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Abstract

Background—Identification of the physiological changes that occur during the early stages of

Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment

of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the

brain proteome.

Methods—We applied a novel approach to screen a panel of ~190 CSF analytes quantified by

multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease

Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative

(ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case

control status in these analyses.

Results—We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional

modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12

other correlated analytes increase as the disease progresses. These results were validated using the

traditional case control status model. Stratification of our dataset demonstrated that increases in

these analytes occur very early in the disease course and were apparent even in non-demented

individuals with AD pathology (low ptau181, low Aβ42) compared to pathology-negative elderly

control subjects (low ptau181, high Aβ42). FABP-Aβ42 ratio demonstrates a similar hazard ratio

for disease conversion to ptau181-Aβ42 even though the overlap in classification is incomplete

suggesting that FABP contributes independent information as a predictor

Conclusions—Our results clearly indicate that the approach presented here can be employed to

correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very

early stages of the disease.

Keywords

Alzheimer’s disease; Biomarkers; cerebrospinal fluid (CSF); Ptau-Aβ42 ratio; Heart Fatty Acid
binding protein; Brain Proteome - Rules Based Medicine Discovery Multi-Analyte Profile 1.0

Introduction

There is accumulating evidence that the clinical symptoms of Alzheimer’s disease (AD) are

preceded by a long preclinical phase in which pathological protein aggregation occurs in the

brain (1–4). β-amyloid plaques are estimated to develop ~15–20 years before the onset of

cognitive impairment and neurofibrillary tangles begin to accumulate at least 5 years before

symptom onset (2; 3). Furthermore, substantial neurodegeneration is apparent in even mildly

symptomatic individuals (1). These observations, together with the failure of clinical trials in

symptomatic individuals illustrate the urgent need for additional biomarkers that
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characterize the preclinical stage of disease and enable treatment before the brain undergoes

irreversible neurological damage (2–4).

Analytes in cerebrospinal fluid (CSF) reflect the brain proteome and are a rich source of

biomarkers. In fact, CSF levels of Aβ42, tau, and tau phosphorylated at threonine 181

(ptau181) are related to AD by their association with the presence of β-amyloid deposition,

neurofibrillary tangles and neuronal cell death (5–8). Similarly, changes in CSF Visinin-like

protein-1 (VILIP-1), a neuronal calcium-sensor protein employed as a marker of neuronal

injury (2; 9), and and chitinase-3 like-1, and chitinase 3-like 1, cartilage glycoprotein-39

(YKL-40), an inflammatory biomarker (10), have also been associated with AD.

Additionally, both ptau181-Aβ42 ratio (ptau181/Aβ42) and YKL-40-Aβ42 ratio (YKL-40/

Aβ42) have been shown to be strong predictors of conversion from cognitively normal to

very mild/mild cognitive impairment over a 3~4 year period (l; 10; 11). Despite this, there is

a need for additional biomarkers to identify and characterize the “preclinical” stage

(pathology present with cognition intact) of the disease and to track the effectiveness of

therapies. A challenge for clinical trials is to identify a target population of individuals with

a high risk for converting from cognitively normal to impaired over a relatively short period

of time. Currently elevated ptau181-Aβ42 ratio is used in some clinical trials to select such

individuals. Other predictive biomarkers are needed both for the selection of patient cohorts

for clinical trials and for monitoring disease progression and the success of disease-

modifying treatment outcomes. Ultimately, biomarkers will enable early intervention in

presymptomatic individuals with the goal of delaying the onset or preventing the cognitive

decline seen in AD before the brain is irreversibly injured (2).

Two features of AD result in misclassification of subjects and severely reduce the power of

traditional clinical measures in the search for novel biomarkers: 30% of cognitively normal

individuals show Alzheimer’s-type neuropathology by age 75yrs (2; 3; 12; 13) and current

clinical diagnostic methods are only 83% accurate as defined by neuropathological

confirmation at autopsy (14). To identify new CSF analytes associated with AD we took a

novel approach by developing a quantitative measure of “caseness”, employing the CSF

ptau181-Aβ42 ratio (ptau181/Aβ42) as an endophenotype for AD. This status independent

criterion avoids the misclassification of controls and cases, noted above and is a continuous

quantitative trait. Both of these characteristics improve the power of this approach over

traditional clinical measures.

Methods and Materials

Subjects

Participants enrolled in the Knight-ADRC (N=311) were diagnosed based on criteria from

the National Institute of Neurological and Communicative Diseases and Stroke-Alzheimer’s

Disease and Related Disorders Association (NINCDS-ADRDA) (15). CSF collection,

processing and assessment is described elsewhere: (11; 16). Data for subjects included in the

ADNI study (N=292) were accessed from the ADNI website (See Supplementary Methods

and Table SI in Supplement 1) (8). Processing, aliquoting and storage were performed

according to the ADNI Biomarker Core Laboratory Standard Operating Procedures (http://

adni.loni.ucla.edu). Additional details for these two studies are provided elsewhere (10; 17)
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Genotyping of rs7412 and rs429358 which define the APOE ε2/ε3/ε4 isoforms were

previously described (17; 18).

Expression studies were carried out using cDNA obtained from the parietal lobe from 82

AD cases (86±7years; 45%male; and 41% APOE ε4 carriers) and 39 cognitively normal

individuals (85±9; 41% male; and 23% APOE ε4 carriers) obtained through the Knight-

ADRC Neuropathology Core. Real-time data were analyzed using the comparative Ct

method (19) (See Supplementary Methods in Supplement 1).

Analyte Measurement

The samples from both the Knight-ADRC and ADNI were evaluated by Rules Based

Medicine, Inc. (RBM) (Austin, TX) for levels of 190 analytes using the Human Discovery

Multi-Analyte Profile (MAP) 1.0 panel and a Luminex 100 platform. Only analytes with

<10% missing values in each study were analyzed. The protocol used to quantify plasma

analytes is described elsewhere (20; 21).

CSF Aβ42, and phospho-tau181 (ptau181) levels for the Knight-ADRC participants were

obtained in duplicate by the WU-ADRC Biomarker Core by quantitative ELISA (Innotest;

Innogenetics, Ghent, Belgium)(16). Quantification of CSF VILIP-1 and YKL-40 is

described elsewhere (9; 10). For the ADNI participants the CSF Aβ42, and ptau181 levels

were measured using the multiplex xMAP Luminex platform as described (8).

Statistical analysis

The analyses were performed in R (The R Foundation for Statistical Computing v2.14.1).

Analytes were log-transformed to approximate a normal distribution, and outliers were

removed. The associations with the CSF ptau181-Aβ42 ratio were tested using linear

regression models, adjusting for age at LP; sex and APOE genotype, encoded as five levels

based on the genetic risk (APOE ε22=0; ε23=l; ε33=2; ε24=3; ε34=4; and ε44=5). For

analyses using the combined datasets we included study as a covariate. We used two

approaches to correct for the multiple testing associated with examining 64 analytes:

Bonferroni correction and SimpleM. For 64 tests the Bonferroni corrected p-value

corresponding to p=0.05 is p= 7.81E-04. Because this method is most likely too

conservative given the correlation structure of the analyte measurements, we also extended

and applied the method termed SimpleM(22) (see Supplementary Methods in Supplement

1), and obtained corrected p-values =1.39E-03 and 1.43E-03 for the Knight-ADRC and

ADNI studies respectively. Logistic regression was used to test for association with CDR

(CDR=0 vs. CDR>0), adjusting for the covariates mentioned above. Kaplan-Meier survival

curves were calculated employing the function survfit, and the Cox proportional hazard

regression models were tested using the function coxph (package survival; v2.36–10). The

Cox proportional hazard tests were adjusted by age, sex, APOE genotype, and study.

Hierarchical clustering was calculated using the complete linkage method provided

(function hclust), and heatmaps were plotted using the function heatmap.2 (package gplots

v2.10.1). Multivariate stepwise model selection (Table 3AB) was performed using the

function stepAIC (package MASS, v7.3–16), optimizing for the Bayesian Information

Criterion; and included age, sex and APOE genotype as fixed covariates. The minimal
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multivariate model shown in Table 3C was obtained by selecting the subset of analytes

identified as significant in each study (Table 3AB). Moreover, we constrained this list to the

analytes that were also significant (p-value<5.0E-2) when the identified models were

applied to the other study. The principal component analysis was performed in R running the

method prcomp (package stats v 2.14.1) The random forest results were obtained executing

the function randomForest (implemented in the package randomForest, v4.6–6) to grow

1000 trees, and the importance measure was calculated by the mean decrease in accuracy.

Results

CSF ptau181/Aβ42 confers more statistical power to identify CSF analytes associated to AD

We first evaluated the statistical power of the CSF ptau181/Aβ42 measure compared to the

Clinical Dementia Rating (CDR) at lumbar puncture (LP), using CSF levels of VILIP-1(9)

and YKL-40(10), that had previously been measured and shown to be associated with CDR

and CDR–sum of boxes in the Knight-ADRC study (11; 20; 23). The CSF ptau181-Aβ42

ratio has previously been shown to be a strong predictor of both the conversion of

cognitively normal subjects to very mild or mild dementia (11), and the rate of decline

across time in individuals with very mild dementia (24). The CSF ptau181-Aβ42 ratio is

strongly associated with CDR at LP (p-value=5.05E-16).

We employed linear regression models to analyze the association of CSF VILIP-1 with the

log-transformed levels of CSF ptau181-Aβ42 ratio, and observed a much stronger association

than with CDR (p-value=3.18E-17 vs. 3.80E-05). The CSF ptau181-Aβ42 ratio remained

more powerful than CDR even when converted to a dichotomous variable using two

partitioning criteria. First, we split the subjects by the median value of CSF ptau181-Aβ42

ratio and second we compared the subjects from the upper tercile to the lower two terciles

(intended to resemble the CDR distribution of the Knight-ADRC series). Both logistic

models that included the CSF ratio showed much stronger associations (p-values=7.11E-08

and 4.00E-09 respectively) than the CDR model (p-value=3.80E-05).

Similarly, the association of YKL-40 with CSF ptau181-Aβ42 ratio was stronger than CDR

(p-value =8.99E-09 vs. 7.76E-04 respectively). We also tested the normal quantile

transformed CSF ratio and the same two dichotomous representations for YKL-40. In every

case, the test that included the CSF ratio was more statistically significant than the CDR

model (p-value=9.42E-06 and 3.04E-05 partitioning by the median and by the upper tercile

respectively). Together these analyses provide a strong rationale for our subsequent use of

the CSF ptau181-Aβ42 ratio for novel biomarker discovery.

Correlation structure of the CSF analytes

We applied stringent quality criteria to the CSF analyte measurements, selecting only those

that were measurable in >90% of the subjects in each series (n=311 and 293 for the Knight-

ADRC and the ADNI series). A total of 64 CSF analytes met this criterion.

Analysis of the correlation matrix for the combined measurements of both datasets showed

clear patterns in the analyte levels (Table S2 in Supplement 2). The hierarchical clustering

method identified 10 clusters containing 48 of the CSF analytes, with a within-cluster
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correlation r2>0.50. Six clusters included 2 analytes, and the other 4 clusters included 3, 4, 9

and 20 analytes (Figure S1 in Supplement 1). The remaining 16 CSF analytes showed only

weak correlations to other analytes in the dataset (mean r2=0.16, and maximum r2=0.35).

CSF Analytes associated with ptau181-Aβ42 ratio

Next we tested for association between each of the CSF analytes and the ptau181-Aβ42 ratio.

Thirteen analytes were significantly associated with CSF ptau181-Aβ42 ratio (p-

value<1.0E-3) and exhibited the same direction of effect in the Knight-ADRC and the ADNI

series (Table 1; and see Table S3 in Supplement 1 for the exhaustive list of the analytes

evaluated); Eleven of these CSF analytes showed a mean r2=0.58 with each other (Figure 1),

while the other two, Sortilin (S0RT1) and Tumor necrosis factor–Related Apoptosis-

Inducing Ligand R3 (TRAIL-R3), exhibited a slightly lower correlation (r2=0.49 and 0.48,

respectively) (Figure 1).

CSF Heart Fatty acid binding protein (H-FABP) was the most significantly associated

analyte in both series (p-value= 4.77E-18 and 7.40E-18 for the Knight-ADRC and the ADNI

studies, respectively), and was associated with higher levels of H-FABP in individuals with

CSF ptau181/Aβ42 ratios indicative of AD (Figure 2a): the regression coefficients for the two

studies (Table 1) did not differ significantly (F-Test p-value=0.24).

To investigate whether these associations were apparent in non-demented and demented

individuals we combined the subjects from both studies and stratified them by the presence

or absence of cognitive impairment. A total of 236 subjects had a CDR>0 and low CSF

Aβ42 levels, which we employed as a proxy for brain Aβ42 deposition (16) (cutoff=500

pg/ml and 192 pg/ml for the Knight-ADRC and the ADNI studies, respectively). To evaluate

the impact of Aβ42 deposition we further stratified the 300 cognitively normal subjects

(CDR=0) by their CSF Aβ42 levels, distinguishing the 192 “clean” controls from the 105

preclinical subjects with lower CSF Aβ42 levels. Each of the 13 CSF analytes was

significantly associated (p-value<5.0E-4) in every stratum (Table 2). The ANCOVA

analysis revealed that the effect size for CSF H-FABP was significantly lower in controls,

compared to the inferred preclinical and clinically assessed cognitively impaired individuals

(p-value=4.44E-04 and 5.87E-03 respectively); and that there was no significant difference

in the effect observed in the preclinical and symptomatic cases (Figure 3). This is reflected

in the different levels of CSF H-FABP among the strata. While H-FABP levels discriminate

cognitively impaired individuals from preclinical AD (p-value= 5.05-03), the levels of H-

FABP are not significantly different in preclinical individuals from the clean controls,

indicating that early amyloid-β plaque deposition does not affect the association of CSF H-

FABP with the CSF ptau181-Aβ42 ratio. Importantly, the association of these analytes with

the CSF ptau181-Aβ42 ratio is robust to the presence of clinically assessed cognitively

impaired individuals with uncharacteristic high levels of CSF Aβ42. (Table S4 in

Supplement 1).

In contrast, the plasma levels of these analytes were not significantly associated with CSF

ptau181-Aβ42 ratio (p-values>0.05) in either the Knight-ADRC or the ADNI series

(consistent with the null correlation between the CSF and plasma levels of each analyte)

(Table S5 in Supplement 1).
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CSF heart fatty acid binding protein is associated with ptau181-Aβ42 ratio

To determine whether each of the novel analytes provided independent information to

predict the CSF ptaui181-Aβ42 ratio, we combined the subjects from both studies and

evaluated joint models that included CSF H-FABP and other CSF analytes from the

candidate set, one at a time. Only Hepatocyte Growth Factor (HGF) remained significant

after inclusion of CSF H-FABP in the model (p-value=8.56E-06) (Table S6 in Supplement

1).

CSF APOE, which is also associated with the CSF ptaui181-Aβ42 ratio (Table 1) has

previously been reported to be associated with AD (17). To determine whether the

previously reported association of CSF APOE levels with CSF ptau181-Aβ42 ratio is

independent of the other analytes, we extended the models to include CSF APOE. Only CSF

Angiopoietin 2 (ANGPT2) and CSF Angiotensin-Converting Enzyme (ACE) show a

decrease in the significance of their association (p-values=3.53E-03 and 3.34E-02), while

the other CSF analytes remained significant (p-value<1.0E-3) (Table S6 in Supplement 1),

indicating they are capturing additional information. Similarly, the joint analysis of CSF H-

FABP and VILIP-1(9) or YKL-40(10) demonstrated that CSF H-FABP is providing non-

redundant information to the predictive model for CSF ptau181-Aβ42 ratio (See text in

Supplement 1).

To determine whether CSF H-FABP levels were a strong predictor of future conversion to

CDR>0, we compared the association of CSF H-FABP levels with CDR at LP and CDR

after a mean of 4 yrs following LP. We tested the association of CSF H-FABP with CDR at

LP and found that it is significantly associated in the ADNI study but marginally associated

in the Knight-ADRC study (p-values= 1.55E-04 and 8.66E-02 respectively) (Figure 2b). We

also evaluated the association with the latest available evaluation of CDR (mean elapsed

years=4.29; and SD=2.30 years) and found it significant (p-value=3.72E-03) for the Knight-

ADRC study (36 converted from CDR=0 to CDR>0 and for the ADNI study (p-

value=6.17E-05; mean elapsed years=3.90; and SD=1.92 years). We observed a similar

trend when we analyzed the CDR sum of boxes (CDR-SB), (25) and the Mini-mental state

examination (MMSE) (26). H-FABP levels in the ADNI study were strongly associated with

both endophenotypes at LP and the latest available evaluations, while in the Knight-ADRC

study H-FABPH levels were significantly associated (p<0.05) only for the latest evaluations

(Table S7 in Supplement 1).

To test whether the mRNA expression of H-FABP is also associated with CDR, we

measured the mRNA levels in parietal lobe tissue from 112 subjects (73 AD cases and 39

controls) (27). mRNA levels of H-FABP in parietal lobe were not associated with expiration

CDR (p-value=0.76) or Braak and Braak staging of the pathology (p-value=0.46) (28).

CSF H-FABP as a predictor of developing cognitive impairment

To determine whether higher levels of CSF H-FABP predict conversion from CDR=0 to

CDR>0) we performed a survival analysis. The Cox regression analysis showed similar

hazard ratios for CSF H-FABP (Hazard ratio = 1.58, 95% CI = 1.02–2.44; p-value =

3.70-02), CSF ptau181 (2.04; 95% CI=1.11–3.71; p-value=1.91E-02) and CSF Aβ42 (2.93;
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95% CI = 1.15–7.42; p-value= 2.74E-02). In addition, we compared the survival curves for

CSF ptau181-Aβ42 ratio (11) and CSF H-FABP-Aβ42 ratio (29). Both ratios showed similar

results (Figure 4) (Cox proportional hazard: ratio=2.05 and 1.85; p-value=2.14E-03 and

3.93E-03; 95% CI= 1.29–3.27 and 1.21–2.79 for CSF ptau181/Aβ42 and CSF H-FABP/Aβ42

respectively). Importantly, only 62% of the subjects were assigned to the same tercile when

stratified by these ratios (i.e. P (QCSF ptau/Aβ42 = Q CSF H-FABP/Aβ42)=0.65). Additionally,

we observed that the CSF H-FABP-Aβ42 ratio is associated with CDR-SB (Cox proportional

hazard: ratio=1.76; p-value=2.83e-05; 95% CI= 1.35–2.29); and it is also associated with the

MMSE (Cox proportional hazard: ratio=1.74; p-value=1.47e-04; 95% CI= 1.30–2.32)

CSF Macrophage Migration Inhibitory Factor and Vascular Endothelial Growth Factor are
also associated with the CSF ptau181-Aβ42 ratio

We investigated whether multivariate models would detect analytes that did not show strong

evidence of association in single analyte models. Our approach included a discovery phase

in which we made use of stepwise regression analysis to optimize a multivariate model for

the CSF ptau181-Aβ42 ratio in one of the datasets, which was followed by a replication

phase, in which the model was applied in the second dataset.

The multivariate model optimized for the Knight-ADRC dataset (Table 3a) showed an

increased R2 (0.14 for the discovery set and 0.12 for the ADNI study). It included H-FABP

and HGF as well as CSF Vascular Endothelial Growth Factor (VEGF), Macrophage

Migration Inhibitory Factor (MIF), Thrombomodulin and Adiponectin (Table 3a). The

model optimized for the ADNI dataset (Table 3b) also increased the R2 for both datasets

(0.20 and 0.08 for the ADNI and Knight-ADRC dataset respectively). This model also

selected H-FABP, HGF, VEGF and MIF. We constructed a multivariate model with these

four analytes and observed that all of them remained significantly associated with CSF

ptau181-Aβ42 ratio in the two datasets (Table 3c), reflecting an increased goodness of fit for

the model (increment of R2=0.08 and 0.09 for the Knight-ADRC and the ADNI datasets,

respectively; Table 3c). To evaluate whether the correlation among the analytes produced

spurious results, we applying principal component analysis to these selected analytes and

evaluated a multivariate model with the values rotated. We found that that all of them

remained significant (p-value<0.05), indicating that regardless of their correlation these

analytes provide additional information.

CSF MIF levels show a trend toward association with the CSF ptau181-Aβ42 ratio in the

single analyte analysis (Table S3 in Supplement 1). Although CSF VEGF is mildly

positively associated in the single analyte analysis (Table S3 in Supplement 1), it has a

negative effect in the multivariate model. The stratified analysis revealed that the change of

direction occurs only in the cases (Figure S2 in Supplement 1).

The random forest method was also used to analyze these datasets and also highlighted the

importance of H-FABP, MIF, HGF and VEGF. These analytes are among the top 6 for the

Knight-ADRC dataset; and H-FABP, HGF and MIF are among the top 8 analytes for the

ADNI dataset (Table S8 in Supplement 1).
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Discussion

The goal of this study was to identify novel CSF biomarkers for AD using a discovery

dataset collected by the Knight ADRC and a replication cohort ascertained by ADNI.

Although the ascertainment and structure of the datasets is quite different, we were able to

identify several biomarkers that showed consistent effects across the two datasets. The RBM

discovery MAP 1.0 panel includes 64 analytes that are not totally independent of one

another. We made use of the correlation structure of these analytes to approximate the

number of independent tests, and consequently used this number to adjust our p-values for

multiple testing. Moreover, we employed this information to understand the apparent excess

of analytes associated with the CSF ptau181-Aβ42 ratio.

A novel feature of our study is the use of the CSF ptau181-Aβ42 ratio as the outcome

variable in our analyses rather than comparing the levels of the test analytes in cases versus

controls. The CSF ptau181-Aβ42 ratio provides several key advantages over the more

traditional approach. It captures the progression of the disease before the onset of clinical

symptoms by correcting the misclassification of control subjects with amyloid-β plaques. In

addition, this method also correctly assigns clinically demented individuals who do not have

Alzheimer’s disease. In a traditional analysis these individuals would be included as cases,

but when using the ptau181-Aβ42, ratio would be analyzed as non-AD dementias. We believe

that each of these factors contribute to the gain in statistical power of the CSF ptau181-Aβ42

ratio, that we observed comparing its performance to the usual case-control model in the

evaluation of the CSF levels of VILIP-1 and YKL-40.

The analytes associated with CSF ptau181-Aβ42 ratio were correlated with CSF ptau181 but

not Aβ42 (Figure 1), indicating that they do not reflect the very early Aβ – related events in

the development of the disease, but they do discriminate between preclinical and

symptomatic AD. Query of the Database for Annotation, Visualization and Integrated

Discovery (DAVID) (30) failed to identify any pathway that characterized the candidate set

of analytes.

CSF levels of H-FABP, the most significant analyte, were consistently associated with the

ptau181-Aβ42 ratio in both the Knight-ADRC and ADNI datasets, even when the model

included other reported biomarkers such as CSF VILIP-1 and YKL-40. Two previous

studies have reported the association of CSF H-FABP with AD in other smaller cohorts (31;

32). In the current study we show that this association is present even at very early stages of

the disease, as demonstrated by the analysis of cognitively normal subjects with evidence of

amyloid-β plaques. One limitation of our analysis is that although both studies are

longitudinal, the novel biomarkers have only been measured in cross sectional data. We are

therefore unable to address the role of FABP as a novel AD biomarker across the entire

course of disease at the current time. Despite this limitation of our study design, we used the

available longitudinal data to show how CSF H-FABP can be employed to predict the

conversion from cognitive normality to cognitive impairment. It still remains to be

determined whether addition of H-FABP in a model including both CSF ptau181 and Aβ42

levels improves the accuracy of predicting conversion to symptomatic AD. Subjects in

different terciles for the CSF H-FABP-Aβ42 and the CSF ptau181-Aβ42 ratios suggest this
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trend, but the studies included in our analysis did not provide statistical power to test this

hypothesis.

In contrast, H-FABP levels do not predict progression from CDR=0.5 to CDR>0.5, but it is

noteworthy that the number of subjects in this analysis is small (N=81) compared to the

analysis of conversion from CDR=0 to CDR>0 (N=219). Based on these results we believe

that H_FABP may be a very useful biomarker in staging preclinical AD

H-FABP is a member of a family of proteins characterized as lipid chaperones (33) that

transport lipids to specific compartments in the cell or even outside the cell (33). It has been

demonstrated that in vitro fatty acids induce Aβ assembly and modulate the rate of tau

polymer assembly (34). Furthermore, genetic studies have implicated several genes involved

in lipid metabolism as risk factors for AD, including APOE (35) and ABCA7 (36).

The multivariate analysis of the MAP 1.0 panel of analytes identified distinct complex

models for the Knight-ADRC and the ADNI datasets. Nevertheless, these models included a

common subset of analytes. CSF H-FABP is part of this subset of selected analytes, as well

as HGF, which was reported previously to discriminate AD subjects from other

neurodegenerative disorders (32). Similarly VEGF was reported to discriminate controls

from moderately-severe AD cases, but not from mild-AD subjects (31). We confirmed the

role of these analytes in our dataset by demonstrating an association with CDR at LP.

In summary, the employment of CSF ptau181-Aβ42 ratio as an endophenotype of AD led to

the identification of a set of 13 correlated analytes associated with the disease in two

independent cohorts. This set of candidate analytes is extended by 2 additional analytes,

which are significantly associated only in the context of multivariate models. Despite the

obvious differences in our two datasets (the ADNI study has many symptomatic individuals

and fewer nondemented controls while the Knight-ADRC study is largely composed of

controls and inferred preclinical AD samples), these analytes were consistently associated

with the CSF ptau181-Aβ42 ratio and thus AD. Our analysis suggests that these analytes are

capturing distinct information from that identified by the traditional analytes (CSF Aβ42 and

tau/ptau181) for the disease, and thus describe novel facets of disease pathogenesis. Analysis

of the role of these analytes as novel biomarkers of AD pathogenesis in additional datasets

will help to determine the specificity of these changes to AD. Longitudinal analyses will

also enable characterization of the temporal sequence of analyte changes in the pathological

cascade of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation among the analytes associated, CSF Aβ42 and ptau181 in the combined Knight-ADRC and the ADNI studies.
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Figure 2.
Distribution of CSF H-FABP in the combined Knight-ADRC and the ADNI studies.

A) Linear model of CSF H-FABP compared to CSF ptau/Aβ42; Boxplots for CSF H-FABP stratified by B) CDR at lumbar

puncture (LP) and C) latest ascertained CDR.
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Figure 3.
Distribution of CSF H-FABP, ptau181 and Aβ42 stratified by the cognitive status of the subjects (cognitive normal; preclinical;

and cognitive decline) in the combined Knight-ADRC and the ADNI studies..
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Figure 4.
Kaplan-Meyer (solid lines) and Cox survival (dashed lines) curves for the conversion (CDR=0 to CDR>0) for CSF ptau181/Aβ42

and CSF H-FABP/Aβ42. Only 7.46% of the subjects within the lowest tercile for CSF ptau-Aβ42 ratios converted after 5 years

(Figure 4a), compared to 23.18% and 27.14% of the subjects in the intermediate and higher terciles. Similarly, 8.69, 10.92 and

34.78% of the subjects within the lower, intermediate and higher terciles of CSF H-FABP/Aβ42 values had converted after 5

years.
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Table 3

Multivariate models. Stepwise optimization in A) the Knight-ADRC study, and B) the ADNI study. C) A

minimal model that includes the analytes commonly selected in A and B.

A) Inferred Knight-ADRC Model Replication on ADNI

p-value effect p-value effect

H-FABP 3.18E-08 0.44 1.74E-11 0.47

VEGF 1.01E-05 −0.63 1.85E-04 −0.66

TNF.RII 8.56E-04 0.63 1.08E-01 0.22

Thrombomodulin 2.03E-03 −0.37 1.01E-03 −0.39

ACE 2.25E-03 −0.36 8.66E-01 −0.02

Adiponectin 2.29E-03 0.17 7.98E-03 0.23

HGF 2.69E-03 0.51 5.60E-08 0.60

MIF 3.30E-03 0.33 5.88E-04 0.16

SAP 4.26E-03 −0.21 9.67E-01 0.00

CXCL9 8.17E-03 −0.14 9.23E-01 −0.01

FasL 1.12E-02 0.21 2.95E-01 −0.10

age 1.33E-01 0.01 3.17E-01 −0.01

sex 4.84E-01 −0.05 3.57E-01 −0.07

APOE Genotypes 2.80E-07 0.14 3.64E-11 0.19

R squared/BIC 0.50/−323.91 0.56/−222.42.68

B) Replication on Knight-ADRC Inferred ADNI Model

p-value effect p-value effect

H-FABP 2.50E-09 0.44 5.06E-16 0.50

HGF 2.39E-02 0.37 2.19E-11 0.68

VEGF 1.65E-04 −0.60 4.99E-06 −0.68

Complement 3 7.57E-01 −0.03 2.62E-05 −0.63

ANGPT2 4.04E-01 0.12 2.10E-04 0.41

APOA 1.13E-02 −0.26 2.58E-04 0.39

MIF 2.08E-02 0.33 6.71E-04 0.14

Fibrinogen 2.02E-01 0.09 1.73E-03 −0.12

Prolactin 6.80E-01 −0.04 9.88E-03 −0.26

TRAIL.R3 8.13E-01 0.04 1.70E-02 −0.28

sex 4.96E-01 0.05 8.60E-01 −0.01

age 7.24E-03 0.01 9.89E-01 0.00

APOE Genotypes 7.90E-08 0.16 6.16E-17 0.22

R squared/BIC 0.44/−296.91 0.60/−370.60
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C) Knight-ADRC ADNI

p-value effect p-value effect

H-FABP 6.44E-10 0.45 1.87E-14 0.50

HGF 3.25E-02 0.33 5.93E-09 0.51

MIF 6.27E-04 0.40 3.11E-04 0.16

VEGF 3.47E-05 −0.59 1.32E-06 −0.66

age 6.78E-03 0.01 3.51E-01 0.00

sex 3.27E-01 0.06 9.73E-01 0.00

APOE Genotypes 9.46E-09 0.16 1.44E-14 0.21

R squared/BIC 0.42/−336.92 0.53/−360.04
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