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Abstract. We present a framework for intrinsic comparison of surface metric
structures and curvatures. This work parallels the work of Kurtek et al. on
parameterization-invariant comparison of genus zero shapes. Here, instead of
comparing the embedding of spherically parameterized surfaces in space, we
focus on the first fundamental form. To ensure that the distance on spherical
metric tensor fields is invariant to parameterization, we apply the conjugation-
invariant metric arising from the L2 norm on symmetric positive definite
matrices. As a reparameterization changes the metric tensor by a congruent
Jacobian transform, this metric perfectly suits our purpose. The result is an
intrinsic comparison of shape metric structure that does not depend on the
specifics of a spherical mapping. Further, when restricted to tensors of fixed
volume form, the manifold of metric tensor fields and its quotient of the group of
unitary diffeomorphisms becomes a proper metric manifold that is geodesically
complete. Exploiting this fact, and augmenting the metric with analogous
metrics on curvatures, we derive a complete Riemannian framework for shape
comparison and reconstruction. A by-product of our framework is a near-iso-
metric and curvature-preserving mapping between surfaces. The correspondence
is optimized using the fast spherical fluid algorithm. We validate our framework
using several subcortical boundary surface models from the ADNI dataset.

Keywords: Shape analysis � Riemannian metric � Surface registration � Cor-
tical surface

1 Introduction

Analysis of surfaces plays an important role in medical image processing. Surfaces
representing boundaries of functionally and structurally distinct regions, such as the
cortex and subcortical structures, can be locally analyzed and compared in lieu of full
volumetric analysis. Succinct and easily visualized, such a representation offers tremen-
dous power for morphometric analysis. However, the non-Euclidean nature of surface
geometry significantly complicates this approach compared to volume-based methods.

© Springer International Publishing Switzerland 2015
S. Ourselin et al. (Eds.): IPMI 2015, LNCS 9123, pp. 205–218, 2015.
DOI: 10.1007/978-3-319-19992-4_16



A number of computational tools for surface analysis have been developed. Gu
et al., developed a conformal mapping algorithm [1] for spherical mapping and for-
mulated a landmark-matching energy as a Mobius transform. A relaxation of the
conformal energy, the quasi-conformal mapping of Zeng et al. [2] simultaneously
solves the Beltrami equations and minimizes curvature mismatch. Shi et al. [3] applies
fluid registration to the flat 2D domain after conformally mapping a surface with
prescribed boundaries. Spherical Demons [4], a less straightforward adaptation of a
Euclidean registration algorithm, applies the diffeomorphic demons algorithm [5] to the
sphere, matching curvature-derived intensity functions to match sulcal patterns of the
cortex. A similar approach is taken [6], adapting fluid registration [7] to the sphere. Yet
another family of algorithms computes high-dimensional embeddings of surfaces based
on eigenfunctions of the Laplace-Beltrami operator [8]. This elegant approach locally
adapts the metric tensor by scaling in order to more closely match the embeddings of
two surfaces in the Euclidean sense.

Many of these methods produce reasonable and often quite good results for a wide
range of problems. The “missing link” in much of the work above is the restriction of
the problem to registration. Once the surfaces are registered it is not generally possible
to know how one of the surfaces may develop to become the other, or how further
deformation in the same direction may look. Comparison of surfaces is out of sync with
the spatial alignment procedure, either using local setting-specific features, such as
cortical thickness or radial distance, or applying deformation-based analysis after the
registration step. An example the latter is surface Tensor-Based Morphometry (shape
TBM) [9]. With this in mind, it is clear that a framework unifying surface registration,
comparison, and reconstruction is ultimately desired.

In some sense, the “holy grail” of morphometric analysis of any kind that addresses
the issue above is the development of a Riemannian manifold with non-vanishing
geodesics. Developing the appropriate Riemannian metric for one’s object of interest,
such as curves, surfaces, or deformation fields, immediately allows the application of
various tools from the Riemannian machinery. Examples of these tools include com-
puting manifold statistics, geodesic shooting and parallel transport of velocities for
predicting longitudinal change, etc. [10–12]. Well-known examples of Riemannian
manifold structures in medical imaging have been developed for the space of diffeo-
morphisms (LDDMM) [13], curves in R

n [14], as well as surface embeddings [15, 16]
and diffusion tensors [12]. Reference [17] applies the large deformation framework to
compute distances between surfaces as the length of the path in the space of diffeo-
morphism resulting from morphing one boundary onto another. An improvement on
this is suggested in [15], measuring distances on the deformation of the surface itself
rather than in the ambient space as done in [17]. Closer still to our work here, Kurtek
et al. [16] developed a Riemannian framework for surfaces of spherical topology, using
“q-map” representation. The L2 distance on q-maps, or simply the surface embedding
locally weighted by the square root of the volume form, is shown to be invariant under
spherical automorphisms. From this, a definition of a path length is developed,
encapsulating the degree of spatial deformation between surfaces up to rotation and
spherical remapping of one surface over the other. A path-straightening algorithm
explicitly parameterized in time is then implemented, allowing both geodesic com-
putation and interpolation. The beauty of this Riemannian approach lies in the ability to
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directly reconstruct the surface from the representation, which is not found in the
surface-based methods discussed above. However, the representation is still of the
surface embedding, with all the resulting nuisances. To overcome this, some standard
heuristics are applied to the initial surfaces, namely centering each shape at the origin.
Thus, a local change in the surface has a global effect on the representation. More
importantly, the approach applies to the space S of smooth functions from the 2-sphere
to R

n, without any regard for the intrinsic metric structure of the surface. One unde-
sirable effect of this is that the resulting geodesics may enter regions of S corre-
sponding to surfaces with unrealistically severe metric distortion.

Hoping to avoid these confounds, we instead begin with the notion of intrinsic
surface representation that is already invariant to nuisance parameters such as
Euclidean motion, while capturing the metric structure. Our ultimate goal is a metric
space on a complete surface representation. By “complete,” we mean a representation
from which a surface can be reconstructed uniquely up to initialization parameters. In
general, the ability to reconstruct the object from the representation is not guaranteed,
as some of the examples of Riemannian settings above show.

A basic result from surface geometry, the Fundamental Theorem of Surfaces states
that a surface can be uniquely represented up to Euclidean motion with two smooth
symmetric tensor fields satisfying certain integrability. With the additional constraint
that the first of the tensor fields is positive definite, a surface can be reconstructed given
an initial frame. The first of these fields is the Riemannian metric tensor on the surface
gij, while the second is the Second Fundamental Form II, or “shape tensor.” In this
work, we mainly focus on the metric tensor. To develop a distance on metric tensors of
surfaces, we turn to the work of Ebin [18] and others [19, 20] who have developed a
Riemannian framework for the general manifold of metrics tensors. Applying the
results to our case – pullback metrics on the 2-sphere induced from the mapped
surfaces – we develop a parameterization-invariant comparison of surface metric
structures. We show how this measure can be extended to be a metric, when the metric
tensor space is restricted to a sub-manifold of fixed-form metrics. Augmenting this
distance with metrics on curvatures, we develop a complete representation for surfaces
of spherical topology. We apply our method to several brain structures. We show that
our method leads to an equiareal mapping between surfaces that is as-conformal-as-
possible.

2 A Riemannian Metric on the Space of Metric Tensors

Given an n-dimensional manifold M, the space of all smooth symmetric tensor fields
RðMÞ ¼ fh : TM � TM ! Rjh e SymðnÞg and the subspace of Σ of positive definite
tensors M Mð Þ ¼ h : TM � TM ! R h 2 SPDðnÞjf g, our problem above can be
restated generally as finding a suitable metric on M, such that the group of diffeo-
morphisms on M acts on M by isometry. Ebin et al. [18] showed that the L2

Riemannian metric on the tangent bundle of M, each fiber of which is identified with
Σ, indeed satisfies this criteria: given g 2 M; h; k 2 R ffi TgM, the metric can be
written as:
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h; kð Þg¼
Z
M

h; kh igdlg; ð1Þ

where h; kh ig is the inner product induced by g, h; kh ig¼ tr g�1hg�1kð Þ, and lg is the
volume form also induced by g. This metric produces geodesics on M whose length
can be computed point-wise and in closed form. In other words, a geodesic on M is a
one-parameter family of metrics gt on M, with the tensor at a point x 2 M, g xð Þ
depending only on g0 xð Þ and g00 xð Þ. Applying these results to our concrete case, we
take M to be the 2-sphere S

2, and consider the space of metrics pulled back from
spherically parameterized surfaces S ¼ S : S2 ! R

3 S 2 C1j� �
, expressed in canoni-

cal coordinates on TS2 as gi;j ¼ STi Sj. We illustrate an example of this representation in
Fig. 1. A reparameterization u 2 U ¼ / : S2 ! S

2 /;/�1 2 C2
��� �

acts on g by con-

jugation with the pushforward (Jacobian) Du : TxS
2 ! Tu xð ÞS

2, u � g ¼ DuTgDu.
Given two parameterized surfaces A;B 2 S, a closed-form solution for the geodesic
distance between gA and gB at a point x is [21]

D gA x½ �; gB x½ �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
g0t xð Þ; g0t xð Þ� �

gt xð Þ
dt

s
¼ Log g�1=2

A gBg
�1=2
A

h i��� ���
F
: ð2Þ

This metric is indeed invariant under simultaneous spherical re-mappings of A and
B, since D gA; gBð Þ ¼ D DuTgADu;DuTgBDuð Þ. These results are derived in [21].

3 Parameterization-Invariant Metric Tensor Comparison

While the measure above is pointwise-invariant to conjugation, integrating the
expression following (1) does not in fact le to a measure that is invariant. This is due to
the changing volume form in (1). As we will see, a trade-off must be made between
three desirable properties of a shape comparison measure: 1. Invariance under actions

Fig. 1. Metric tensor fields and mean curvature – a nearly complete surface representation.
Tensors are displayed as their eigenvectors in TS2 with magnitude corresponding to the
eigenvalues. If Gaussian curvature (not shown) is also known, the information on the left is
sufficient to reconstruct the hippocampal surface on the right.

208 B.A. Gutman et al.



by Φ; 2. Point-wise independence; 3. Metric property. Only two of these three prop-
erties can be satisfied simultaneously on M. The first of these is crucial for intrinsic
shape comparison, for if it fails to hold, the measure is subject to the arbitrary nature of
an initial spherical parameterization. The third property can be useful for all the reasons
described in the introduction, such as computing intrinsic means and transporting
trajectories. The second property is attractive for the ease of computation it implies: the
problem reduces to minimizing the integral of the pointwise measures over M. For
now, we choose to preserve the first two properties. This requires us to modify the
volume form on S

2 to be symmetric with respect to A and B, and independent of the
spherical mapping. We define our measure as

P A;Bð Þ ¼ Z

S
2

Log g�1=2
A gBg

�1=2
A

h i��� ���2
F
det gAð Þdet gBð Þ½ �1=4dS2 ð3Þ

The volume form det gAð Þdet gBð Þ½ �1=4dS2 remains unchanged after a re-mapping

det guA
	 


det guBð Þ� �1=4
df ðS2Þ ¼ det gAð Þdet gBð Þ½ �1=4det Duð ÞdS2 det Du�1ð Þ ¼ det gAð Þ½

det gBð Þ�1=4dS2. Together with the result from the previous section, this shows that
P u � A;u � Bð Þ ¼ P A;Bð Þ. Finding the global minimum of P by re-parameterizing one
surface over the other, we obtain a comparison between the two surfaces’ metric
structures that is independent of parameterization and therefore intrinsic:

P� A;Bð Þ ¼ minu2U PðA;u � BÞ;A;B 2 S: ð4Þ

The measure above is appealing: it leads to a mapping between two surfaces that
minimizes metric distortion with a mixture of equiareal and conformal mapping
between the surfaces. The minimization reduces to a standard registration problem over
spherical automorphisms, with the cost function (3). Further, the mapping between the
two surfaces retains its metric-preserving property regardless of the initial spherical
mapping: here the sphere is a “dummy space,” only needed as a standard canonical
space for computational convenience. However, we cannot say that P� A;Bð Þ is a
metric.

4 Metrics on MlnUU and on the Space of Surfaces

The change in the volume form due to reparameterization prevents a straightforward
generalization of �; �ð Þg. To the quotient space MnU. This is the reason for the
breakdown in the metric property of the measure P� A;Bð Þ. However, the submanifold
Ml of metrics which correspond to a fixed measure l admits this generalization. Ml

is a metric space under �; �ð Þg, with the geodesic distance defined as usual: d gA; gBð Þ ¼
ming0¼gA;g1¼gB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1
0
g0t; g0t
	 


gt
dt

r
. Taking its quotient by the appropriate restriction of Φ to

maps with a unitary pushforward UU ¼ / 2 U det D/ð Þ ¼ 1jf g, we see that MlnUU is
also a metric space under the related metric
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d� gA; gBð Þ ¼ min
/t2 ut : 0;1½ �!UUf g

d gA;/t � gBð Þ

¼ min
g0 ¼ gA; g1 ¼ gB

/t 2 ut : 0; 1½ � ! UUf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1

0

g0t /tð Þ; g0t /tð Þ	 

gt
dt

s
ð5Þ

Further, it is known thatMlnUU is geodesically complete [19], i.e. the exponential map
is defined on the entire tangent space. In particular, this means that geodesic shooting is
possible following transport of any velocity between any pair of points onMlnUU . The
obvious choice for a concrete example of Ml is the set of metrics arising from area-
preserving spherical maps, i.e. Sm ¼ S 2 S det gSð Þ ¼ mjf g for some constant m. Ensuring
scale invariance, we further restrict Sm to S1 by rescaling surfaces to have area 4p.

Restricting the space of allowable parameterizations to S1 may seem like a high
price to pay for the ability to use the Riemannian machinery. Yet, it is least restrictive
among the three standard parameterizations: conformal, Tuette and equiareal. The
genus-zero conformal mapping, for example, only has six degrees of freedom, while
the Tuette energy has a unique minimum [1]. The registration arising from this
restriction is an equiareal mapping that is as-conformal-as-possible. Thus, we can still
expect the resulting registration to approximate near-isometric maps, though perhaps
not as well as an unconstrained optimization of P� A;Bð Þ. A generic path between two
points gA; gB on M S1ð ÞnUU may be parameterized at a point on S

2 using a family of
diffeomorphisms /t 2 ut : 0; 1½ � ! UUf g as

gt /tð Þ ¼ g1=2A etLog g�1=2
A D/T

t /t�gBð ÞD/tg
�1=2
A½ �g1=2A :

The velocity takes the form

g0t /tð Þ ¼ g1=2A
Z1

0

eatS tð Þ S tð Þ þ tS0 tð Þ½ �e 1�að ÞtS tð Þda

 !
g1=2A ;

S tð Þ ¼ Log g�1=2
A D/T

t /t � gBð ÞD/tg
�1=2
A

h i
:

The geodesic path length can then be written as

D� A;Bð Þ ¼ d� gA; gBð Þ;A;B 2 S1

In general, the fact that UU acts on Ml by isometry does not imply that /t is
stationary, i.e. /0t 6¼ 0 [19]. Nevertheless, this simplifying assumption leads to a far
more tractable problem. Indeed, the authors in [16] implicitly make the same
assumption. With this simplification at ha, we write our intrinsic metric on the metric
structures of genus-zero shapes as

D A;Bð Þ ¼ minu2UU PðA;u � BÞ;A;B 2 S1 ð6Þ
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The metric D A;Bð Þ allows us to compute intrinsic distances between metric
structures of surfaces of spherical topology. Yet, the metric structures alone do not
represent surfaces uniquely. As a simple example, an inflated and a deflated tennis ball
have zero distance between them on M S1ð ÞnUU ;D �; �ð Þf g. To achieve a unique
representation, curvature information must be invoked. In principle, any surface can be
reconstructed locally given an initial coordinate frame, if g and II ¼ nTSij are known
[22]. The last term is the shape tensor in local coordinates, where n is the surface
normal. The reconstruction can be done following two integrations, so long as the
Gauss-Codazzi equations are satisfied:

L2 �M1 ¼ LC1
12 þM C2

12 � C1
11

	 
� NC2
11

�N1 þM2 ¼ LC1
22 þM C2

22 � C1
12

	 
� NC2
12;

ð7Þ

where the shape tensor is expressed explicitly as II ¼ L M
M N


 �
, and Ck

ij are the

Christoffel symbols. Given a global parameterization with spherical boundary condi-
tions, we can derive II using (7) from the mean and Gaussian curvature only,
H ¼ trðsÞ=2;K ¼ detðsÞ, where the shape operator s ¼ IIg�1. Several approaches are
possible, including explicitly solving (7) numerically. A simpler approach [23] solves
for the normal curvatures from H;K, and fits s locally by solving a least squares
problem; the shape tensor can then be computed as II ¼ sg. The implication is that we
only need to define a distance on two scalar quantities in addition to g. Because H;K
are invariant to parameterization, L2 distances on fields of curvatures on S

2 are trivially
invariant to action by UU . We then define our genus-zero shape metric as the 1-product
metric on S ¼ M S1ð Þ � C2

S
2	 
� C2

S
2	 
� �nUU ,

L A;Bð Þ ¼ D A;Bð Þ þ DL2nUU
HA;HBð Þ þ DL2nUU

KA;KBð Þ: ð8Þ

Here, C2
S
2	 
 ¼ f : S2 ! R f 2 C2

��� �
, and the usual L2 distance modified by UU ,

DL2nUU
a; bð Þ ¼ min/t2 ut : 0;1½ �!UUf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1
0

R
S
2
a� /t � bð Þ2dS2dt

r
. Given two spherically

parameterized surfaces A;B, the geodesic connecting them on S can be parameterized
explicitly at every point on S

2 as

gt;Ht;Ktf g ¼ gt /tð Þ;HA þ t /t � HB � HAð Þ;KA þ t /t � KB � KAð Þf g; ð9Þ

where /t 2 ut : 0; 1½ � ! UUf g is solution of the optimization problem in (8). Here, as
before, we make the simplifying assumption that /t is stationary.

5 Solving for / with Fluid Registration on S
2

We adapt an optimization approach similar to [6]. Briefly, spherical warps are
parameterized by tangential vector fields u : S2 ! TS2, with u u xð Þ; x½ � ¼
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u xð Þk k2

q
� u xð Þ, with u; x expressed in ambient R3 coordinates. The length of
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the geodesic on S
2 connecting x and u u xð Þ; x½ � is the arcsine of u xð Þk k. This param-

eterization was also used in [4]. The drawback is that warps transferring points more
than 90 degrees cannot be modeled. This still allows for very large deformations, while
simplifying the computation.

Fluid registration is based on modeling the simplified Navier-Stokes equation

lDv x; tð Þ þ kþ lð Þ ~r ~r � v x; tð Þ
� �

¼ �F u u x; tð Þ; x½ �½ �. The force field F represents the

gradient of the objective function, and k; l are Lame coefficients [7]. The time-varying
velocity v is integrated explicitly over time to obtain u. In [6], the authors use the
material derivative to account for the effect of the Jacobian when updating u by the
instantaneous velocity: @u

@t ¼ Du½ �v, where @u
@t is expressed in local coordinates in

Tu xð ÞS
2. The pushforward Du connecting local frames at x and u xð Þ can be computed

as Du ¼ @y
@s ;

@y
@t

h iT
y¼u xð Þ

@u
@x

h i
@y
@s ;

@y
@t

h i
y¼x

, where s; t are local coordinates of tangent

spaces, and

@u
@x

¼ I 1� uk k2
� �1=2

�x
@u
@x


 �
u

� �T
1� uk k2
� ��1=2

� @u
@x


 �
: ð10Þ

Accounting for the non-linearity in the parameterization of u to update the field u
in the Eulerian frame, we must find uðx; t þ dtÞ for a small time step dt, so that

u u x; t þ dtð Þ; x½ � ¼ u u x; tð Þ; x½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dt @u@t

�� ��2q
� dt @u@t . This can be done using the

cross-product matrix G xð Þ, where G xð Þy ¼ x� y, by u x; t þ dtð Þ ¼ G2u u x; t þ dtð Þ; x½ �.
We approximate the solution to the Navier-Stokes equation by filtering the force

field with a Gaussian kernel, v 	 �Kr � F, which is a solution of the isotropic dif-
fusion equation @v

@t ¼ �Dv; r ¼ ffiffiffiffi
2t

p
, where D is the spherical vector Laplacian. This

can be solved efficiently with vector spherical harmonics Blm;Clm, Kr � v pð Þ ¼P1
l ¼ 1
mj j 
 l

e�l lþ1ð Þr Blm Blm; vh i þ Clm Clm; vh i½ �. See [6] for details.

The force field F coincides with the direction minimizing the cost function cor-
responding to the shape metric (8):

C A;B; uð Þ ¼ P A;u u½ � � Bð Þ þ
Z
S
2
HA � u u½ � � HBð Þ2 þ KA � u u½ � � KBð Þ2dS2

þ R
Z
S
2
log det Du u½ �½ �ð Þ2dS2 ð11Þ

The second term is simply an L2 minimization problem, whose gradient is well-
known. The last term, ensuring that the remapping u remains in UU , is similar to a
regularization term used in 3D image registration [24]. The first term contains the most
novelty; here, we derive its Euler-Lagrange equation. In detail,

P A;u u½ � � Bð Þ ¼
Z
S
2
L u u; x½ �; xð ÞdS2; L ¼ LogX u u; x½ �; xð Þk k2; ð12Þ
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where X u u; x½ �; xð Þ ¼ g�1=2
A xð ÞD/T xð ÞgB u u; x½ �ð ÞD/ xð Þg�1=2

A xð Þ. Note that we have
dropped the determinant terms, as they remain unchanged under UU . For simplicity, we
first derive the E-L equations at u � 0. Since @

@t kLogX tð Þ2k ¼ 2tr kLogXX�1 d
dt Xk

� �
,

[21] the Lagrangian derivative with respect to u is

@L
@ui

¼ �2tr LogX X�1g�1=2
A

@

@xi
gB xð Þf gg�1=2

A

� �
: ð13Þ

We show the second-order terms for the first coordinate only:

@L

@ @u1
@x1
	 
 ¼ �2tr LogX X�1g�1=2

A
2gB;11 gB;21
gB;21 0


 �
g�1=2
A

� �
; ð14Þ

@L

@ @u1
@x2
	 
 ¼ �2tr LogX X�1g�1=2

A
0 gB;11

gB;11 2gB;21


 �
g�1=2
A

� �
:

The expressions for the second coordinate are analogous. The descent direction
minimizing P A;u u½ � � Bð Þ is then

F j ¼
X2

i¼1

d
dxi

@L

@ @u j

@xi
	 
� @L

@u j
: ð15Þ

In fact, estimates at u � 0 are sufficient to perform the entire optimization: we only
need to transport the metric fields by the current deformation to compute the gradient at
an arbitrary u using (13–15).

6 Implementation Details

6.1 Initialization

We initially compute area-preserving spherical maps using Freidel’s robust mapping
[6]. We then perform all our computations on a regular spherical grid with direct
reference to the original triangle meshing of both the parameterization and the original
mesh. We maintain a harmonic bandwidth between 64 and 256, which corresponds to
roughly between 16 K and 260 K control points. Due to the local nature of fluid
registration, we must have a good initialization. We take an approach similar to [6],
performing a coarse global search over the space of rotations to match the curvatures.

6.2 Tensor and Curvature Estimation

In order to compute the metric tensors in local spherical coordinates, we fit a quadratic
surface at each regular grid point, but using the original meshing. The fitting is done
with respect to all the vertices in the 1-ring of faces around the triangle containing the
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regular grid point. We then compute g and @g
@x in local coordinates analytically from the

fitted coefficients. At each iteration of the fluid algorithm, the original spherical
parameterization of the moving mesh B is brought forward by p ! u�1 pð Þ, and the
transformed tensors are computed fresh over the new spherical mesh. We estimate
curvatures directly on the original mesh following [23]. Curvature estimates on tri-
angle meshes are notoriously noisy, and we apply mild Laplacian smoothing directly
on the original mesh to H and K to obtain reasonable estimates. These are then
interpolated onto the regular grid.

6.3 Surface Reconstruction

In Sect. 4, we proposed to reconstruct a surface by first solving for the shape tensor. In
practice, we take a more direct approach, solving an auxiliary least squares problem
based on discrete differential geometry operators [23]. Given a spherical mesh
m = 〈V, E〉, |x| = 18x2V, and g;H;K defined at each vertex, the mesh representing an
embedding in space, S Vð Þ;Eh i minimizes three least-squares problems:

Eg ¼
X

x2V A xð Þ
X

y2N1 xð Þ Sx� Syð Þ2� x� yð ÞTg xð Þ x� yð Þ
h i2

;

EH ¼
X

x2V A xð Þ h
X

y2N1 xð Þ
cot axy þ cot bxy
	 


Sx� Syð Þ
4A xð Þ

� �
; ni � H xð Þ


 �2

;

EK ¼
X

x2V A xð Þ
2p� P

y;z2N1 xð Þ;yz2E cos
�1 h Sy�Sxð Þ; Sz�Sxð Þi

Sy�Sxð Þj j Sz�Sxð Þj j
h i

A xð Þ � K xð Þ
0
@

1
A

2

:

Here, n is the surface normal, A xð Þ is the area element, and axy; bxy are angles
opposite edge xy. On a regular spherical grid, the area element is estimated as

A xð Þ ¼ 1
2 det gð Þ12sin h xð Þ p

BW

	 
2
, for bandwidth BW . The initial conditions are set using a

single spherical triangle x; y; zð Þ, so that Sx ¼ 0, Sy ¼ y� xk kg xð Þ; 0; 0
� �

. Sz ¼
z� xk kg xð Þcosx;

�
z� xk kg xð Þsinx; 0Þ, x ¼ cos�1 z�x;y�xh ig xð Þ

z�xk kg xð Þ y�xk kg xð Þ
, p; qh ig¼ pTgq.

7 Experiments

We applied our metric tensor registration to hippocampal and caudate surfaces of 100
Alzheimer’s patients (AD) and 100 controls. In addition, we applied our method to a
pair of cortical surfaces from different subjects from the same dataset. In all cases, the
fluid registration was performed in 3 stages, with the kernel of the vector Gaussian set
to r ¼ 10�1; r ¼ 10�2; r ¼ 10�3. In general, we found that better overall results are
achieved if an additional non-linear registration step is taken before this process, only
minimizing curvature mismatch. Overall computation time at BW = 128 is on the order
of 10 min, requiring 10–100 iterations at each stage.
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In the first experiment, we tested the metric-preserving property of our method
compared to curvature-only registration. We illustrate with a pair of caudate surfaces in
Fig. 2. The angle distortion is far more widespread in the curvature-only case, indi-
cating that the cost function in (11) preserves the metric structure between the two
surfaces. Comparing distributions of distortion in hippocampal registration shows the
same point. We compared the mean difference between distortion levels of the two
registration approaches. Random pairs of subjects’ hippocampi were registered, using
the entire dataset. Unsurprisingly, the metric distance method lead to significantly
lower distortion, t ¼ �19:9.

To test the reliability of our surface reconstruction method, we computed the
geodesics between a surface model of the nucleus accumbens, and a caudate model.
While this is certainly not representative of a real application, it is a good test of
robustness of our method. Equally reasonable results hold for cortical metric regis-
tration. We illustrate the results in Fig. 3.

To examine the usefulness of the shape distance itself, we compared the annual rate
of change in hippocampal and caudate shape between AD patients and controls. Shape
change was computed as the geodesic length between corresponding surfaces over 1
year. We also made the same comparison using change in hippocampal and caudate
volume. Results are displayed in Table 1. It is encouraging to see that shape change in
our framework is somewhat more sensitive to disease effects.

Fig. 2. Left Panel: Metric distortion using only curvature matching (left), and metric tensor
registration (right). The top caudate surface is registered to the bottom one. Colors represent
absolute angle distortion between the surfaces. Right Panel: Distributions of angle distortion in
radians for hippocampal surface registration (Color figure online).

Table 1. Rate of change difference between AD and controls: shape and volume.

Left Hippocampus Right Hippocampus Left Caudate Right Caudate

Shape LAD � LCTL = 0.81
P = 0.0002

0.92
P < 0.0001

0.64
P = 0.0014

0.98
P = 0.0007

Volume
(mm3)

20.1
P = 0.001

23.2
P < 0.0001

12.4
P = 0.027

11.7
P = 0.003
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8 Conclusion

We have presented a Riemannian framework for analyzing metric structures of shapes
that are topologically equivalent to the sphere. Our “metric space of metrics” is defined
by a conjugation-invariant distance on symmetric (0,2)-tensors. When augmented with
metrics on curvature maps, the product space becomes a proper metric space of shapes.
Due to computational constraints, we do not optimize our geodesics over the entire set
of paths in this space, but restrict the search to paths up to a stationary diffeomorphism.
Because our geodesic path lengths can then be computed in closed form, this results in
a very efficient algorithm: no path-straightening is required. We show that the geodesic
search in our space leads to robust near-isometric and curvature-preserving mapping,
with the ability to reconstruct surfaces along the path. Our measure is able to detect
disease-related shape change in subcortical structures with greater sensitivity than
volume. While we do not consider size and rigid motion in our framework, metrics on
affine transformations already exist [25]. These can be joined with the metric presented
here for a more complete analysis of objects in space.
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