and accuracy of a
variety of MRI-derived measures of brain change. Several of these
are highly correlated with clinical assessments and can predict
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future decline on their own or in combination with other relevant
measures. Although not the only important consideration, some
analyses have assessed which MRI-based measures show greatest
effect sizes for measuring brain change over time, while avoiding
issues of bias and asymmetry that can complicate longitudinal
image analysis (Fox et al., 2011; Holland et al., 2011; Hua et al.,
2013), and while avoiding removing scans from the analysis that
may lead to unfairly optimistic sample size estimates (Hua et al.,
2013; Wyman et al., 2012). Promising MRI-based measures
include the brain boundary shift integral (Leung et al., 2012; Schott
et al., 2010), the ventricular boundary shift integral (Schott et al.,
2010), and measures derived from anatomic segmentation soft-
ware such as Quarc or FreeSurfer, some of which have been recently
modified to handle longitudinal data more accurately (Fischl and
Dale, 2000; Holland and Dale, 2011; Reuter et al., 2012; Smith
et al., 2002).

Although several power estimates are possible, the analysis
advocated by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) Biostatistics Core (Beckett, 2000) is to estimate the minimal
sample size required to detect, with 80% power, a 25% reduction in
the mean annual change, using a 2-sided test and standard signif-
icance level a ¼ 0.05 for a hypothetical 2-arm study (treatment vs.
placebo). The estimate for the minimum sample size is computed
from the formula below. bb denotes the annual change (average
across the group) and bs2

D refers to the variance of the annual rate of
change.

n ¼
2bs2

D

�
z1�a=2

þ zpower

�2
�
0:25bb�2

(1)

Here, za is the value of the standard normal distribution for
which P[Z < za] ¼ a the sample size required to achieve 80% power
is commonly denoted by n80. Typical n80s for competitivemethods
are under 150 AD subjects and under 300 mild cognitive impair-
ment (MCI) subjects; the larger numbers for MCI reflect the fact
that brain changes tend to be slower in MCI than AD, and MCI is an
etiologically more heterogeneous clinical category. For this reason,
it is harder to detect a modification of changes that are inherently
smaller, so greater sample sizes are needed to guarantee sufficient
power to detect the slowing of disease.

Many algorithms can detect localized or diffuse changes in the
brain, creating detailed 3D maps of changes (Avants et al., 2008;
Leow et al., 2007; Shi et al., 2009), but the detail in the maps
they produce is often disregarded when making sample size esti-
mates according to Equation 1 as the formula expects a single
univariate measure of change. In other words, it requires a single
number or “numeric summary” to represent all the relevant
changes occurring within the brain. To mitigate this problem, Hua
et al. (2009) defined a “statistical ROI” based on a small sample of
AD subjects by thresholding the t-statistic of each feature (voxel)
and summing the relevant features over the ROI; this approach was
initially advocated in the FDG-PET literature to home in on regions
that show greatest effects (Chen et al., 2010). In spirit, the statistical
ROI is a rudimentary supervised learning approach, as it finds re-
gions that show detectable effects in a training sample and uses
them to empower the analysis of future samples; the samples used
are nonoverlapping and independent to avoid circularity. However,
a simple threshold-based masking is known to potentially elimi-
nate useful features as binarization loses a lot of the information
present in continuous weights (Duda et al., 2001). Although many
studies have used machine learning to predict the progression of
neurodegenerative diseases and differentiate diagnostic groups
such as AD, MCI, and controls (Kloppel et al., 2012; Kohannim et al.,
2010; Vemuri et al., 2008), we found no attempts in the literature
that used learning to directly optimize power to detect brain
change.

To address this issue, we observed that minimizing Equation 1 is
exactly analogous to one-class linear discriminant analysis (LDA).
We applied the method to surface-based longitudinal expansion
rates of the ventricular boundary (Gutman et al., 2013), achieving
the lowest sample size estimates of any ventricle-based measure of
AD to date, both in terms of absolute and control-adjusted atrophy.
Here, we apply the LDA-based weighting to recently reported maps
of whole brain volume change based on tensor-based morphom-
etry (Hua et al., 2013). Further, we combine ventricular surface and
tensor-based morphometry (TBM) volume measures into one
combined atrophy score. Our results show a marked improvement
over the stat-ROI approach, achieving substantively lower sample
size estimates than any ADNI-based report to date.
2. Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and nonprofit
organizations as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clini-
cians to develop new treatments andmonitor their effectiveness, as
well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800 adults, aged
55e90 years, to participate in the research, approximately 200
cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Longitudinal brain MRI scans (1.5 Tesla) and associated study
data (age, sex, diagnosis, genotype, and family history of AD) were
downloaded from the ADNI public database (http://www.loni.ucla.
edu/ADNI/Data/) on July 1, 2012. The first phase of ADNI, that is,
ADNI-1, was a 5-year study launched in 2004 to develop longitu-
dinal outcome measures of Alzheimer’s progression using serial
MRI, PET, biochemical changes in CSF, blood, and urine, and
cognitive and neuropsychological assessments acquired at multiple
sites similar to typical clinical trials.

All subjects underwent thorough clinical and cognitive assess-
ment at the time of scan acquisition. All AD patients met NINCDS/
ADRDA criteria for probable AD (McKhann et al., 1984). The ADNI
protocol lists more detailed inclusion and exclusion criteria
(Mueller et al., 2005a, 2005b), available online (http://www.
alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey¼208). The
study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki and the United States, 21 CFR
Part 50-Protection of Human Subjects and Part 56-Institutional
Review Boards. Written informed consent was obtained from all
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participants before performing experimental procedures, including
cognitive testing.

2.2. MRI acquisition and image correction

All subjects were scanned with a standardized MRI protocol
developed for ADNI (Jack et al., 2008). Briefly, high-resolution
structural brain MRI scans were acquired at 59 ADNI sites using
1.5 Tesla MRI scanners (GE Healthcare, Philips Medical Systems, or
Siemens). Additional data were collected at 3-T but is not used here
as it was only collected on a subsample that is too small for making
comparative assessments of power. Using a sagittal 3D MP-RAGE
scanning protocol, the typical acquisition parameters were repeti-
tion time of 2400 ms, minimum full echo time, inversion time of
1000 ms, flip angle of 8�, 24 cm field of view, 192 � 192 � 166
acquisition matrix in the x-, y-, and z-dimensions, yielding a voxel
size of 1.25 � 1.25 � 1.2 mm3, later reconstructed to 1 mm isotropic
voxels. For every ADNI exam, the sagittal MP-RAGE sequence was
acquired a second time immediately after the first using an identical
protocol. TheMP-RAGEwas run twice to improve the chance that at
least 1 scan would be usable for analysis and for signal averaging if
desired.

The scan quality was evaluated by the ADNI MRI quality control
center at the Mayo Clinic to exclude failed scans because of motion,
technical problems, significant clinical abnormalities (e.g., hemi-
spheric infarction), or changes in scanner vendor during the time
series (e.g., from GE to Philips). Image corrections were applied
using a standard processing pipeline consisting of 4 steps: (1)
correction of geometric distortion because of gradient nonlinearity
(Jovicich et al., 2006), that is, “gradwarp”; (2) “B1-correction” for
adjustment of image intensity inhomogeneity because of B1
nonuniformity (Jack et al., 2008); (3) “N3” bias field correction for
reducing residual intensity inhomogeneity (Sled et al., 1998); and
(4) phantom-based geometrical scaling to remove scanner and
session specific calibration errors (Gunter et al., 2006).

2.3. The ADNI-1 data set

For our experiments, we analyzed data from 683 ADNI subjects
with baseline and 1 year scans, and 542 subjects with baseline,
1 year, and 2 years scans. The former group consisted of 144 AD
subjects (age at screening: 75.5 � 7.4 years, 67 females [F], and 77
males [M]), 337 subjects with MCI (74.9 � 7.2 years, 122 F and
215 M), and 202 age-matched healthy controls (NC) (76.0 � 5.1
years, 95 F and 107 M). The 2-year group (i.e., people with scans at
baseline and after a 1-year and 2-year interval) had 111 AD (75.7 �
7.3, 52 F and 59M), 253MCI (74.9� 7.1, 87 F and 166M), and 178 NC
(76.2 � 5.2, 85 F and 93 M) subjects. All raw scans, images with
different steps of corrections, and the standard ADNI-1 collections
are available to the general scientific community at http://www.
loni.ucla.edu/ADNI/Data/. We used exactly all ADNI subjects avail-
able to us (on February 1, 2012) who had both baseline and
12 months scans, and all subjects with 24 months scans (available
July 1, 2012) (Table 1). The use of all subjects without data exclusion
has been advocated by Wyman et al. (2012) and Hua et al. (2013),
because any scan exclusion can lead to power estimates that are
unfairly optimistic, and many drug trials prohibit the exclusion of
any scans at all.

2.4. Surface extraction and analysis

Our surfaces were extracted from 9-parameter affine-registered,
fully processed, T1-weighted anatomic scans. We used a modified
version of Chou registration-based segmentation (Chou et al.,
2008), using inverse-consistent fluid registration with a mutual
information fidelity term (Leow et al., 2007). To avoid issues of bias
and nontransitivity, we segmented each of our subjects’ 2 or 3 scans
separately. In this approach, a set of hand-labeled “templates” are
aligned to each scan, with multiple atlases being used to greatly
reduce error. There were 2 templates from each of the 3 diagnostic
groups, with 1 male and 1 female subject in each. The template
surfaces were registered as a group following a medial-spherical
registration method (Gutman et al., 2012). To improve on the
standard multi-atlas segmentation, which generally involves a
direct or a weighted average of the warped binary masks, we
selected an individual template that best fits the new boundary at
each boundary point. A naïve formulation of this synthesis can be
written as:

SðpÞ ¼
X
i

WiðpÞTiðpÞ; WiðpÞ

¼
�
1 if sðI; IiÞ½p�>s

�
I; Ij

�½p�cjsi
0 otherwise

(2)

Here, I, S are the new image and boundary surface, {Ii, Ti}i are
template surfaces and images warped to the new image, and s(I, IiI)
[p] is some local normalized similarity measure at point p.
Normalized mutual information around a neighborhood of each
point was used to measure similarity. This approach allows for
more flexible segmentation, in particular for outlier cases. Even a
weighted average, with a single weight applied to each individual
template, often distorts geometric aspects of the boundary that are
captured in only a few templates, perhaps only in one. However, to
enforce smoothness of the resulting surface, care must be taken
around the boundaries of the surface masks Wi. An effective
approach is to smooth the masks with a spherical heat kernel so
that our final weights are Wi

sðqÞ ¼ R
S2

Ksðp; qÞWiðpÞdp. This

approach is similar to Yushkevich et al. (2010b), differing mainly in
the fact that it is a surface-based rather than a voxel-based
approach.

Local surface-based maps of atrophy were then generated using
the algorithm described in (Gutman et al., 2012, 2013). Briefly, the
algorithm deforms a curve to minimize the medial energy associ-
ated with the shape, which may be written as:

Rðc; c0;MÞ ¼
Z1
0

Z
p ˛M

wðcðtÞ; c0ðtÞ; p;MÞjcðtÞ � pj2dMdt (3)

The term wðcðtÞ; c0ðtÞ; p;MÞ represents the medial weight for
each pair of curve and surface points, which is described in detail in
Gutman et al. (2012). Two surface-based feature functions are
generated based on the curve representing shape geometry:
thickness and the global orientation function (Gutman et al., 2012).
We nonlinearly register shapes, first longitudinally and then to a
mean template by parametrically minimizing sum of square dif-
ferences between corresponding feature functions. Our mean
template is generated by averaging the hand-traced templates in a
groupwise fashion as described in Gutman et al. (2012). The
thickness change maps represent change in the distance to the
medial axis from any given point on the ventricular boundary or
intuitively change in thickness of the shape.
2.5. Tensor-based morphometry

TBM is an image analysis technique that measures brain struc-
tural differences from the gradients of deformation fields that align
1 image to another (Ashburner and Friston, 2003; Freeborough and
Fox,1998; Leow et al., 2007). Individual Jacobianmaps were created
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to estimate 3D patterns of structural brain change over time by
warping the 9P-registered and “skull-stripped” follow-up scan to
match the corresponding screening scan. We used a nonlinear in-
verse consistent elastic intensity-based registration algorithm
(Leow et al., 2007), which optimizes a joint cost function based on
mutual information and the elastic energy of the deformation. The
deformation field was computed using a spectral method to
implement the CauchyeNavier elasticity operator (Marsden and
Hughes, 1983; Thompson et al., 2000) using a Fast Fourier Trans-
form resolution of 64 � 64 � 64. This corresponds to an effective
voxel size of 3.4 mm in the x, y, and z dimensions (220 mm/64 ¼
3.4 mm). Color-coded maps of the Jacobian determinants were
created to illustrate regions of ventricular and/or CSF expansion
(i.e., with det J(r) > 1) or brain tissue loss (i.e., with det J(r) < 1) over
time. These longitudinal maps of tissue change were also spatially
normalized across subjects by nonlinearly aligning all individual
Jacobian maps to a minimal deformation template, for regional
comparisons and group statistical analyses. See Hua et al. (2013) for
more details.
Table 1
Available scans for ADNI-1 on February 1, 2012 for 12 months and July 1, 2012 for 24
months. Total number of scans used: N ¼ 2065

Screening 12 mo 24 mo

AD 200 144 111
MCI 408 337 253
Normal 232 202 178
Total 840 683 542

Key: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
MCI, mild cognitive impairment.
2.6. LDA for empowering biomarkers

In designing an imaging biomarker, one generally seeks to bal-
ance the intuitiveness of the measure and its power to track disease
progression. In this study, we choose to use, alternatively, radial
expansion of the lateral ventricles, local tissue loss as measured by
Jacobian determinants of nonlinear longitudinal warps, or the
combination of the two. Having made this choice, we would now
like to find an optimal linear weighting for each surface vertex and
image voxel to maximize the effect size of our combined global
measure of change. A linear model may not have the intuitive
clarity of a binary weighting (i.e., specifying or masking a restricted
region to measure), but its meaning is still sufficiently clear and can
be easily visualized. Thus, we would like to minimize our sample
size estimate as a function of the weights, w:

nðwÞ ¼ C
1

N�1
P�

xTi w�mTw
�2

�
mTw

�2 ¼ 1
N � 1

C
wTSWw
wTSBw

(4)

Here C ¼ 32
�
z1�a=2

þ zpower

�2
, xi is the thickness change for the

ith subject, m is the mean vector, the covariance matrix
SW ¼ PN

i¼1ðxi �mÞðxi �mÞT and SB ¼ mmT. Minimizing Equation
4 is equivalent to maximizing.

JðwÞ ¼ wTSBw
wTSWw

(5)

which is a special case of the LDA cost function, with a maximum
given by

w ¼ S�1
W m (6)

For our purposes, m represents the mean of the diseased group.
We denote this bym¼mAD, MCI, wheremAD, MCI stands for themean
expansion vector in the combined MCI and AD group. We make no
distinction between these 2 groups during LDA training. Maxi-
mizing Equation 5 directly is generally not stable when SW has a
high condition number. Further, when the feature space is large
enough, as in the case of Jacobian fields with roughly 2 million
features, storing the dense 2 M � 2 M covariance matrix directly
simply becomes impossible. We resolve this issue by applying
principal components analysis (PCA) to our training sample, storing
the first k principal components in the rows of a matrix, P and
computing the corresponding k eigenvalues lj. This is a standard
approach when applying LDA to actual 2-class problems, as it
makes themixed covariancematrix nearly diagonal. In our case, the
covariance in PCA space is exactly diagonal, which reduces Equation
6 to a direct computation:

w ¼ PTu; where uj ¼ ½Pm�j
.
lj (7)

This approach is very fast. One can compute the first k eigen-
vectors and eigenvalues of SW without explicitly computing SW it-
self. Although alternative, possibly more flexible basis function sets
are possible, we choose PCA for its simplicity.

The order of subjects in each diagnostic group is randomly
changed to eliminate the confound because of different scanning
protocols at different ADNI acquisition sites. This step is needed
mainly to ensure a roughly equal distribution of sites in each fold, as
ADNI subjects are ordered by site by default. Where the subjects are
scanned is known to correlate with reliability in many morpho-
metric measures, and we have found that our LDA measures are
affected by the site distribution as well. This is only done once
before LDA training, with the same order and same subdivision of
diagnostic groups used for each method.

To validate our data-driven weighting approaches, we create 2
groups of equal size, with an equal number of MCI and AD subjects
in each. Each of these folds is then used to optimize the number of
principal components k. This is done by subdividing the training
fold further into 2 subfolds of equal size, computing principal
components separately on each subfold, and training a different
LDA model using all PC’s up to k, with k varying from 1 to the total
number of subjects in the subfold. A sample size for each subfold’s
model is computed by applying the linear weights to the other
subfold. The optimal k is chosen so that the mean of the 2 subfolds’
sample size estimates is minimized. Further, to avoid circularity, we
do not use the 6 hand-traced subjects used in generating the ven-
tricular surface template for model training or testing. For TBM,
such circularity is avoided entirely, as the minimum distance
template (Hua et al., 2008) is based on 40 control subjects, which
are not used during the training or testing stages. This approach is
an adaptation of the standard nested cross-validation technique in
machine learning.

Because Jacobian determinants have a skewed distribution due
to the nature of the measurement, we perform LDA training on the
logarithm of the Jacobian maps, which in the first approximation is
equivalent to actual atrophy rates over a given time interval. This
step ensures that the Gaussian assumption in LDA is more closely
satisfied.

3. Results

In the following, we compare the performance of our LDA-based
vertex weighting of ventricular expansion (Medial Vent LDA), the
LDA-based voxel weighting of TBM maps (TBM-LDA), the combina-
tion of the 2 LDAmeasures into 1 score and the LDA Stat-ROImethod
previously reported in Hua et al. (2013). Although in general, abso-
lute ventricular expansion may not be specific to AD pathology; its
finely resolved surface-based signature is used here as a surrogate



Table 2
Sample size estimates for clinical trials using anatomic biomarkers of change over 12 months as an outcome measure

MCI AD Mean MCI Mean AD

Vent-LDA 111/96 (85e150)/(75e127) 65/86 (46e92)/(64e128) 104 (94e139) 75 (64e102)
TBM-LDA Whole 85/99 (67e110)/(77e131) 48/50 (34e70)/(35e85) 92 (77e111) 49 (38e66)
TBM-LDA GM 110/93 (85e145)/(73e122) 48/49 (33e74)/(35e76) 101 (84e122) 49 (37e64)
Vent þ TBM 83/72 (66e112)/(56e92) 41/46 (28e65)/(32e68) 78 (63e90) 43 (33e58)
TBM stat-ROI d d 135 (114e167) 64 (51e86)

Depending on how we weigh the features on the ventricular surfaces, the sample size estimates can be reduced, and the power of the study increased. “Whole” stands for
whole-brain TBM of Fig. 1 and “GM” means the TBM model restricted to gray matter from Fig. 5. Mean sample size estimates are computed as the average of the 2 folds’
estimates. The values in parentheses represent 95% confidence intervals.
The lowest sample size estimates for each group are in bold.
Key: AD, Alzheimer’s disease; GM, gray matter; MCI, mild cognitive impairment; ROI, region of interest; TBM, tensor-based morphometry.
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measure of AD-related atrophy in addition to what can be learned
from TBM. In testing each of these weighting methods, we used
nested 2-fold cross-validation. Only AD andMCI subjects were used
in the training stage. Further, we restricted our training sample to
include only 1-year changes. Twenty-fourmonth datawas only used
for testing, applying1-yearmodels to thenonoverlapping subgroups
of the 24-month data. Tables 2 and 3 summarize sample size esti-
mates for 1-year and 2-year clinical trials for each of the 4 bio-
markers. The linear weight maps are visualized in Figs. 1 and 2. To
visualize the difference between a multivariate approach and a
mass-univariate type of weighting as done in the stat-ROI approach,
we also displaymaps of t-statistics in Figs. 3 and 4. The t-maps were
computed to test the null hypothesis that no change takes place
among the AD and MCI subjects at each spatial location over 1 year.
In another test,werestricted thePCA feature space to thegraymatter
voxels, segmented by BrainSuite (Shattuck et al., 2001) and
computed the resulting power estimates. The weight maps are
visualized in Fig. 5. To assess the reproducibility of our sample sizes,
we also computed bootstrapped 95% confidence intervals for our
sample size estimates (DiCicio and Efron, 1996).

For ventricular surface measures, the optimal number of prin-
cipal components was found to be 28 and 47, for folds 1 and 2,
respectively. For Jacobian maps, the smallest sample size was ach-
ieved at k ¼ 115 and 103 for whole-brain LDA and at k ¼ 98 and 95
for LDA restricted to gray matter.

We compared the sample size estimates of the stat-ROI
approach with TBM-LDA in Table 4. The LDA measures signifi-
cantly outperformed the stat-ROI measure for MCI subjects and
trended better for AD subjects.

To assess whether there is any evidence of longitudinal bias of
our weighted measures, we applied our 1-year models to healthy
controls at 12 and 24 months. Using a method similar to Hua et al.
(2011), we used the y-intercept of the linear regression as a
measure of bias (bearing in mind the caveats noted that there may
be some biological acceleration or deceleration that could appear
to be a bias). We again used bootstrapping to estimate the inter-
cept and linear fit confidence intervals (DiCicio and Efron, 1996),
with the exception of TBM stat-ROI, which we reprint from Hua
et al. (2013). We note that using standardized linear fit model,
CI’s leads to intervals that are more than twice as wide for the LDA
Table 3
Sample size estimates for clinical trials, using anatomical biomarkers of change over 24

MCI AD

Vent-LDA 80/62 (65, 108)/(44, 86) 67/47
TBM-LDA Whole 61/64 (47, 81)/(50, 81) 28/33
TBM-LDA GM 73/66 (58, 92)/(51, 88) 38/31
Vent þ TBM 53/58 (40, 72)/(46, 73) 28/34
TBM stat-ROI d d

The values in parentheses represent 95% confidence intervals.
The lowest sample size estimates for each group are in bold.
Key: AD, Alzheimer’s disease; GM, gray matter; MCI, mild cognitive impairment; ROI, re
models, implying that our CI’s are quite conservative. Fig. 6 shows
the regression plots for all LDA models over the 2 follow-up time
points. Confidence intervals for the linear fits are shown in dotted
green lines. The bias test results are summarized in Table 5. We
note that the intercept shows virtually zero bias for all the LDA
models, as it is 2 orders of magnitude lower than change in con-
trols at 1 year.
4. Discussion

Here, we continued the effort started in Gutman et al. (2013) to
increase the efficiency of clinical trials in AD and MCI, based on
multiple neuroimaging features. We applied a 1-class linear
discriminant analysis to a set of TBM features as well as a combi-
nation of TBM and ventricular surface features. Based on a
nonparametric comparison, the resulting sample size estimates are
significantly better than the stat-ROI approach, which has been the
standard feature weighting method to date. The linear feature
weighting also produces an intuitive, univariate measure of
changeda single number summary that can be correlated to other
relevant variables and outcome measures. The linear weights can
be easily visualized, adding insight into the pattern and 3D profile
of disease progression.
4.1. Machine learning in AD

Machine learning has been applied to classify AD and MCI
subjects based on brain images in many studies. Fan et al. (2008)
applied Support Vector Machine (SVM) to RAVENS maps, an
approach similar to modified Voxel-Based Morphometry (Good
et al., 2002), incorporating partial tissue classification and a high-
dimensional nonlinear volume registration. Vemuri et al. (2008)
used a similar method with tissue probability maps. Kloppel et al.
(2008) further showed that this linear model is stable across
different data sets. In general, classification algorithms can achieve
AD-NC cross-validation accuracy in the mid 90s (approximately
95%) within the same data set, although performance inevitably
degrades when applied to new data sets because of differences in
demographics and scanning protocols.
months as an outcome measure

Mean MCI Mean AD

(47, 122)/(31, 67) 71 (65, 98) 57 (45, 89)
(19, 44)/(21, 56) 63 (52, 75) 31 (22, 43)
(25, 60)/(19, 51) 69 (57, 81) 34 (25, 47)
(19, 43)/(22, 62) 56 (44, 64) 32 (22, 44)

109 (92, 131) 41 (33, 55)

gion of interest; TBM, tensor-based morphometry.



Fig. 1. Log-Jacobian (TBM) LDA weighting, scaled by standard deviation of the weights. Red regions expect expansion, and blue regions expect atrophy. Abbreviation: TBM, tensor-
based morphometry. (For interpretation of the references to color in this Figure, the reader is referred to the web version of this article.)
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Cuingnet et al. (2010) developed a Laplacian-regularized SVM
approach for classifying AD and NC subjects, which bears similarity
to our Tikhonov-regularized LDA (Gutman et al., 2013). The Lap-
lacian regularizer is shown to improve classification rates for AD
versus NC subjects. SVM has also been used, in our prior work, to
separate AD and NC subjects based on hippocampal shape in-
variants and spherical harmonics (Gutman et al., 2009). Cho et al.
(2012) smoothed surface atlas-registered cortical thickness data
with a low-pass filter of the Laplace-Beltrami operator. Following
this procedure, PCAwas performed on the smoothed data, and LDA
was applied on a subset of the PCA coefficients to train a linear
classifier. The resulting classification accuracy is very competitive.
Another surface-based classifier (Gerardin et al., 2009) uses the
SPHARM-PDM approach to classify AD and NC subjects based on
hippocampal shape. SPHARM-PDM (Styner et al., 2005) computes
SPHARM coefficients based on an area-preserving spherical
parameterization and defines correspondence via the first-order
ellipsoid. This leads to a basic surface registration and a spectral
Fig. 2. Ventricular LDA weighting, scaled by standard deviation of the weights.
shape decomposition. Gerardin et al. (2009) reported competitive
classification rates compared with whole-brain approaches. Shen
et al. (2010) used a Bayesian feature selection approach and clas-
sification on cortical thickness data, showing competitive AD-NC
and MCI-NC classification accuracy with SVM. Zhang et al. (2011)
developed a multiple kernel SVM classifier to further improve
diagnostic multimodality AD and MCI classification.

4.2. Classifiers and biomarkers

It is important to stress that although many studies have used
machine learning to derive a single measure of “AD-like”
morphometry for discriminating AD and MCI subjects from the
healthy group; no study, we are aware of, has used machine
learning tomaximize the power of absolute atrophy rates in AD.We
have attempted this by using a straightforward application of LDA.
The fundamental difference between classification accuracy and
biomarker reliability lies in the difference of the underlying goals.
Regardless of the regularization, the goal in classification is to
separate 2 classes of subjects in a generalizable way. As a result,
subjects which are most difficult to classify will play a dispropor-
tionately large role in defining an atrophy measure. For example,
we see that this is true of the 2 most popular classification algo-
rithms: AdaBoost and Support Vector Machines. SVM considers
only the “support vectors,” and AdaBoost greedily up-weights the
difficult cases.

However, in the context of a drug trial, the main concern is not
prediction of disease but the identification of ameasurable effect on
brain degeneration in the whole population because of a new drug.
This difference exists regardless of the fine details of statistical
analysis and machine learning algorithms, such as whether the test
applied to detect drug effects should make Gaussian assumptions,
or whether for example one uses a hard margin or a soft-margin
SVM approach. Ultimately, the best classifier may ignore or
downplay the very substrate of the diseased population that is most
helped by a drug in favor of correctly discriminating the nearly
normal-appearing subjects who do not experience the beneficial
effect. Good classification accuracy and high biomarker power are,
in principle, different goals precisely because a good biomarker



Fig. 3. Log-Jacobian (TBM) t-maps, based on the null hypothesis that there is no change over 1 year in AD and MCI subjects in each voxel. The difference between these maps and
Fig. 1 shows the difference between a multivariate and a mass-univariate approach in weighting Jacobian maps. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive
impairment.
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must treat all subjects equally. This is why the best classifier will
not, in general, be the best biomarker. The requirement for equal
treatment of all subjects also implies greater computational bur-
dens when optimizing an imaging biomarker compared with a
classifier.

A related question examines whether a Gaussian assumption
made in the power estimate is appropriate. Although several
arguments can be made on the subject, it must be noted that
the assumption is not made by this work, or any other work
concerned with biomarker power in ADNI, but by hypothetical
trial design itself. Because the trial is based on a test with
Fig. 4. Ventricular thickness t-maps, based on the null hypothesis that there is no
change over 1 year in AD and MCI subjects at each mesh vertex. The difference
between these maps and Fig. 2 shows the difference between a multivariate and a
mass-univariate approach in weighting Jacobian maps. Abbreviations: AD, Alzheimer’s
disease; MCI, mild cognitive impairment.
Gaussian assumptions (Beckett, 2000), the only appropriate
power estimate must make the same assumptions as well. In
fact, the power estimate used here assesses in part how much a
measure’s deviation from Gaussianity will affect its sensitivity
in the hypothetical test.

Outside of Alzheimer’s literature, we found one approach for
explicitly minimizing sample size estimates (Qazi et al., 2010) and
another that uses SVM for classification of Huntington disease
patients versus controls, with reduced sample sizes as a by-
product (Hobbs et al., 2010). The first article is methodologically
closest in spirit to this work: a fidelity term is explicitly defined to
be the control-adjusted sample size estimate. A number of
nonlinear constraints are then added: the total variation norm
(TV1-norm), sparsity, and nonnegativity. Although the first 2 have
analogs that can be linearly optimized as we do here (TV2 and L2

norm), the third constraint forces the authors to use nonlinear
conjugate gradient, which leads to far slower convergence. More
importantly, because of the differences in the nature of their
dataeknee cartilage CT imageseand ours, the sparsity and non-
negativity constraints are perhaps not appropriate for brain im-
aging. We expect the effect over soft tissue to be diffuse without
many discontinuities, and nonnegativity is generally not appro-
priate in brain MR either. This is because of the fact that we expect
some brain regions to grow and others to shrink over time.
Further, conjugate gradient optimization would be impossibly
slow to apply to brain MR images with millions of features,
although it may still make sense to do for the far sparser knee CT
images. The second article (Hobbs et al., 2010) uses leave-one-out
linear SVM weighting of fluid registration-based TBM maps to
derive an atrophy measure. No spatial regularization or sample
size-specific modification to the learning approach is used. In both
of these cases, the measure used is based on the difference be-
tween the mean of controls and the diseased group, which is not
the main goal of the present work. Our main contribution, absent



Fig. 5. Log-Jacobian (TBM) LDA weighting restricted to gray matter regions, scaled by standard deviation of the weights. Red regions expect expansion, and blue regions expect
atrophy. Abbreviation: TBM, tensor-based morphometry. (For interpretation of the references to color in this Figure, the reader is referred to the web version of this article.)
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in the previously mentioned works, is to optimize a univariate
measure of brain degeneration over time.
4.3. Power estimates of other measures in AD

Our change measures outperformed all other published unbi-
ased measures as an AD biomarker with respect to the sample size
requirements, assuming of course that the reference data are
comparable. In the following section we compare each method’s
best measure as reported in Holland et al. (2011) and 2 other
methods against our TBM-LDA and TBM þ Vent LDA measures.
FreeSurfer ventricular measures give a 2-year estimates of 90
(68, 128) for AD and 153 (126, 194) for MCI. An FSL tool, known as
SIENA (Cover et al., 2011; Smith et al., 2002), achieved a 1-year
point estimate for sample size of 132 for AD and 278 for MCI.
Quarc entorhinal achieved a 2-year whole brain estimates of 44 (33,
63) for AD and 134 (110, 171) for MCI. KN-BSI, a whole brain gray
matter atrophy measure (Schott et al., 2010) required 1-year sam-
ples of 81 (64, 109) for AD and 149 (122, 188) for MCI. For a 2-year
trial, Holland et al. (2011) estimate KN-BSI power at 75 (58, 104) for
AD and 142 (115, 182) for MCI. Hua et al. (2013) used improved TBM
with the stat-ROI voxel weighting to achieve 2-year sample sizes of
41 (33, 55) for AD and 109 (92, 131) for MCI. Wolz et al. (2010)
measured hippocampal volume change based a longitudinal
Table 4
Bootstrapped p-values, stat-ROI versus TBM-LDA measures

12 mo 24 mo

GM-LDA
versus
stat-ROI

Whole LDA
versus
stat-ROI

GM-LDA
versus
stat-ROI

Whole LDA
versus
stat-ROI

AD 0.0683 0.0795 0.162 0.0631
MCI 0.014 0.0019 0.0001 <0.0001

Nonparametric test assessing the probability that the stat-ROI measure leads to
lower or equal required sample size compared with the given LDA measure.
Significant results at the p ¼ 0.05 level are in bold.
Key: AD, Alzheimer’s disease; GM, gray matter; MCI, mild cognitive impairment;
ROI, region of interest; TBM, tensor-based morphometry.
adaptation of the LEAP algorithm, achieving 24-month power es-
timates of 46 for AD and 121 for MCI and 12-month estimates of 67
and 206. Some confusion has resulted because of the use of the
term “two-arm” to describe a study of treatment versus placebo
groups in (Wolz et al., 2010). The power estimates are, in fact,
computed identically and are directly comparable with the others’,
as can be seen by comparing Equation (1) mentioned previously
and Equation (4) in Wolz et al. (2010). The estimates “per arm” in
other previously mentioned studies have the same meaning as the
estimates “for both arms” [sic] inWolz et al. (2010), without need to
adjust them by a factor of 2. This can also be confirmed by applying
Equation (1) to their reported means and standard deviations. We
note that both the 24-month LEAP and the SIENA estimates are
based on a much smaller sample of subjectsd(83, 165) and (85,
195)dthan the other methods mentioned previously, and any
comparisons must be made with the appropriate reservations.
These comparisons are summarized in Fig. 7.

A likely reason for such a favorable comparison with existing
atrophy scores is because of the multivariate nature of our raw
atrophy measures. Unlike the other methods used in ADNI, most
of which are ROI volume measures or their combinations, our
measure is based on a spatially distributed map. This presents a
challenge and an opportunity to optimally combine thousands or
even millions of features into a useful biomarker. The simplest
approach, linear weighting, outperforms other methods in terms
of power estimates. However, we do not wish for this simplicity to
be misleading; the linear model uses the fine-grained spatial
analysis from TBM and surface features, which is not available in
other popular ADNI measures. Although one could use the same
approach to optimize power by, for example, combining all Free-
Surfer regional volumes optimally that approach would still not
offer the voxelwise accuracy of TBM and local surface-based
measures.
4.4. Algorithmic bias

We showed that our measures are longitudinally unbiased ac-
cording to the intercept CI test (Yushkevich et al., 2010a). The test



Table 5
Longitudinal bias analysis of AD imaging biomarkers

Vent-LDA TBM-LDA Vent þ TBM TBM stat-ROI TBM-LDA GM only

0.0064 (�0.0218 to 0.06) �1.48 � 10�5 (�5.1 � 10�4, 4.9 � 10�4) 0.077 (�0.48, 0.67) 0.06 (�0.07, 0.18) �1.02 � 10�4 (�5.6 � 10�4, 3.9 � 10�4)

Change in healthy controls is linearly regressed over 2 time points. The intercept is very close to zero with the confidence interval clearly containing zero for each method. The
LDA-based measures do not show any algorithmic bias according to the CI test.
Key: AD, Alzheimer’s disease; CI, confidence interval; GM, gray matter; TBM, tensor-based morphometry.
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addresses an issue raised by Thompson and Holland (2011) about
overly optimistic power estimates caused by additive algorithmic
bias. The fact that the baseline and follow-up scans were processed
identically, and independently, avoids several sources of subtle bias
in longitudinal image processing that can arise from not handling
the images in a uniform way (Thompson and Holland, 2011). Some
issues have been raised regarding the validity of the intercept CI test
as a test for bias in estimating rates of change. The CI test assumes
that the true morphometric change from baseline increases in
magnitude linearly over time in healthy controls. Relying on this
assumption, the test examines whether the intercept of the linear
model, fitted through measures of change at successive time in-
tervals in controls, is zero. If this is not the case, the measure of
change is said to have additive bias. We address the common crit-
icisms of this test in our previous report (Gutman et al., 2013) and
conclude that the test remains appropriate so long as it is only
applied to control subjects.
4.5. Total and relative atrophy

There has been some recent debate regarding the need to
subtract the mean of the healthy controls when estimating sample
sizes for a drug trial. Some ADNI collaborators seem to have
rejected this idea (Gutman et al., 2013; Hua et al., 2013), in part
because real drug trials do not tend to enroll controls, and even if
they did, many controls already harbor incipient Alzheimer pa-
thology or some degree of vascular pathology that may also be
resisted by treatment. However, the idea is not completely
without merit, because all meaningful trials must compare a
treatment against another (placebo or established) treatment
group. Further, any additive algorithmic bias could be excluded by
subtracting the mean rate of controls. We addressed this issue in
Fig. 6. Regression plots for LDA-based atrophy measures in controls. Green dotted lines sh
unbiased, because the zero intercept is contained in the 95% confidence interval on the interc
the reader is referred to the web version of this article.)
our previous report on ventricular LDA biomarkers (Gutman et al.,
2013) by computing an additional linear ventricular expansion
model specific to AD and MCI progression. We did this by directly
applying a 2 class, as opposed to 1 class, LDA with the covariance
defined strictly by the diseased group, as required by the current
practice of NC-adjusted sample size estimates. The resulting po-
wer estimates for NC-adjusted atrophy outperformed all previous
ventricular measures.
4.6. Future work

Future work will include utilization of additional biomarkers,
including other imaging biomarkers, such as measures based on
diffusion imaging or even nonimaging biomarkers (such as CSF or
proteomic measures) into the framework. We would like to extend
the use of supervised learning to further reduce our sample size
estimates. For example, in the PCA experiment, we simply used all
principal components up to a cutoff value. Although the power
estimates were impressive, the spatial patterns of the weights
contained high-frequency components without clear anatomic
meaning. A greedy boosting-type search over the principal com-
ponents as in Lu et al. (2003) may lead to better performance, with
the goal of making the pattern more generalizable and more
congruent across the folds. As our linear weighting is likely to
contain a combination of disease effect and systematic registration
artifact, a boosting approach over the principle components could
potentially isolate and discount any principal components con-
taining the artifactual portion of the variance. Alternatively, a more
comprehensive set of basis functions could be utilized to describe
the TBM atrophy patterns, yet enable whole sample learning on
conventional computers. Additional improvements in sample size
estimates could potentially be achieved by controlling for
ow 95% confidence belts for the regression models. All LDA models are longitudinally
ept, for each of the methods. (For interpretation of the references to color in this Figure,



Fig. 7. Sample size estimates for different biomarkers for 1- and 2-year trials with 2 scans per subject. Black bars indicate 95% confidence intervals, where available.
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confounding factors such as age and sex, as is in Schott et al. (2010),
and by enrichment techniques accounting for ApoE genotype or
family history of AD.

A potential limitation of a data-driven method such as what we
have presented here pertains to its reliance on the specifics of the
data. In particular, image quality and inclusion criteria of a hypo-
thetical trial are assumed to be the same as in ADNI. Simpler
univariate methods like LEAP and BSI do not suffer from this
limitation to the same extent, as they do not make such strict
assumptions about image quality and assume nothing about the
subjects included in the trial. Nonetheless, as our measure out-
performs other competitive measures by quite a few subjects, it is
quite possible that a new trial with significantly different param-
eters may still be better served by the proposed method. In this
case, some data may need to be set aside to train a new model
specific to the trial. Whether this additional training set justifies
the reduced number of test subjects required will be the subject of
future work. In this article, we have simply assumed that the
hypothetical trial will follow the design of ADNI, which justifies
our direct head-to-head N80 comparisons. In this case, the new
trial would simply use our existing weight maps to compute the
aggregate atrophy measure without requiring any additional
training subjects.

It is important to interpret biomarker power in its proper context.
Basing ameasure of brain change on a certain region or parameter of
the brain may overlook valuable disease-modifying effects that
affect other regions or measures. Perhaps even more importantly,
the slowing of a changemeasure by 25%may have different value to
the patient, depending on whether the measure is volumetric loss,
amyloid clearance, or decline in cognition. We must therefore treat
the n80 as a guide to biomarker utility weighing it against other
relevant criteria, in much the same way as we advocated the
weighting of multiple features within an image here, rather than
relying on any one marker of disease progression.
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