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Abstract—Transfer learning (TL) can effectively improve 

diagnosis accuracy of single-modal-imaging-based computer-

aided diagnosis (CAD) by transferring knowledge from other 

related imaging modalities, which offers a way to alleviate the 

small-sample-size problem. However, medical imaging data 

generally have the following characteristics for the TL-based CAD: 

1) The source domain generally has limited data, which increases 

the difficulty to explore transferable information for the target 

domain; 2) Samples in both domains often have been labeled for 

training the CAD model, but the existing TL methods cannot make 

full use of label information to improve knowledge transfer. In this 

work, we propose a novel doubly supervised transfer classifier 

(DSTC) algorithm. In particular, DSTC integrates the support 

vector machine plus (SVM+) classifier and the low-rank 

representation (LRR) into a unified framework. The former 

makes full use of the shared labels to guide the knowledge transfer 

between the paired data, while the latter adopts the block-diagonal 

low-rank (BLR) to perform supervised TL between the unpaired 

data. Furthermore, we introduce the Schatten-p norm for BLR to 

obtain a tighter approximation to the rank function. The proposed 

DSTC algorithm is evaluated on the Alzheimer’s disease 

neuroimaging initiative (ADNI) dataset and the bimodal breast 

ultrasound image (BBUI) dataset. The experimental results verify 

the effectiveness of the proposed DSTC algorithm. 

 
Index Terms—Transfer learning, doubly supervised transfer 

classifier, modality imbalance, support vector machine plus, 

block-diagonal low-rank. 

I. INTRODUCTION 

ITH the fast development of artificial intelligence, 

computer-aided diagnosis (CAD) has shown its 

effectiveness and efficiency to help improve diagnostic 

accuracy with consistency and repeatability [1][2]. Although 

the multi-modal-imaging-based CAD models generally achieve 

superior performance to the single-modal-imaging-based 

approaches [3][4], the latter ones have more popular and 

flexible applications, because not all hospitals are equipped 

with advanced multi-modal imaging devices [5]. However, 

compared with multi-modal medical images, single-modal 
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medical images only provide partial information, such as 

structural or functional information, which generally limits 

CAD performance to a certain extent [1][6][7][8]. 

Transfer learning (TL) is an effective method to improve the 

model performance in the target domain by transferring 

knowledge from the related source domain [9]. It has been 

successfully applied to various medical image processing tasks 

[10]. From the clinical viewpoint, there are two types of 

knowledge transfer for developing a CAD model, i.e., 1) 

transfer between different diseases and 2) transfer between 

different imaging modalities [10]. The former cases mainly 

consider the relevance between two diseases in the source and 

target domains with the same imaging modality. For example, 

Cheng et al. improved the magnetic resonance imaging (MRI) 

based diagnosis of Alzheimer’s disease (AD) (target domain) 

by transferring knowledge from mild cognitive impairment 

(MCI) (source domain), since AD and MCI are considered to 

have inherent relevance [11]. In the latter cases, the source and 

target domains generally use two different modalities of the 

same disease. For example, Fei et al. proposed a parameter 

transfer deep neural network for the B-mode ultrasound (BUS) 

based CAD of breast cancers by taking the BUS and 

elastography ultrasound (EUS) as target and source domains, 

respectively, because EUS provides additional information 

pertaining to the biomechanical and functional properties of 

breast lesions [12]. Since the transfer between different 

modalities is easy to access and has more applications, it has 

attracted more attention in recent years.  

In order to train a CAD model, the acquired imaging data are 

often labeled. Therefore, the supervised TL methods are valid, 

since they can transfer more effective knowledge from the 

source domain to the target domain under the guidance of label 

information. Moreover, it is a fact that the multi-modal imaging 

data scanned from a patient naturally share the same label. 

Therefore, learning using privileged information (LUPI) is 

suitable for this transfer task, because LUPI is a special 

W 
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supervised TL paradigm, which is only conducted on the paired 

bi-modal data with shared labels [13]. Several pioneering works 

have successfully applied the LUPI-based classifiers, such as 

support vector machine plus (SVM+) and its variants 

[13][14][15], to improve the diagnostic performance of single-

modal-imaging-based CAD with the help of additional 

modalities under the guidance of shared label [16][17][18][19]. 

It is worth noting that the single-modal imaging samples are 

more easily acquired than the multi-modal data in clinical 

practice, because only a few hospitals have full-modal imaging 

devices, or only partial patients could be scanned with multi-

modalities. Therefore, we generally have not only the paired 

multi-modal images, but also some additional single-modal 

data for training a CAD model. This leads to the clinical 

modality imbalance issue for training a CAD model. However, 

the LUPI paradigm cannot address this TL problem between 

imbalanced modalities, because it can only handle the paired 

data with shared labels.  

On the other hand, when developing a TL-based CAD model, 

it is a suitable way to select the commonly used modality as 

the target domain, which is equipped in more hospitals for 

clinical applications. For example, positron emission 

tomography (PET) device is very expensive and scarce, and 

thus MRI has more applications than PET to diagnose brain 

diseases, including AD; BUS device is widely equipped in 

almost all hospitals as a commonly used technique for diagnosis 

of breast cancers, while EUS is yet to be a routine diagnostic 

tool, especially in rural hospitals. Therefore, the MRI- or BUS-

based CAD systems can benefit more patients, while its 

diagnosis performance could be improved by transferring 

knowledge from the corresponding PET or EUS data in the 

source domain. 

Moreover, these two clinical characteristics result in the 

following issue: the samples in the source domain are generally 

less than those in the target domain for developing a CAD 

model. This increases the difficulty of the conventional TL 

algorithms to explore transferable information for the target 

domain, because these algorithms generally require sufficient 

training samples in the source domain to provide rich 

transferable knowledge [9]. While according to the domain 

adaption theory, the conventional TL algorithms automatically 

aligned domain divergence as the unsupervised domain 

adaption [20]. However, this unsupervised manner cannot fully 

utilize label information in the target domain to guide 

knowledge transfer. Currently, there are few works about the 

supervised TL to deal with this special clinical modality 

imbalance issue [21][22]. Therefore, it is necessary to develop 

a new TL method to effectively address this problem of 

modality imbalance in a supervised manner. 

In this work, we propose a novel doubly supervised transfer 

classifier (DSTC) algorithm for CAD, which can effectively 

solve the abovementioned special clinical issue of modality 

imbalance. Specifically, the proposed DSTC integrates the 

SVM+ classifier and low-rank representation (LRR) for 

knowledge transfer between the paired and the unpaired data, 

respectively, into a unified framework. The experiments on two 

datasets indicate the effectiveness of the proposed DSTC. 

The main contributions are two-fold: 

1) A novel DSTC algorithm is proposed to improve the 

performance of a single-modal imaging-based CAD 

model, which integrates SVM+ and LRR into a unified 

framework. DSTC makes full use of both the shared and 

unshared label information to guide knowledge transfer 

between the paired and unpaired data, and thus effectively 

implements the transfer task for the abovementioned 

special issue of modality imbalance in clinical practice. 

2) Different from the previous LRR-based TL methods that 

evaluate feature correlation between the source and target 

domains in feature space, the proposed DSTC also 

incorporates the label knowledge into LRR in a classifier 

for TL between the unpaired data with different labels. 

Furthermore, we implement the block-diagonal low-rank 

(BLR) with the Schatten-p norm to get a tighter 

approximation to the rank function.  

II. RELATED WORK 

A. Transfer Learning in CAD 

As a classical LUPI algorithm, SVM+ replaces the slack 

variables in the standard SVM with a set of non-negative slack 

functions, in which additional data in the source domain is 

introduced to regularize the hinge loss [13]. Therefore, the 

hyperplane can be optimized with the guidance of the source 

domain during the training stage [13]. Various improved SVM+ 

algorithms, such as fast SVM+ [14], adaptive SVM+ [23], 

multi-view SVM+ [24], robust SVM+ [25], and random vector 

functional link network plus (RVFL+) [15], have been proposed 

for different classification tasks and obtained promising 

performance. 

Currently, LUPI has been successfully applied in medical 

imaging-based CAD. For example, Duan et al. used the single 

nucleic polymorphisms as the source domain for the fundus 

image-based glaucoma detection with an SVM+ classifier [17]; 

Alahmadi et al. proposed a generalized matrix learning vector 

quantization classifier for diagnosis of MCI with the cognitive 

data as the target domain while functional MRI (fMRI) as the 

source domain [26]; Zheng et al. proposed an ensemble LUPI 

algorithm to improve the diagnostic performance of MRI-based 

CAD for brain diseases with another neuroimaging as the 

source domain [16][27]; Shi et al. developed a cascaded multi-

column RVFL+ classifier for the MRI-based diagnosis of 

Parkinson's disease, in which the source domain was self-

generated without another modality [18]; Li et al. compared 

different LUPI-based classifiers for AD diagnosis using MRI 

by regarding PET images as source domain [19]. The above 

works indicate that the LUPI paradigm can effectively promote 

the single-modal-imaging-based CAD with the help of 

additional modality as the source domain. 

On the other hand, the conventional TL aims to improve the 

performance of the model in the target domain by leveraging 

the knowledge from the source domain [9], and it has been 

successfully applied to different CAD models [28]. For 

example, Cheng et al. proposed a multi-modality domain 

transfer support vector machine (SVM) algorithm for MCI 
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conversion prediction, where the data of AD and normal control 

(NC) subjects were used as the source domain to improve the 

predictive performance[29]; Wachinger et al. proposed a 

supervised domain adaptation method based on instance 

weighting for AD diagnosis, where the MRI images collected 

from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database are regarded as the source domain while MRI data 

collected from the Australian Imaging Biomarkers and 

Lifestyle Study of Aging database are regarded as the target 

domain [30]. All these studies indicate the effectiveness of the 

conventional TL for improving diagnostic performance.  

However, both LUPI and conventional TL models cannot 

well handle the modality imbalance problem in clinical practice 

due to the limitation of their learning paradigm. To be specific, 

the LUPI can only be conducted on the paired modalities, 

whereas the remaining single-modal samples should be 

discarded. In this case, it brings the small-sample-size e issue, 

and the discarded samples could provide valuable information 

for improving the classification performance. In addition, the 

conventional TL methods assume that the source domain has 

much more data than the target domain to provide sufficient 

information for transfer. However, in clinical practice, the 

source domain usually has less data than the target domain, and 

the conventional TL cannot mine sufficient transferable 

information from the limited data in the source domain, thus 

degrading the learning performance. Moreover, the 

conventional TL methods do not make full use of label 

information to guide the transfer process. Generally, label 

information is expected to extract the inherent transferable 

information in both the target and source domains, and also 

reduce the discrepancy between the two domains.  

To address the above modality imbalance issue in clinical 

application, we propose a new supervised TL method, which 

simultaneously transfers knowledge between both the paired 

data with shared labels and between the unpaired data with 

different labels.  

B. Low-Rank Representation 

Low-rank representation (LRR) aims to learn the lowest rank 

representation of all samples via a linear combination of bases 

in a given dictionary [31][32]. LRR has been successfully 

applied in different machine learning tasks, such as subspace 

clustering, classification, detection, semantic segmentation, and 

reconstruction [33]. 

LRR has also been introduced in TL in recent years. For 

example, Ding et al. developed a latent low-rank transfer 

subspace learning algorithm, which combined low-rank 

constraint and dictionary learning for knowledge transfer [34]; 

Xu et al. proposed a discriminative transfer subspace learning 

algorithm with low-rank and sparse constraints to reduce the 

disparity between the target and source domains [35]; Wang et 

al. proposed a class-specific reconstruction-based TL algorithm, 

in which the domain correlation was enhanced through a joint 

sparse and low-rank regularization with better block diagonal 

characteristic [36]; Wang et al. developed a multi-source 

domain adaption framework via LRR for multi-site ASD 

diagnosis based on fMRI [37]. These works demonstrate that 

LRR can effectively explore the intrinsic relationship in data to 

reduce the domain shift in TL tasks. However, these methods 

just evaluate the feature correlation between two domains in 

feature space, by ignoring the use of label information to guide 

knowledge transfer. 

On the other hand, the above LRR-based TL methods 

generally adopt block-diagonal representation (BLR) to capture 

global semantic information between the target and source 

domains. BLR can effectively enlarge the intra-class 

discrimination and diminish the inter-class distance [38]. 

However, although the nuclear norm minimization for BLR is 

a convex problem with a global solution, it may over penalize 

large singular values, thus making the solution seriously deviate 

from the original solution [39].  

To address these limitations, we propose a novel DSTC 

algorithm, in which LRR incorporates label knowledge into a 

classifier for TL between unpaired data. Furthermore, we 

implement BLR with the Schatten-p norm to achieve a more 

accurate recovery ability for the low-rank matrix [40]. 

III. METHODOLOGY 

A. Notation 

We define {𝐗1, 𝐗2}  to be 𝑁𝑝  paired multi-modal samples 

with shared labels, where 𝐗1 ∈ ℝ
𝐷1×𝑁𝑝  and 𝐗2 ∈ ℝ

𝐷2×𝑁𝑝  and 

𝐷1 and 𝐷2 are the respective dimensions of features. Let 𝐗1
∗ ∈

ℝ𝐷1×𝑁𝑢  be additional 𝑁𝑢  single-modal samples that have the 

same modality as 𝐗1 . We further use {𝐗1
∗ , 𝐗2} to denote the 

unpaired data without shared labels. In our TL settings, we 

define 𝐗2 in the source domain while 𝐗1  and 𝐗1
∗  in the target 

domain.  

In binary classification, we further assume that the data are 

grouped according to categories, i.e., 𝑁𝑝 = [𝑁𝑝
1, 𝑁𝑝

2] and 𝑁𝑢 =

[𝑁𝑢
1, 𝑁𝑢

2], where the superscripts 1 and 2 represent the positive 

and negative classes, respectively. The labels for the paired 

{𝐗1, 𝐗2}  and 𝐗1
∗  are denoted as 𝐲 ∈ ℝ1×𝑁𝑝  and 𝐲∗ ∈ ℝ1×𝑁𝑢 , 

respectively. �̂� is the prediction of the paired data, and �̂�∗ is the 

prediction of the unpaired data. Besides, we define augmented 

matrices of the feature as: 

 

{
 
 

 
 𝐗1 ≔ [𝐗1

𝑻, 𝟏𝑁𝑝]
𝑇

∈ ℝ(𝐷1+1)×𝑁𝑝

𝐗2 ≔ [𝐗2
𝑻, 𝟏𝑁𝑝]

𝑇

∈ ℝ(𝐷2+1)×𝑁𝑝

𝐗1
∗ ≔ [𝐗1

∗𝑻, 𝟏𝑁𝑢]
𝑇
∈ ℝ(𝐷1+1)×𝑁𝑢

  

where 𝟏𝑁𝑝  denotes an all-one vector with 𝑁𝑝  elements, 𝐐 ∈

ℝ𝑁𝑝×𝑁𝑢 is the transformation matrix, and 𝐰1 ∈ ℝ
(𝐷1+1)×1 and 

𝐰2 ∈ ℝ
(𝐷2+1)×1 are parameter vectors. 

B. Framework of Doubly Supervised Transfer Classifier 

Fig. 1 shows the framework of the proposed DSTC. For the 

paired data with shared labels, we transfer knowledge via the 

LUPI paradigm, while conducting additional TL for the 

unpaired data with different labels. 

Our proposed DSTC incorporates the TL between both the 

paired and unpaired data into a unified framework, which can 

be formulated as follows: 
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Fig. 1: Illustration of our proposed DSTC algorithm. 𝐗1 and 𝐗1
∗  are the same 

modality worked in the target domain, while 𝐗2  is another modality in the 

source domain. 𝐗1 and 𝐗2 in the yellow ellipse form the paired modality with 

shared labels to transfer knowledge in the way of LUPI, while 𝐗1
∗  and 𝐗2 in the 

blue ellipse build the unpaired modality with different labels to conduct 

additional TL. 
 

 𝐿 = 𝐿𝑝𝑎𝑟𝑖𝑒𝑑 + 𝐿𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑  (1) 

where 𝐿𝑝𝑎𝑟𝑖𝑒𝑑 denotes the TL criterion for the paired data with 

shared labels, and 𝐿𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑  is the TL criterion for the unpaired 

data with different labels. The overall knowledge transfer 

mechanism of the proposed DSTC is shown in Fig. 1. 

For 𝐿𝑝𝑎𝑟𝑖𝑒𝑑, we aim to explore the inherent relation of shared 

labels between the paired data to guide the knowledge transfer. 

Several existing works indicate that SVM+ [13] can enhance 

the learning of the target classifier model through the guidance 

of the source domain by sharing label information. Thus, in this 

work, we introduce SVM+ to perform TL for the paired data 

with shared labels. The maximum margin criterion in SVM+ 

for paired data is given as: 

 𝐿𝑝𝑎𝑟𝑖𝑒𝑑 = 𝐦𝐢𝐧
𝐰1,𝐰2 

1

2
(‖𝐰1‖

2 + 𝛾‖𝐰2‖
𝟐) + 𝜆1𝐰2

𝑇𝐗2 (2) 

 𝑠. 𝑡.  𝐲⨀(𝐰1
𝑇𝐗1) ≥ 1 − 𝐰2

𝑇𝐗2  

where 𝐰1 is the weight matrix for the classification hyperplane 

in the target domain, and 𝐰2 is the slack parameter matrix in 

the source domain; 𝛾 > 0 is the trade-off parameter, and 𝜆1 is 

the penalty parameter to balance the hinge loss term and 

regularizer term. Here, ⨀  is the Hadamard product that 

performs element-wise multiplication. 

Through the slack function 𝐰2
𝑇𝐗2, the additional privileged 

information is introduced to regularize the hinge loss. Therefore, 

the classification hyperplane in the target domain can be tuned 

with the additional privileged information during the training 

stage, and then learning efficiency is further improved. [13]. 

 For 𝐿𝑢𝑛𝑝𝑎𝑟𝑖𝑒𝑑 , the distribution discrepancy between the 

source domain and target domain is minimized by finding an 

optimal transformation matrix. We assume that the knowledge 

can be propagated from both domains to the output space, and 

then the output of each target sample can be linearly 

reconstructed by those of the samples in the source domain, 

which is formulated as: 

 �̂�∗ = �̂�𝐐 (3) 

where �̂�∗ ≔ 𝐰1
𝑇𝐗1

∗ ∈ ℝ𝟏×𝑁𝑢 and �̂� ≔ 𝐰2
𝑇�̃�2 ∈ ℝ

𝟏×𝑁𝑝 . 

C. DSTC via BLR with Schatten-p Norm 

To make the relevant samples in both domains more 

interlaced than irrelevant samples, we propose to apply low-

rank regularization to assume that the output of each sample in 

the target domain can be reconstructed by those of its neighbors 

in the source domain. Furthermore, to make the output space in 

the target domain sufficiently discriminative, it is natural that 

the transformation matrix should transfer one class in the source 

domain to that of the target domain. Thus, the BLR 

regularization is further utilized to enhance the discriminant of 

the target classifier.  

Low-Rank Regularization. In our algorithm, the output of 

each sample in the target domain is reconstructed by those of 

its neighbors in the source domain. To capture the underlying 

correlations among the neighbors, the transformation matrix 𝐐 

should be low-rank [41], which can be formulated as: 

 𝐦𝐢𝐧
𝐰1,𝐰2 ,𝐐

‖𝐐‖∗ (4) 

 s.t. 𝐰1
𝑇�̃�1

∗ = 𝐰2
𝑇𝐗2𝐐  

where ‖∙‖∗ is the nuclear norm of a matrix.  

Block-Diagonal Low-Rank Regularization. Although low-

rank regularization is used to impose on 𝐐 reveals structure 

information, it cannot lead to a discriminative feature 

representation. We denote 𝐐 = [𝐪1, 𝐪2, ⋯ , 𝐪𝑁𝑢] ∈ ℝ
𝑁𝑝×𝑁𝑢  as 

an ideal transformation matrix, if it can transform information 

considering the class information [42]. 𝐪𝑖 ∈ ℝ
𝑁𝑝, 𝑖 = 1,⋯ ,𝑁𝑢, 

is the reconstruction code for the output of the 𝑖-th target sample. 

If the 𝑖-th target sample belongs to the 𝑘-th class (𝑘 = 1,⋯ , 𝐾), 

the entries in 𝐪𝑖 for this class should take nonzero values, while 

the others are all zeros. We further assume that the 

transformation matrix 𝐐  should be block-diagonal [38]. 

However, the absolute block-diagonal structure is not easy to 

learn. Therefore, it is expected that the off-block-diagonal 

entries in 𝐐 are as small as possible. To this end, we define: 

 𝐀 = 𝟏𝑁𝑝×𝑁𝑢 − [
𝟏𝑁𝑝1𝟏𝑁𝑢1

𝑇 𝟎

𝟎 𝟏𝑁𝑝2𝟏𝑁𝑢2
𝑇 ] (5) 

where 𝟏𝑁 denotes an all-one vector with 𝑁  elements and 𝟎 

denotes an all-zeros vector.  

To achieve a block-wise structure of 𝐐 with minimal off-

block-diagonal entries, we minimize the off-block-diagonal 

entries and preserve the block-diagonal entries in 𝐐  by 

minimizing: 

 𝐦𝐢𝐧
𝐐

∥ 𝐀⨀𝐐 ∥𝐹
2  (6) 

By integrating both Eq. (4) and Eq. (6), the objective function 

of BLR is formulated as:  

 𝐿𝐵𝐿𝑅 = 𝐦𝐢𝐧
𝐐
𝜆2‖𝐐‖∗ +

𝜆3

2
∥ 𝐀⨀𝐐 ∥𝐹

2   

 +
1

2
∥ 𝐰1

𝑇�̃�𝟏
∗ − 𝐲∗ ∥𝐹

2  (7) 

 s. t.  𝐰1
𝑇�̃�1

∗ = 𝐰2
𝑇𝐗2𝐐  

where ∥ 𝐰1
𝑇𝐗1

∗ − 𝐲∗ ∥𝐹
2  is the supervised term to minimize the 

training error in the target domain. 

Block-Diagonal Low-Rank Regularization with 

Schatten-p norm. Compared with the nuclear norm, the 

Schatten-p norm could recover signals more accurately while 

keeping a weaker restricted isometric property [43]. The 

Schatten-p norm of a matrix 𝐐 ∈ ℝ𝑁𝑝×𝑁𝑢 is defined as the 𝑙𝑝-

norm of its singular values as follows: 

 ‖𝐐‖𝑆𝑝 ≜ (∑ 𝜎𝑖
𝑝
(𝐐)

min (𝑁𝑝,𝑁𝑢)

𝑖=1
)

1

𝑝
 (8) 
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where 𝐐 = 𝐔 ∙ 𝐷𝑖𝑎𝑔(𝜎(𝐐)) ∙ 𝐕𝑇  is the SVD with two 

orthogonal matrices 𝐔 ∈ ℝ𝑁𝑝×𝑁𝑢  and 𝐔 ∈ ℝ𝑁𝑢×𝑁𝑢  where 

𝑁𝑢 =min(𝑁𝑝, 𝑁𝑢 ), 𝜎𝑖(𝐐)  is the 𝑖 -th entry of singular values 

vector, where 𝑖 = 1,2, … ,𝑚𝑖𝑛(𝑁𝑝,𝑁𝑢). It follows from Eq. (5) 

that the gap between rank function (i.e., 𝑝 = 0) and nuclear 

norm (i.e., 𝑝 = 1) can be bridged by setting 0 < 𝑝 < 1 [44][45]. 

More especially, when the rank number is relatively larger, the 

nonconvex Schatten-p norm can show its superiority over the 

nuclear norm for relaxing a matrix rank function.  

By replacing the nuclear norm in the original low-rank model, 

the model of Schatten-p norm-based LRR is obtained: 

 𝐦𝐢𝐧
𝐰1,𝐰2 ,𝐐

‖𝐐‖𝑆𝑝
𝑝

 (9) 

By replacing the nuclear norm in Eq. (7), the objective 

function of TL for the unpaired data 𝐿𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑  is formulated as:  

 𝐿𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 = 𝐦𝐢𝐧
𝐐
𝜆2‖𝐐‖𝑆𝑝

𝑝
+

𝜆3

2
∥ 𝐀⨀𝐐 ∥𝐹

2   

 +
1

2
∥ 𝐰1

𝑇�̃�𝟏
∗ − 𝐲∗ ∥𝐹

2  (10) 

 s. t.  𝐰1
𝑇�̃�1

∗ = 𝐰2
𝑇𝐗2𝐐  

The detailed TL strategy for unpaired data in DSTC is shown 

in Fig. 2. It can be found that DSTC also incorporates the label 

knowledge into the classifier for TL between the unpaired data 

with different labels. 

 

 
Fig. 2: Illustration of the unpaired TL strategy in DSTC. 𝐗2  and 𝐗1

∗  are the 

source and target domains, respectively. They are separately transformed to the 

output space. Then, the BLR regularized TL is adopted to transfer knowledge 
and enhance the discriminative ability of the classifier in the target domain. 

 

 Combining 𝐿𝑝𝑎𝑟𝑖𝑒𝑑  and 𝐿𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 , we obtain the final 

formulation of the proposed DSTC as follows: 

 𝑳 = 𝐦𝐢𝐧
𝐰𝟏,𝐰𝟐,𝐐

1

2
(‖𝐰1‖

2 + 𝛾‖𝐰2‖
2) + 𝜆1𝐰2

𝑻�̃�𝟐  

 +𝜆2‖𝐐‖𝑆𝑝
𝑝
+
𝜆3

2
∥ 𝐀⨀𝐐 ∥𝐹

2+
1

2
∥ 𝐰1

𝑇�̃�1
∗ − 𝐲∗ ∥𝐹

2  (11) 

 𝑠. 𝑡. 𝐰1
𝑇𝐗1

∗ = 𝐰2
𝑇𝐗2𝐐 and 𝐲⨀(𝐰1

𝑇�̃�1) ≥ 𝟏 − 𝐰2
𝑇�̃�2  

where 𝜆1, 𝜆2, and 𝜆3 are trade-off parameters. 

Based on Eq. (11), the LUPI mechanism in DSTC utilizes the 

shared labels of the paired data to maximize the margin between 

two classes. Meanwhile, DSTC also transfers knowledge 

between the two modalities of the unpaired data to further 

optimize the model. Minimizing ‖𝐐‖𝑆𝑝
𝑝

 guides to reveal the 

underlying structure of the data in both domains. Besides, 

minimization of ∥ 𝐀⨀𝐐 ∥𝐹
2  guides the off-block-diagonal 

entries in 𝐐 to be as small as possible, which makes the margin 

between classes in the target domain to be enlarged. 

D. Optimization 

The objective function in Eq.(11) is not jointly convex with 

respect to all variables. Thus, we utilize an alternating direction 

method to solve the problem efficiently. To achieve this, we 

first introduce two auxiliary variables 𝐙 = 𝐐  and 𝐄 = 1 −

𝐲⨀(𝐰1
𝑇𝐗1) − 𝐰2

𝑇�̃�2 to make the problem separable, and then 

construct the augmented Lagrangian function. The problem of 

Eq. (11) can be rewritten as: 

 ℒ(𝐰1, 𝐰2, 𝐐, 𝐙, 𝐄, 𝛂, 𝛃) =
1

2
(‖𝐰1‖

2 + 𝛾‖𝐰2‖
2)  

 +𝜆1𝐰2
𝑇�̃�2+𝜆2 ‖𝐙‖𝑆𝑝

𝑝
+

𝜆3

2
∥ 𝐀⨀𝐐 ∥𝐹

2+Φ(𝛃, 𝐙 − 𝐐)  

 +(𝐄)+ +
1

2
∥ 𝐰1

𝑇�̃�𝟏
∗ − 𝐲∗ ∥𝐹

2+
1

2
∥ 𝐰1

𝑇𝐗1
∗ −𝐰2

𝑇𝐗2𝐐 ∥𝐹
2   

 +Φ(𝛂, 𝐄 − 1 + 𝐲⨀(𝐰1
𝑇𝐗1) + 𝐰2

𝑇𝐗2) (12) 

where (𝑢)+ ≔ max(𝑢, 0) keeps the input scalar u unchanged if 

u is non-negative, and otherwise zero. The extension of vectors 

and matrices is simply applied element-wise. In addition, the 

Φ(∙) operation is defined as: 

 Φ(𝐌,𝐍) =
𝜇

2
+
𝜆2

2
‖𝐍‖𝐹

2 + 〈𝐌,𝐍〉 (13) 

where 𝜇  is a positive penalty scalar. 𝛂 ∈ ℝ1×𝑁𝑝 and  𝛃 ∈

ℝ𝑁𝑝×𝑁𝑢 are Lagrangian multipliers.  

1) Updating 𝐰1:  

By fixing the irrelevant terms with respect to 𝐰1, and setting 

the derivative with respect to 𝐰1  to be zero, a closed-form 

solution for 𝐰1 can be given as: 

 𝐰1 = (𝐈 + 2𝐗1
∗𝐗1

∗𝑇 + 𝜇1𝐗1𝐗1
𝑇
)
−1

[�̃�1
∗𝐐𝑇𝐗2

𝑇
𝐰𝟐 + 𝐗1

∗𝐲∗𝑇  

 −𝐗𝟏(𝐲⨀𝛂
𝑻) − 𝜇1�̃�𝟏 (𝐲⨀(𝐄 − 𝟏 + 𝐰2

𝑇𝐗2)
𝑻
)] (14) 

where 𝜇1 is a positive penalty scalar. 

2) Updating 𝐰2:  

Similar to 𝐰𝟏 , with other variables fixed, the model is 

differentiable to 𝐰2, the solution for 𝐰2 can be derived as: 

 𝐰2 = (𝛾𝐈 + 2�̃�2𝐐𝐐
𝑇𝐗2

𝑇
)
−1

[�̃�2(−𝛂 − 𝜆1)
𝑇  

 −2𝐗2𝐐�̃�1
∗𝑇𝐰1 − 𝜇1𝐗2 (𝐄 − 1 + (𝐲⨀𝐰1

𝑇�̃�1)
𝑇
)] (15) 

3) Updating 𝐄:  

Picking out the terms related to 𝐄, we seek the minimum of 

each element in E and get the following updating formula: 

 𝐄 = 𝛀⨀(1 − 𝐲⨀(𝐰1
𝑇�̃�1) − 𝐰2

𝑇𝐗2) (1 +
2𝛂

𝜇1
)  

 +�̅�⨀(𝟏 − 𝐲⨀〈𝐰𝟏, 𝐗𝟏〉 − 〈𝐰2
𝑇 , 𝐗𝟐〉) (16) 

where 𝛀 is an indicator matrix which is computed as  

 𝛀 = (𝟏 − 𝐲⨀(𝐰1
𝑇�̃�1) − 𝐰2

𝑇𝐗2 −
𝛂

𝝁1
) > 0 (17) 

4) Updating 𝐐:  

By dropping those terms without 𝐐 and setting the derivative 

with 𝐐 as zero, the solution for 𝐐 can be computed as: 

 𝐐 = (�̃�2
𝑇
𝐰2𝐰2

𝑇𝐗2 + 𝜇2𝐈 + 𝜆3𝐀𝐀
𝑇)

−1

  

 (�̃�𝟐
𝑻
𝐰𝟐𝐰𝟏

𝑻𝐗𝟏
∗ + 𝜇2𝐙 − 𝛃) (18) 

where 𝜇2 is a positive number. 

5) Updating 𝐙:  

Solving the Schatten-p norm of a matrix usually involves the 
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SVD of heavy computation at each iteration, limiting its 

application in large-scale problems. Inspired by the matrix 

factorization strategy for nuclear norm [46], Schatten-1/2 norm 

and Schatten-2/3 norm [47][48] are bounded by the Bi-

Frobenius norm, Bi-nuclear norm ∥∙∥𝐵𝑖𝑁  and 

Forbenius/Nuclear hybrid norm as ∥∙∥𝐹/𝑁, respectively. 

For matrix 𝐙 ∈ ℝ𝑁𝑝×𝑁𝑢  with 𝑟𝑎𝑛𝑘(𝐙) = 𝑟 ≤ 𝑑  (i.e., the 

upper bounding of the 𝑟𝑎𝑛𝑘(𝐙)). we can factorize Z into two 

smaller matrices 𝐔 ∈ ℝ𝑁𝑝×𝑑  and 𝐕 ∈ ℝ𝑁𝑢×𝑑  such that 𝐙 =

𝐔𝑇𝐕 . The corresponding alternative formulation can be 

formulated as: 

 

{
 
 
 

 
 
 𝑝 = 1: 𝐦𝐢𝐧

𝐙,𝐔,𝐕
 
𝜆2

2
(‖𝐔‖𝐹

2 + ‖𝐕‖𝐹
2) + Φ(𝛃, 𝐙 − 𝐐)

s. t. 𝐙 = 𝐔𝑇𝐕

𝑝 =
1

2
: 𝐦𝐢𝐧
𝐙,𝐔,𝐕

 
𝜆2

2
(‖𝐔‖∗ + ‖𝐕‖∗) + Φ(𝛃, 𝐙 − 𝐐)

s. t. 𝐙 = 𝐔𝑇𝐕

𝑝 =
2

3
: 𝐦𝐢𝐧
𝐙,𝐔,𝐕

 
𝜆2

3
(𝟐‖𝐔‖∗ + ‖𝐕‖𝐹

2) + Φ(𝛃, 𝐙 − 𝐐)

s. t. 𝐙 = 𝐔𝑇𝐕

 (19) 

By solving the Eq. (18) with different choices of 𝑝, we can 

update 𝐙. As 𝑝=2/3 is the combination of 𝑝 = 1 and 𝑝=1/2, we 

give the detailed solving procedure of  𝑝=2/3. 

When 𝑝=2/3, let 𝐌 = 𝐔. Updating 𝐔, 𝐕,𝐌, 𝐙 by solving: 

 𝐦𝐢𝐧 
𝐔
Φ(𝐒1, 𝐌 − 𝐔)+Φ(𝐒2, 𝐔

𝑇𝐕 − 𝐙) (20) 

 𝐦𝐢𝐧
𝐕

𝜆2

3
‖𝐕‖𝐹

2+Φ(𝐒2, 𝐔
𝑇𝐕 − 𝐙) (21) 

 𝐦𝐢𝐧
𝐌

2𝜆2

3
‖𝐌‖∗+Φ(𝐒1, 𝐌 − 𝐔) (22) 

 𝐦𝐢𝐧 
𝐙
Φ(𝛃, 𝐙 − 𝐐)+Φ(𝐒2, 𝐔

𝑇𝐕 − 𝐙) (23) 

where 𝐒1 and 𝐒2 are Lagrangian multipliers. 

Thus, 𝐔, 𝐕 can be updated by: 

 𝐔 = (𝐌 + 𝐒1 + 𝐙𝐕
𝑇 − 𝐒2𝐕

𝑇)−1(𝐈 + 𝐕𝑇𝐕) (24) 

 𝐕 = (
2𝜆2

3
+ 𝐔𝑇𝐔)

−1

(𝐔𝐙 − 𝐒2𝐔
𝑇) (25) 

Using the singular value thresholding (SVT) algorithm [49], 

the optimal 𝐌 can be derived as: 

 𝐌 = 𝒟𝜆1
𝜇2

(𝐔 −
𝐒1

𝜇2
) (26) 

where 𝒟𝜏(∙) is the singular value shrinkage operator. Given a 

matrix 𝐏, the singular value decomposition (SVD) of matrix 𝐏 

is performed as 𝐏 = 𝐔𝚺𝐕𝑻, where 𝚺 = 𝑑𝑖𝑎𝑔(𝜎𝑖), the operator 

can be computed by: 

 𝒟𝜏(𝐏) = 𝐔𝒟𝜏(𝚺)𝐕
𝑻, 𝒟𝜏(𝚺) = 𝑑𝑖𝑎𝑔((𝜎𝑖 − 𝜏)+) (27) 

Finally, 𝐙 can be updated by  

 𝐙 = (𝐐 + 𝐒2 + 𝐔
𝑇𝐕 − 𝛃) (28) 

6) Updating 𝛂, 𝛃:  

The multiplier 𝛂 and 𝛃 are updated by: 

 𝛂 = 𝛂 + θ(𝐄 − 1 + 𝐲⨀(𝐰1
𝑇𝐗1) + 𝐰2

𝑇𝐗2, (29) 

 𝛃 = 𝛃 + μ(𝐙 − 𝐐) (30) 

where θ = min(ρθ, θ𝑚𝑎𝑥) , μ = min(ρμ, μ𝑚𝑎𝑥) , and ρ is the 

learning rate. 

The detailed procedure of the proposed DSTC is summarized 

in Algorithm 1. 

IV. EXPERIMENTS AND RESULTS 

A. Datasets and Data Preprocessing 

The proposed DSTC algorithm was evaluated on two 

datasets, namely the ADNI dataset [50] and a bimodal breast 

ultrasound image (BBUI) dataset [51]. 

The used ADNI database includes 360 subjects (85 AD, 185 

MCI, and 90 NC) with paired MRI and PET data, and 377 

subjects (86 AD, 177 MCI, and 114 NC) with only MRI images. 

All the MRI images were scanned by the 1.5T devices. We 

extracted the region of interest (ROI) based features after the 

following image preprocessing on MRI data [52], including 

anterior commissure-posterior commissure (AC-PC) correction, 

intensity inhomogeneity correction by N3 algorithm [53], skull-

stripping and removal of cerebellum with the algorithms by 

Wang et al. [54]. All images were then segmented into three 

tissues, i.e., grey matter, white matter and cerebrospinal fluid, 

by the FAST algorithm [55]. After an MRI was registered to a 

brain template with 93 manually labeled ROIs by HAMMER 

[56], the volumes of gray matter tissue were then calculated as 

a feature for each ROI. Thus, there were a total of 93 features 

corresponding to 93 ROIs. A PET image was then aligned to its 

corresponding MRI by a rigid registration, and then the average 

intensity value of each ROI was computed as a feature. 

Consequently, we finally extracted 93-dimensional features 

from MRI and PET images, respectively. Note that all the 

samples used in this work were baseline visits. Please refer to 

[57][58][59] for more details on the feature extraction of MRI 

and PET images, respectively. 

The BBUI dataset was acquired from the Nanjing Drum 

Tower Hospital. It includes 106 pairs of bimodal ultrasound 

images from 52 benign tumor patients and 54 malignant tumor 

patients, and additional 158 single-modal BUS images from 77 

benign tumor patients and 81 malignant tumor patients. The 

approval from the ethics committee of the hospital was obtained, 

and all patients had signed informed consent. All lesions were 

underwent biopsy and pathologically proven. Both the BUS and 

Algorithm 1: Learning procedure of DSTC 

Input: paired bimodal data {𝐗1, 𝐗2, 𝐲}, 

the single-modal data {𝐗1
∗ , 𝐲∗}; 

Output: Parameters of target classifier: 𝐰1; 

1: Construct the objective function 𝑳 using (11); 

2: for 𝑗 =1, 2, …, T 

3:  Update 𝐰1 according to Eq. (14); 

4:  Update 𝐰2 according to Eq. (15); 

5:  Compute 𝐄 according to Eq. (16); 

6:  Update 𝐐 according to Eq. (18); 

7:  Compute 𝐙 according to Eq. (28); 

8:  Update 𝛂 according to Eq. (29); 

9:  Update 𝛃 according to Eq. (30); 

10:  if |𝑳(𝒋) − 𝑳(𝒋−𝟏)| < ε then 

11:   Go to Output; 

12:  end if 

13: end 

14: return solution 
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EUS images were simultaneously scanned by the Mindary 

Resona7 ultrasound scanner with the L11-3 linear-array probe. 

A rectangle ROI, including the tumor region, was selected by 

an experienced sinologist from each ultrasound image. The 

statistical feature descriptors were calculated from the 

intensities of all pixels, including the mean, standard deviation, 

coefficient of variance, skewness, kurtosis, the entropy of 

histogram, area ratio, combined area ratio, and several 

percentiles. The texture features were extracted from the gray-

level co-occurrence matrix (GLCM), including the energy, 

contrast, homogeneity, and entropy of GLCM. Moreover, the 

Hu moment invariants were also extracted as features. A total 

of 71-dimensional features were thus generated from each ROI 

in both BUS and EUS images. Please refer to reference [60] for 

more details about feature extraction. 

In the experiment, we selected the widely used BUS as the 

target domain and EUS as the source domain in the BBUI 

dataset, and MRI as the target domain and PET as the source 

domain in the ADNI dataset. 

B. Experimental Setup  

To validate the effectiveness of the proposed DSTC, we 

compare it with the following related algorithms:  

1) SVM: The widely used SVM algorithm was performed on 

MRI without TL. 

2) LRR-SVM: It is a two-stage learning algorithm, which first 

trains the LRR model to generate a shared feature 

representation from both the source and target domains, 

and then feeds the new features to SVM for classification. 

3) SVM+ [14]: The fast SVM+ algorithm, an improved 

version of the original SVM+, was compared as a baseline. 

4) PMT-SVM [61]: It is a widely used TL SVM based on the 

projective model. 

5) CT-SVM [62]: It is a TL-based SVM that incorporates 

correlation regularization for cross-domain recognition.  

6) DTSL-LRSR [35]: It learns a discriminative transfer 

subspace via low-rank and sparse representation. 

7) GSL [63]: It is a guide subspace learning-based TL 

algorithm that learns an invariant, discriminative, and 

domain agnostic subspace by subspace guidance, low-

rank-based data guidance, and label guidance. 

8) CRTL [36]: It combines low-rank and sparse constraints on 

the class-specific reconstruction coefficient matrix to 

preserve global and local data structures. 

9) LSDT [64]: It is a reconstruction-based TL algorithm, 

which learns a sparse reconstruction coefficient matrix 

between the target and source domains in some latent space 

for domain adaptation. 

10) MCTL [65]: It is a manifold criterion guided TL algorithm, 

which aims to learn a latent common subspace via a 

projection matrix for target and source domains. 

All above algorithms perform different kinds of TL except 

SVM, among which SVM+, PMT-SVM, and CT-SVM conduct 

the classifier-level TL, while LRR-SVM, DSTL-LRSR, GSL, 

CRTL, LSDT, and MCTL are the low-rank-based feature-level 

TL algorithms.  

We further conducted the ablation experiments to evaluate 

the effectiveness of DSTC: 

1) DSTC-LR: It is performed low-rank regularization on the 

proposed DSTC for ablation study. 

2) DSTC-BLR: It is performed BLR regularization on the 

proposed DSTC for ablation study. 

3) DSTC-BLRsp: We use DSTC-BLRsp to distinguish the 

proposed DSTC and the abovementioned ablation studies. 

The five-fold nested cross-validation strategy was applied to 

all algorithms on both datasets [66]. The inner loop was 

repeated three times to find optimal hyperparameters, and the 

outer loop was repeated five times to evaluate the performance 

of the model. All the compared algorithms and DSTC used the 

same training/testing split on two datasets. The commonly used 

classification accuracy (ACC), sensitivity (SEN), specificity 

(SPE), Youden index (YI), positive predictive value (PPV), and 

negative predictive value (NPV) were selected as evaluation 

indices. The receiver operating characteristic (ROC), and the 

area under the curve (AUC) were also selected as evaluation 

indices. The results were reported in the format of mean ± SD 

(standard deviation). 

We adopted a grid search strategy to search the optimal 

hyperparameters across a wider range. Table I shows the 

searching strategy ranges of all the parameters in all algorithms.  

 
TABLE I 

THE SEARCHING STRATEGY RANGE OF PARAMETERS 

Algorithms The searching strategy range of parameters 

SVM 𝐶: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} 

LRR-SVM 𝐶: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} 

SVM+ 
𝐶: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}; 

𝛾: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} 

PMT-SVM 𝜏: {10-5, 10-4, …, 103, 104, 105} 

CT-SVM 

𝜌: {0, 0.2, 0.4, 0.6, 0.8, 1}; 

𝑎: {1, 5, 10, 15, 20}; 

𝐶: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} 

DTSL-

LRSR 

𝛼: {10-4, 10-3, …, 101, 102, 103}; 

𝛽: {10-4, 10-3, …, 101, 102, 103};  

GSL 

𝛼:{10-4, 10-3, …, 101, 102, 103}; 

𝛽: {10-4, 10-3, …, 101, 102, 103};  

𝜆: {10-4, 10-3, …, 101, 102, 103} 

𝐶: {10-3, 10-2, 10-1, 100, 101, 102, 103, 104} 

CRTL 𝜎: {0.1, 0.2, 0.3, …, 1.8, 1.9, 2.0} 

LSDT 
𝜆1: { 100, 101, 102, 103, 104} 

𝜆2: { 100, 101, 102, 103, 104} 

MCTL 
𝜏: {0, 10-1, 100, 101, 102, 103}; 

𝜆1: {10-4, 10-3, …, 101, 102, 103} 

DSTC 

𝛾: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}; 

𝜆1: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}; 

𝜆2: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}; 

𝜆3: {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} 

 

C. Comparisons with Different 𝑝 

We conduct the following experiments to compare the 

classification performance of our DSTC under the different 

choices of parameter 𝑝, with 𝑝=1 (nuclear norm), 𝑝=1/2, and 

𝑝=2/3. The results are shown in Fig. 3. 
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(a) 
 

 

(b) 

Fig. 3: The classification performance with varied parameter 𝑝 of the proposed 

DSTC on the task of (a) AD vs. NC, (b) BUS-based breast cancer classification. 

 
 

The best performance for both AD and breast cancer is 

achieved by 𝑝=2/3, since it obtains a better balance between 

enforcing low-rank and separating sparse outliers. Thus, we fix 

parameter 𝑝=2/3 throughout the experiments in this paper. 

D. Results on MRI-based AD Classification 

Table Ⅱ shows results comparison of different algorithms for 

the AD classification task. From Table Ⅱ, it can be observed 

that the proposed DSTC algorithm outperforms all the other 

compared algorithms, indicating its effectiveness. Moreover, it 

can be obtained that SVM+ achieves better classification 

performance than LRR-SVM, which indicates the superiority 

of the LUPI paradigm. Specifically, DSTC achieves the best 

performance with the best mean classification accuracy of 

90.14±1.37%, sensitivity of 91.34±3.09%, specificity of 

87.17±3.54%, YI of 78.51±3.23%, F1 score of 91.00±2.23%, 

PPV of 90.68±1.78%, and NPV of 88.16±4.97%, which 

improves at least 4.69%, 2.87%, 2.49%, 7.92%, 3.87%, 3.51%, 

and 3.8% on the corresponding indices over the other TL 

algorithms. This is mainly because that the proposed DSTC 

makes full use of the shared labels to effectively guide 

knowledge transfer and transfer auxiliary knowledge between 

unpaired data with different labels. 

Table Ⅲ shows the results of ablation experiments for AD 

classification. We can see that DSTC-BLR improves of 1.52%, 

2.05%, 2.17%, 1.89%, 1.59%, and 1.04% on accuracy, 

sensitivity, YI, F1 score, PPV, and NPV, respectively, over 

DSTC-LR. It indicates that the BLR helps to promote the 

discriminative ability of different classes with improved 

performance of DSTC-BLR. Moreover, DSTC-BLRSP achieves 

the improvements of 1.54%, 0.8%, 2.07%, 2.87%, 1.75%, 

2.57%, and 1.34% on accuracy, sensitivity, specificity, YI, F1 

score, PPV, and NPV, respectively, over DSTC-BLR. It further 

indicates the effectiveness of the Schatten-𝑝 norm in recovering 

the low-rank matrix. 

Fig. 4 shows ROC curves and the corresponding AUC values 

for different algorithms. The proposed DSTC-BLRSP algorithm 

achieves the best AUC value of 0.960, which further indicates 

its effectiveness.  
 

 

TABLE Ⅱ 
CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS FOR AD CLASSIFICATION (UNIT: %) 

 ACC SEN SPE YI F1 PPV NPV 

SVM 80.87±1.75 81.54±5.99 79.85±7.15 61.39±3.97 80.70±4.21 80.35±6.65 80.48±8.61 

LRR-SVM 81.88±2.68 82.16±4.72 80.83±6.34 62.99±6.12 82.03±4.41 82.13±6.07 80.66±5.05 

SVM+ 82.88±2.72 82.94±5.55 83.27±7.45 66.21±7.57 82.51±4.46 82.53±7.21 81.58±9.90 

PMT-SVM 83.30±3.54 83.24±5.80 82.46±6.14 65.70±7.53 83.79±5.04 84.61±6.37 80.39±9.05 

CT SVM 83.68±3.39 82.97±5.74 83.63±5.02 66.60±6.87 83.93±5.18 85.10±6.23 81.05±6.36 

DTSL-LRSR 84.54±4.19 83.61±5.35 84.97±5.08 68.58±8.58 84.81±5.53 86.19±6.84 81.05±8.23 

GSL 83.68±2.97 81.94±4.73 84.68±4.02 66.62±5.70 83.74±4.89 85.78±6.16 79.75±6.36 

CRTL 84.61±3.78 85.91±5.25 81.93±6.80 67.84±7.68 86.40±3.88 87.17±5.10 80.34±7.75 

LSDT  85.27±1.83 86.65±3.42 83.94±4.55 70.59±3.23 85.64±3.19 85.04±6.44 84.36±5.72 

MCTL 85.45±4.02 88.47±7.35 81.05±6.34 69.52±7.84 87.13±4.01 86.33±4.63 84.05±10.76 

DSTC 90.14±1.37 91.34±3.09 87.17±3.54 78.51±3.23 91.00±2.23 90.68±1.78 88.16±4.97 

 
TABLE Ⅲ 

ABLATION EXPERIMENT RESULTS FOR AD CLASSIFICATION (UNIT: %) 

 ACC SEN SPE YI F1 PPV NPV 

DSTC-LR 87.08±2.84 88.49±4.05 84.98±3.84 73.47±5.20 87.36±4.23 86.52±6.35 85.78±7.75 

DSTC-BLR 88.60±2.45 90.54±2.81 85.10±3.79 75.64±4.86 89.25±4.15 88.11±5.94 86.82±6.96 

DSTC-BLRSP 90.14±1.37 91.34±3.09 87.17±3.54 78.51±3.23 91.00±2.23 90.68±1.78 88.16±4.97 
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Fig. 4: ROC curves and AUC values of different algorithms for MRI-based AD 
classification. 

E. Results on BUS-based Breast Cancer Classification 

Table Ⅳ gives the classification results of different 

compared algorithms on the BUS-based CAD for breast cancer 

with EUS as the source domain. Similar to Table Ⅱ, DSTC again 

outperforms all the compared algorithms, with the best mean 

classification accuracy of 88.41±1.33%, sensitivity of 

87.90±4.03%, specificity of 89.22±4.09%, YI of 77.12±3.19%, 

F1 of 86.58±2.18%, PPV of 85.69±5.42%, and NPV of 

90.54±3.89%. DSTC achieves significant improvements over 

the baseline SVM on all the indices. Moreover, DSTC improves 

at least 3.52%, 4.28%, 6.12%, 1.51%, and 2.39% on 

classification accuracy, specificity, YI, F1 score, and NPV over 

the other TL algorithms. It indicates that DSTC can improve 

classification performance by simultaneously transferring 

knowledge between both the paired data with shared labels and 

the unpaired data with different labels. 

Table Ⅴ shows the results of ablation experiments for breast 

cancer classification. It can be observed that DSTC-BLR 

improves 0.87%, 0.81%, 1.28%, 1.14%, 1.22%, and 0.79% on 

classification accuracy, sensitivity, YI, F1 score, PPV, and NPV, 

respectively, over DSTC-LR, which suggests that BLR can 

enhance the discriminative ability of classifier. Moreover, 

DSTC-BLRSP obtains the improvements of 1.85%, 0.84%, 

2.74%, 3.58%, and 3.15%, respectively, on accuracy, 

sensitivity, specificity, YI, and NPV, respectively, over DSTC-

BLR, which further indicates the of the effectiveness of the 

Schatten-𝑝 norm for low rank matrix. 

Fig. 5 shows ROC curves and the corresponding AUC values 

for different and ablation algorithms. The proposed DSTC-

BLRSP algorithm again achieves the best AUC value of 0.928.  
 

 
 

Fig. 5: ROC curves and AUC values of different algorithms for BUS-based 

breast cancer classification. 

 

TABLE Ⅳ 

CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS FOR BREAST TUMOR CLASSIFICATION (UNIT: %) 

 ACC SEN SPE YI F1 PPV NPV 

SVM 76.79±2.77 77.40±6.15 77.32±7.87 54.72±6.94 76.71±3.56 77.03±8.66 77.03±6.69 

LRR-SVM 78.02±3.50 77.39±5.88 79.50±7.79 56.89±7.95 77.99±3.99 79.45±8.29 76.92±6.46 

SVM+ 79.98±2.67 86.06±8.25 76.14±10.53 62.23±4.88 80.21±3.22 76.85±10.48 85.40±8.77 

PMT-SVM 80.76±2.92 82.97±5.31 79.45±8.79 62.43v6.90 81.35±2.79 80.74±8.48 81.27±6.76 

CT SVM 79.90±2.61 82.68±2.95 77.30±6.28 59.98±6.08 80.85±2.70 79.48±6.24 80.23±4.80 

DTSL-LRSR 81.65±1.75 84.48±4.35 79.25±1.79 63.74±3.99 81.96±2.40 79.93±4.65 83.17±6.06 

GSL 83.50±2.51 85.08±5.13 83.01±7.32 68.09±5.31 82.69±3.27 81.30±8.56 85.95±5.67 

CRTL 83.52±2.35 85.66±5.06 82.68±7.12 68.34±5.06 83.14±3.12 81.67±8.65 85.50±6.75 

LSDT  84.89±2.04 87.53±4.45 83.47±5.58 71.00±4.08 83.79±2.57 81.07±7.46 88.15±6.67 

MCTL 84.64±1.40 85.14±4.58 84.94±4.85 70.08±3.30 85.07±1.79 85.55±5.77 83.71±6.22 

DSTC 88.41±1.33 87.90±4.03 89.22±4.09 77.12±3.19 86.58±2.18 85.69±5.42 90.54±3.89 

 

TABLE Ⅴ 
ABLATION EXPERIMENT RESULTS FOR BREAST TUMOR CLASSIFICATION (UNIT: %) 

 ACC SEN SPE YI F1 PPV NPV 

DSTC-LR 85.69±2.20 86.25±4.99 86.01±6.20 72.26±4.12 84.97±2.46 84.42±6.98 86.60±7.37 

DSTC-BLR 86.56±1.37 87.06±4.78 86.48±4.01 73.54±2.51 86.11±1.68 85.64±4.73 87.39±5.84 

DSTC-BLRSP 88.41±1.33 87.90±4.03 89.22±4.09 77.12±3.19 86.58±2.18 85.69±5.42 90.54±3.89 
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F. Convergence Analysis 

Fig. 6 shows the convergence property of proposed 

DSTC-BLRSP, DSTC-BLR, and DSTC-LR on both AD and 

breast classification. We can see that the objective function 

of the proposed DSTC decreases when the iteration number 

increases. It can also be seen that the proposed algorithms 

converge within 20 iterations on both classification tasks. 

Due to the inexact solution of DSTC-LR and DSTC-BLR, the 

objective function of DSTC-LR does not monotonically 

decrease. However, it still decreases sharply, indicating that the 

proposed DSTC has a good convergence property. 

 

   

(a)                                                  (b) 

 

Fig. 6: Converge curve of the proposed DSTC-BLR and DSTC-LR on the task 
of (a) AD vs. NC. (b) BUS-based breast cancer classification. 

V. DISCUSSION 

In this work, we propose a novel DSTC algorithm to solve 

the clinical problem of modality imbalance. We first integrate 

the SVM+ classifier and LRR into a unified framework, and 

then introduce the Schatten-p norm to achieve a tighter 

approximation of the rank function. The experimental results on 

the ADNI dataset and BBUI dataset indicate the effectiveness 

of the proposed DSTC. 

In clinical practice, single-modal imaging-based CAD 

generally has wide and more flexible applications than multi-

modal methods. Extensive studies demonstrate that TL can 

effectively improve the single-modal imaging-based CAD by 

transferring knowledge from other related imaging modalities 

or diseases [5]. However, existing TL methods, such as LUPI 

and the conventional TL, still have some limitations in solving 

the special clinical issue of modality imbalance. For example, 

the LUPI paradigm can only handle the paired data with shared 

labels, and the remaining unpaired data should be discarded 

[16][17][18][19]. In fact, the discarded samples may also 

provide valuable information for improving classification 

performance. On the other hand, the conventional TL 

algorithms generally require sufficient training samples in the 

source domain to provide enough transferable knowledge [9]. 

However, in clinical practice, the commonly used modalities 

are always adopted as the target domain, and the source domain 

generally cannot provide enough data when the source domain 

modalities are not completely popularized. This clinical 

phenomenon makes knowledge transfer between the source and 

target domains more difficult.  

Moreover, the samples in both domains are commonly 

labeled, but the conventional TL algorithms automatically 

aligned domain divergence as the unsupervised domain 

adaption according to the domain adaption theory [20]. Thus, 

these algorithms rarely utilize this label information to reduce 

the discrepancy between the two domains so as to guide the 

transfer process [28][30]. The proposed DSTC integrates the 

SVM+ classifier and LRR into a unified framework, which can 

perform knowledge transfer between both paired data and 

unpaired data. Compared with existing TL methods, DSTC is 

more flexible for applications and can address the modality 

imbalance problem to a certain extent. It is worth noting that if 

there are also some single-modal imaging data in the source 

domain, the proposed can well handle this scenario. The 

additional single-model imaging data in the source domain only 

increases the numbers of the unpaired data, and does not change 

the training procedure of the DSTC algorithm. 

Although LRR can shrink the unfavorable representation 

from off-block-diagonal elements, and thus obtain more 

discriminative representation, it may overpenalize large 

singular values for solving the nuclear norm minimization 

problem [39]. To this end, the label knowledge is incorporated 

into the LRR in classifier for TL between the unpaired data with 

different labels, which is different from the previous LRR-

based TL methods that evaluate the feature correlation between 

the source and target domains in feature space. Besides, the 

Schatten-p norm minimization with small p-values requires 

significantly fewer measurements [67]. Furthermore, although 

there are no shared labels for the unpaired data, The Schatten-p 

norm ensures that the transformation matrix should transfer one 

class in the source domain to that of the target domain. 

The proposed DSTC still has some room for improvement. It 

is known that deep learning has achieved great success in the 

field of medical image analysis. In our previous work [51], both 

the maximum mean discrepancy criterion-based feature-level 

TL in convolutional neural network (CNN) and the SVM+ 

classifier are integrated into the same framework. Thus, the 

proposed DSTC can be embedded into the deep learning models 

to conduct both the feature- and classifier-level knowledge 

transfer simultaneously, which is sure to further improve the 

transfer performance. Moreover, the softmax-based LUPI 

algorithm should be studied to replace SVM+ in DSTC in the 

future, which can handle the multi-class classification for more 

CAD tasks, and also can be easily integrated into the CNN 

models. 

VI. CONCLUSION 

This work proposes a novel DSTC algorithm that integrates 

the SVM+ classifier and LRR into a unified framework. The 

experimental results indicate that the proposed DSTC 

outperforms all the compared algorithms, including the 

conventional SVM+ and TL classifiers, and the state-of-the-art 

low-rank regularized TL algorithms. These comparison results 

also suggest that the proposed doubly supervised TL method 

has the potential in more applications for medical imaging-

based CAD. 
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