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Leading neuroimaging studies have pushed 3T MRI acquisition resolutions below 1.0 mm for improved structure 

definition and morphometry. Yet, only few, time-intensive automated image analysis pipelines have been vali- 

dated for high-resolution (HiRes) settings. Efficient deep learning approaches, on the other hand, rarely support 

more than one fixed resolution (usually 1.0 mm). Furthermore, the lack of a standard submillimeter resolution as 

well as limited availability of diverse HiRes data with sufficient coverage of scanner, age, diseases, or genetic vari- 

ance poses additional, unsolved challenges for training HiRes networks. Incorporating resolution-independence 

into deep learning-based segmentation, i.e., the ability to segment images at their native resolution across a range 

of different voxel sizes, promises to overcome these challenges, yet no such approach currently exists. We now 

fill this gap by introducing a Voxel-size Independent Neural Network (VINN) for resolution-independent seg- 

mentation tasks and present FastSurferVINN, which (i) establishes and implements resolution-independence for 

deep learning as the first method simultaneously supporting 0.7–1.0 mm whole brain segmentation, (ii) signif- 

icantly outperforms state-of-the-art methods across resolutions, and (iii) mitigates the data imbalance problem 

present in HiRes datasets. Overall, internal resolution-independence mutually benefits both HiRes and 1.0 mm 

MRI segmentation. With our rigorously validated FastSurferVINN we distribute a rapid tool for morphometric 

neuroimage analysis. The VINN architecture, furthermore, represents an efficient resolution-independent seg- 

mentation method for wider application. 
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. Introduction 

While neuroimaging pipelines have benefited substantially from the

tandardization of Magnetic Resonance Imaging (MRI) at 1.0 mm, the

esulting fixed-resolution paradigm now hinders transition to high-

esolution (HiRes) MRI. With the hope of advancing quantification of

tructural detail, increasing explanatory power, and improving our un-

erstanding of the brain in health and disease ( Glasser et al., 2013;

ellerio et al., 2014; Solano-Castiella et al., 2011; Stankiewicz et al.,

011; Wattjes et al., 2006; Zaretskaya et al., 2018 ), leading large-

ohort neuroimaging studies have started to acquire structural MRI at

T field strength and 0.7–0.9 mm resolutions (see Section 2.1 ). How-

ver, the lack of reference segmentations and limited diversity of HiRes

RI datasets (e.g. regarding scanner, disease, genetic variation) lead

o substantial limitations for bias-free method development and val-
Abbreviations: HiRes, high-resolution; LowRes, low-resolution; VINN, Voxel-size In  

cale augmentation; SF, scale factor; PVE, partial volume effect. 
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dation. Additionally, since no de-facto standard resolution exists for

iRes imaging, neuroimaging tools introducing HiRes processing ( Bazin

t al., 2014; Gaser and Dahnke, 2016; Huntenburg et al., 2018; Yushke-

ich et al., 2014; Zaretskaya et al., 2018 ) have to provide resolution-

ndependence instead of following the fixed-resolution paradigm. Al-

hough Convolutional Neural Networks (CNNs) deliver convincing per-

ormance under the fixed-resolution paradigm ( Chen et al., 2018; Coupé

t al., 2020; Henschel et al., 2020; Huo et al., 2019; Ito et al., 2019;

cClure et al., 2019; Mehta et al., 2017; Roy et al., 2019; Sun et al.,

019; Wachinger et al., 2018 ), no methodological solution leverages ex-

licit knowledge of the native image resolution, consequently limiting

ll output segmentations to one pre-defined voxel size and potentially

gnoring important structural detail specifically for submillimeter scans.

y introducing Voxel-size Independent Neural Networks (Voxel-size

ndependent Neural Networks (VINNs)), we now leverage the diversity
 January 2022 
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Fig. 1. Resolution-independence in deep learning networks: A. Dedicated fixed-resolution convolutional neural networks (CNNs) only work on the resolution they are 

trained on and are limited by the availability and quality of corresponding datasets. B. One single resolution-ignorant CNN can learn to segment multiple resolutions 

by training on a diverse dataset. External scale augmentation (+exSA, B. left) simulates resolutions with few or no training cases by resampling the image and 

the reference segmentation map. Here, however, lossy interpolation and resulting artefacts, especially from nearest-neighbour interpolation of discrete label maps, 

may result in a loss of structural details and sub-optimal performance. C. Our voxel size independent neural network (VINN) avoids interpolation of the images 

and discrete labels by integrating the interpolation step into the network architecture. Further, the explicit transition from the native resolution to a normalized 

internal resolution facilitates an understanding of the difference between image features (MultiRes blocks with distances measured in voxels) and anatomical features 

(FixedRes inner blocks with normalized distances). 
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f widely available 1.0 mm MRIs and enrich the model with details de-

ived from HiRes MRI, achieving not only resolution-independence but

mproving segmentation performance across resolutions. 

For resolution-independent deep learning, we establish two core re-

uirements: 1. Native-resolution segmentation: the network’s input and

utput for training and crucially inference should be at the native resolu-

ion, to avoid any external resampling. 2. Resolution-independence: the

etwork should be able to learn and predict from images at a range of

ifferent resolutions. Segmentation for HiRes images additionally aims

o improve the quality of fine structures (e.g. narrow sulci, gyri and

hite matter (WM) details). To achieve high-quality whole brain seg-

entation and avoid training biases, a neural network should general-

ze to various resolutions (seen and unseen during training) and datasets

ith different characteristics (e.g. with respect to scanners, demograph-

cs, diseases, genetic variation) ideally sharing and transferring knowl-

dge between resolutions. 

While some traditional neuroimaging pipelines fulfill these require-

ents ( Bazin et al., 2014; Gaser and Dahnke, 2016; Huntenburg et al.,

018; Yushkevich et al., 2014; Zaretskaya et al., 2018 ), no related work

irectly addresses these challenges with deep learning. Fig. 1 illustrates

wo adaptations to form baseline solutions: A. dedicated fixed-resolution

etworks and B. a single resolution-ignorant CNN that accepts multiple

esolutions through training. Training one dedicated network per reso-

ution (A.) trades the potential of a larger, more diverse training corpus

or compatibility with the native resolution raising bias and generaliza-

ion limitations (there are, for example, currently no HiRes neurode-

eneration datasets). However, a fixed-resolution network trained and

valuated on its native resolution represents an upper bound for achiev-

ble performance under same-size training datasets. On the other hand,

f one network is naïvely trained on multiple resolutions (B.), each con-

olutional layer has to learn to generalize across scales as the network

annot easily differentiate between different voxel sizes (i.e. resolution-

gnorant), which allocates network capacity to this task. To support this

rocess and reduce potential bias from missing or unbalanced resolu-
2 
ion data, one can add external scale augmentation (+exSA) by resam-

ling individual images and reference labels during training. This, how-

ver, induces information loss and interpolation artefacts, e.g. from lossy

earest-neighbour (NN) interpolation of discrete label maps. Since nei-

her approach (A. or B.) has been implemented or compared for sub-

illimeter whole brain segmentation, we introduce respective baseline

odels utilizing our proposed, optimized micro-architecture in all mod-

ls for a fair comparison. 

To overcome limitations of both approaches (A. and B.), we pro-

ose a VINN with innovations including its micro-architecture and

he addition of a HiRes loss. The core contribution, however, is the

etwork-integrated resolution-normalization to support native segmen-

ation at various voxel sizes. In fact, any UNet-based architecture

 Ronneberger et al., 2015 ) is, by design, a multi-scale approach where

ooling operations represent fixed-factor integer down- and up-scale

ransitions (usually by the scale factor 2). Our network-integrated

esolution-normalization in VINN now replaces this fixed scale transi-

ion with a flexible re-scaling for the first and last scale transitions. This

as the advantage of placing our interpolation operation at a position

here information loss naturally occurs (down- or up-scaling via pool-

ng). As illustrated in Fig. 1 C., we retain compatibility with a range of

esolutions for input and output (MultiRes) by shifting the interpola-

ion into the architecture itself. At the same time, we leverage the lower

ariance of perceived size differences in the inner normalized resolution

locks (FixedRes). This has the advantages of (i) retaining important im-

ge information at the native resolution in the MultiRes blocks, (ii) in-

erpolating multi-dimensional continuous feature maps rather than dis-

rete labels or single slice images hence avoiding lossy NN interpola-

ion and extending contextual neighbourhood information during the

esolution-normalization, and (iii) disentangling perceived voxel versus

ctual structure size differences inside the VINN. 

Especially the last point may have been underappreciated so far: Due

o the nature of convolutional layers, CNNs ‘perceive’ distances and thus

tructure sizes by number of voxels rather than millimeters. Therefore,
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Fig. 2. Image resolution affects the detail of discrete segmentation label maps 

and derived measures such as surface models and thickness. A. The low- 

resolution image is less detailed and causes partial volume effects (PVEs) by 

accumulating signals across tissue boundaries into larger voxels, whereas B. 

High-resolution images and derived segmentations allow more precise region 

delineation and capture details, e.g. for improved shape or thickness analysis 

(white arrows). 
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2 www.nitrc.org . 
he original voxel size impacts perceived distances for baseline archi-

ectures, requiring them to cover larger size variety during training and

nference in the multi-resolution context. The VINN, on the other hand,

ransitions from a voxel-based distance context in the MultiRes blocks to

 standardized distance context in FixedRes via the network-integrated

esolution-normalization and, therefore, releases network capacity in

he inner layers for other tasks. 

.1. Contributions 

All in all, our VINN, for the first time, effectively addresses the chal-

enges associated with HiRes MRI (i.e. multiple resolutions and reduced

ariety in datasets) in a single framework. We extensively test varia-

ions of the network architectures and demonstrate that inherent biases

ntroduced by the unavailability of certain HiRes scans are reduced by

ransferring information across resolutions via our network-integrated

esolution-normalization. 

Specifically, we show that our VINN 

i. segments 3T brain MRI at their native resolutions (0.7–1.0 mm) into

95 regions in less than 1 min on the GPU and generalizes robustly

to unseen resolutions within and beyond the training corpus, 

ii. significantly outperforms state-of-the-art scale augmentations as

well as fixed-resolution models with respect to segmentation accu-

racy and generalizability with an optimized architecture, and 

ii. improves accuracy by combining and leveraging both the increased

structural information from submillimeter 3T brain scans and the

generalizability to intensity, scanner, disease, and other variations

from standard 1.0 mm MRIs. 

. Related work 

.1. High-resolution MRI 

In neuroimaging, spatial resolution is of great importance as the

vailable voxel size directly dictates the degree to which fine-scale sub-

ortical and cortical structures, specifically narrow gyri and sulci, can be

esolved in an MRI. In particular, the diversity of tissue types in a single

oxel, which heavily depends on its size, influences the signal inten-

ity known as the partial volume effect (PVE). A strong partial volume

ffect (PVE) specifically complicates the delineation of tissue borders

n the voxel grid ( Glasser et al., 2013; Zaretskaya et al., 2018 ). HiRes

mages offer finer sampling of the underlying information, thereby di-

ectly reduce PVE and enable more accurate segmentations, improved

olume-based measurements, morphometry, surface placement, and de-

ived thickness measures (see Fig. 2 ) ( Glasser et al., 2013; Luesebrink

t al., 2013; Zaretskaya et al., 2018 ). 

It is, therefore, not surprising that HiRes MRIs are becoming increas-

ngly popular within the neuroimaging community. While most estab-

ished large-scale neuroimaging studies acquire data at 1.0 mm, the cur-

ent and next generation studies are shifting to submillimeter resolutions

e.g. Human Connectome Project (HCP) ( Glasser et al., 2013 ), Rhineland

tudy (RS) ( Breteler et al., 2014 ), Autism Brain Imaging Data Exchange

I (ABIDE-II) ( Di Martino et al., 2017 ), TRACK-PD ( Wolters et al., 2020 )).

owever, to date the consolidated superset of publicly available 3T

iRes neuroimages is sparse, unbalanced, and heterogeneous with re-

pect to available submillimeter resolutions (e.g. HCP: 0.7 and 0.8,

BIDE-II: 0.7-0.9, RS: 0.8). Especially the limited data variety at each

pecific resolution poses a real challenge for data-driven computational

ethods, which translates into limited compatibility with scanners, age

pans, and especially disease groups. Moreover, unbalanced training

ata can easily lead to the introduction of biases into the model. 

While suffering from stronger PVEs and ensuing detrimental ef-

ects on segmentation accuracy, the available collection of standardized

.0 mm images, on the other hand, is large and diverse. Consequently,

 wide coverage of age-groups, diseases, genetic variants, and scanners
3 
an be retrieved from the rich reservoir of openly available MRI data

ources (e.g. OpenfMRI database ( Poldrack et al., 2013; Poldrack and

orgolewski, 2014 ), OpenNeuro ( Markiewicz et al., 2021 ), NITRC-IR 

2 ).

urthermore, manual reference labels for validation are exclusively pub-

ished openly for 1.0 mm ( Klein and Tourville, 2012 ). To address dataset

parsity and bias at submillimeter resolutions, we believe data-driven

omputational methods require built-in resolution-independence. Only

 single model that spans across the available resolutions can simulta-

eously provide benefits for both HiRes and standard 1.0 mm image

nalysis. 

.2. Automated analysis of high-resolution images 

Traditionally, common neuroimaging pipelines have been developed

nd optimized for 1.0 mm voxels ( Fischl et al., 2002; Friston et al.,

007; Gaser and Dahnke, 2016; Jenkinson et al., 2012; Zhang et al.,

001 ) representing the de-facto standard for years. FreeSurfer offers a

alidated HiRes stream ( Zaretskaya et al., 2018 ), which provides sub-

egmentation of the cortex into 31 structures per hemisphere (DKTatlas)

 Klein and Tourville, 2012 ). However, one problem here is the extended

rocessing time caused by the cubic voxel increase – a common issue

imiting applicability of traditional tools to large cohort studies. 

The introduction of CNNs for whole brain segmentation has substan-

ially reduced processing times to seconds on the GPU. Recent works em-

loy both 2.5D and 3D UNet architectures ( Billot et al., 2020; Chen et al.,

018; Coupé et al., 2020; Henschel et al., 2020; Huo et al., 2019; Iglesias

t al., 2021; Ito et al., 2019; McClure et al., 2019; Mehta et al., 2017; Roy

t al., 2019; Sun et al., 2019; Wachinger et al., 2018 ). Since GPU mem-

ry limitations render full volume 3D models impractical specifically for

igher number of feature channels and output classes, top performing

ethods process the volume in slices (QuickNat, FastSurfer ( Henschel

t al., 2020; Roy et al., 2019 )) or in large patches (DeepNat, SLANT,

http://www.nitrc.org
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ssemblyNet ( Coupé et al., 2020; Huo et al., 2019; Wachinger et al.,

018 )) and then leverage aggregation schemes to recombine predictions

nto the full volume. 

Despite their success for brain segmentation and other applications

o work has introduced deep learning for submillimeter whole brain

egmentation. Since CNNs require a large and diverse number of volume

nd segmentation pairs for effective training, the missing availability

f diverse training data hinders this resolution transition. Additionally,

he cubic relationship between resolution increase and GPU memory

equirements puts memory hungry 3D architectures at a disadvantage,

.g. factor of 2 . 92 = (1∕0 . 7) 3 memory demand for a 1 to 0.7 mm reduction

f voxel sizes. 

In the past, multi-branch segmentation frameworks ( Fu et al., 2018;

erard et al., 2020; Gu et al., 2018; Kamnitsas et al., 2017; Liu et al.,

020; van Rijthoven et al., 2021; Wang et al., 2017; Xu et al., 2021; Yang

nd Peng, 2018; Zheng et al., 2021 ) have been used to avoid memory is-

ues while simultaneously leveraging HiRes information. Here, multiple

otentially cross-linked pathways are dedicated to specific down-scaled

r cropped versions of the original image. The same principle is em-

loyed in other scale-aware networks ( Chen et al., 2016; Huang et al.,

021; Li et al., 2019 ) by implementing more trans-scale connections

r combinations of different dilation and kernel sizes. To further avoid

ub-optimal equal weighting of different scale information, the networks

ften include attention mechanisms ( Chen et al., 2016; Qin et al., 2018;

u et al., 2021; Yang and Peng, 2018; Zheng et al., 2021 ). In practice,

hese methods are only compatible with the discrete input and sub-level

esolutions they were trained on, leaving subvoxel scaling more com-

on in neuroimaging data (0.7/0.8/1) unexploited. In fact, their intend

s to explicitly integrate information from multiple image scales rather

han achieve multi-resolution compatibility. Critically, in neuroimaging

ettings the true scale is known (image resolution) while scale-aware

rchitectures assume this knowledge is not available. In VINN we in-

ect this explicit knowledge into the network at the spatial resolution

ormalization step. 

.3. Resolution-independence in deep learning 

Built-in resolution-independence in CNNs has not been described for

rain segmentation nor – to our knowledge – for any other segmenta-

ion tasks. Approaches such as ( Billot et al., 2020; Iglesias et al., 2021 )

re-sample input images (with associated reliability maps) to a common

esolution (here 1.0 mm) and provide outputs there, which makes them

nherently fixed-resolution techniques. While they can provide 1.0 mm

egmentations (and even images) for lower resolutional clinical scans

ia heavy augmentation, they can neither profit from submillimeter de-

ails, nor provide native HiRes segmentations. A transfer to higher reso-

utions would require retraining with a fixed submillimeter training set.

his is, however, problematic as (i) no standard submillimeter resolu-

ion exists, meaning one would either need to train multiple versions

r focus on the highest available resolution to retain input resolution-

ndependence, (ii) HiRes datasets, as mentioned before, demonstrate

ow subject variance (disease, age, genetics) making this approach sus-

eptible to training biases, and (iii) upscaling the 3D-UNet architecture

o 0.7 mm would require 2.9-times as much GPU memory surpassing

emory limits. 

Different from segmentation networks, state-of-the-art super-

esolution networks aim specifically at reconstructing a (fixed resolu-

ion) HiRes image based on a low-resolution (LowRes) input, also re-

uiring ground truth at the higher resolution. They often rely on pre-

ampling, i.e. using interpolation-based up-sampling methods to initial-

ze the desired output grid and fine-tune the features in the following

etwork ( Dong et al., 2016; Kim et al., 2016a; 2016b ). Using augmen-

ation, these networks are trained to restore images coming from vari-

us lower resolutions via a single model, similar to the discussed seg-

entation strategy ( Fig. 3 B.). While showing better performance than

edicated single-scale models (fixed input and fixed output resolution),
4 
re-sampling significantly increases the computational complexity and

ost of the architectures due to the increase in image size. To overcome

his limitation, interpolation-based post-sampling has been introduced

ecently ( Alao et al., 2021; Shen et al., 2021 ). Here, the up-sampling step

s shifted towards the end of the network architecture and performs the

nterpolation in the latent space. Interestingly, this post-sampling ap-

roach is as effective or even superior to the pre-sampling methods,

hile maintaining versatility with respect to the chosen output scale

 Alao et al., 2021; Shen et al., 2021 ). All these super-resolution archi-

ectures, in addition to not being aimed at segmentation, differ from our

pproach by transitioning once, from the input resolution to an output

esolution. In contrast, we insert two latent-space interpolation blocks

ransitioning both ways between the native and the inner resolution. 

More generally, multi-source domain adaptations (MSDAs) leverage

vailable data with different underlying distributions (i.e. resolutions

n our case). This field of research focuses on enhancing the general-

zation ability of a model by transferring knowledge between resource-

ull source domains (i.e. LowRes data) to a sparsely represented tar-

et domain (i.e. HiRes data) by transforming either the features in the

atent space or images on a pixel-level. In contrast to our resolution-

ormalization, the latent space transformations in MSDAs are based

n optimizing a discrepancy ( Guo et al., 2018; Peng et al., 2019; Zhu

t al., 2019 ) or adversarial loss ( Li et al., 2019; Wang et al., 2019; Xu

t al., 2018 ). These latent space alignments are, however, often insuf-

cient for segmentation tasks due to their focus on high-level informa-

ion only ( Zhao et al., 2019 ). To circumvent this problem, intermediate

omain generators have been proposed and successfully applied for se-

antic segmentation ( Hoffman et al., 2018; Russo et al., 2019; Zhao

t al., 2019 ). Here, a pixel-level alignment between source and target

omain is learned through Generative adversarial networks. However,

hese MSDA methods are limited to a single target distribution. Exten-

ion to multi-targets is a relatively unexplored area with only a few pub-

ished methods for classification tasks so far ( Chen et al., 2019; Gholami

t al., 2020; Jin et al., 2020; Liu et al., 2020; Peng et al., 2019; Roy et al.,

021; Yang et al., 2020 ). 

Spatial transformers ( Jaderberg et al., 2015 ) represent another tech-

ology relying on internal interpolations as an important building block.

ere, spatial invariance (registration) is targeted via a learnable affine

ransformation inside the network (localisation network). After the

ource feature map coordinates are computed (grid calculator), inten-

ity values for each target pixel are determined via bi-linear interpola-

ion (sampler). Spatial transformers hence attempt to implicitly learn

ata representations in a resolution-ignorant way. While our approach

hares grid calculation and interpolation within the network with spa-

ial transformers, our training approach is different: Instead of a local-

sation network, we directly determine the sampling-grid based on the

nput scale factors, i.e. the ratio between the native input resolution and

he desired normalized inner resolution. Hence, we explicitly integrate

nowledge about the image resolutions into the architecture. As a re-

ult, computational complexity is reduced while still achieving desired

esolution-independence. 

. Material and methods 

.1. Datasets 

The following three submillimeter MRI datasets were selected for

raining, testing, and validation of FastSurferVINN. An extended list of

he used 1.0 mm datasets can be found in the Section A.3 including a

abulated overview of all used datasets ( Table 3 ). When not specifically

entioned otherwise, all sets are balanced for gender, age, and study.

articipants of the individual studies gave informed consent in accor-

ance with the Institutional Review Board at each of the participating

ites. Complete ethic statements are available at the respective study

ebpages. 
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Fig. 3. Voxel size independence in FastSurferVINN. Flexible transitions between resolutions become possible by replacement of (un)pooling with our network- 

integrated resolution-normalization (green) after the first encoder (pre-IDB) and before the last decoder block (post-CDB). Scale transitions between the other 

competitive dense blocks (CDB) remain as standard MaxPool and UnPool operations. Each CDB is composed of four sequences of parametric rectified linear unit 

(PReLU), convolution (Conv) and batch normalization (BN). In the first two encoder blocks ((pre)-IDB), the PReLU is replaced with a BN to normalize the inputs. 
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ABIDE-II The Autism Brain Imaging Data Exchange II Di Mar-

ino et al. (2017) contains cross-sectional data and focuses on autism

pectrum disorders. The dataset contains 1114 subjects from 19 dif-

erent institutions in total and is accessible online 3 . The 3D magneti-

ation prepared rapid gradient echo (MPRAGE) sequence, or a vendor

pecific variant, was used to acquire all data using 3T GE, Philips, and

iemens scanners. Voxel resolutions are not standardized across sites al-

hough most scans are acquired at 1.0 mm. In this work we use only the

TH_1 sub-cohort, which provides 0.9 mm HiRes scans acquired on a 3T

hilips Achieva with a repetition time (TR) of 3 ms, an echo time (TE)

f 3.90 ms, an inversion time (TI) of 1.15 ms, and flip angle of 8 ◦. Since

iRes datasets often exclusively feature Siemens scanners, a subset of

5 HiRes scans from ABIDE-II ETH_1 covering an age range of 20–31

ears serves as an independent test set to evaluate generalizability to

his unseen Philips scanner and 0.9 mm resolution. 

HCP The Human Connectome Project Young Adult ( Van Essen et al.,

012 ) is a cross-sectional study including 3T MRIs from 1200 healthy

articipants acquired on a customized Siemens scanner (Connectome

kyra). It provides 0.7 mm isotropic de-faced scans of individuals be-

ween ages 22 and 35. All scans follow the same MPRAGE protocol with

R 2.4 s, TE 2.14 ms, TI 1 s, and flip angle of 8 ◦. The full dataset is

vailable online. 4 The Human Connectome Lifespan Pilot Project (Phase

a) 5 is an extension of the Young Adult project and contains imaging

ata from five age groups. Five participants per age group 25–35, 45–

5, and 65–75 were scanned on a 3T Siemens Connectome scanner at an

sotropic voxel resolution of 0.8 mm following the Young Adult protocol

xcept for a slightly smaller TE of 2.12 ms. In the present study, 30 cases

rom the Young Adult dataset are used for network training and 20 for

alidation. A total of 80 cases are used in the final test set. Further, 10

cans from the Lifespan Pilot Project are assembled into a separate test

et to assess generalizability to another dataset at 0.8 mm in Section 4.4 .

Rhineland Study The Rhineland Study ( Breteler et al., 2014 ) is a large

ohort population dataset spanning ages 30 to 90. The 0.8 mm isotropic

1-weighted MRI data is acquired on a 3T Siemens Magnetom Prisma

canner using a multi-echo MPRAGE (ME-MPRAGE) sequence with TR
3 http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html . 
4 https://www.humanconnectome.org/study/hcp-young-adult . 
5 https://www.humanconnectome.org/study-hcp-lifespan-pilot . 

c  

n  

5 
560 ms, 10 TEs (1.68 ms, 3.29 ms, 4.90 ms, 6.51 ms, 6 × 5 . 0 ms),

I 1100 ms, and flip angle 7 ◦. Two separate sets of 30 and 20 subjects

re selected for network training and validation, respectively. The final

esting set contains another 80 RS subjects. 

All datasets were processed using the open source neuroimage anal-

sis suite FreeSurfer 6 Fischl (2012) ; Fischl et al. (2002) . In particu-

ar, the FreeSurfer v7.1.1 HiRes stream ( Zaretskaya et al., 2018 ) was

sed to generate the desired parcellations following the “Desikan–

illiany–Tourville ” (DKT) protocol atlas ( Desikan et al., 2006; Klein

nd Tourville, 2012 ). We follow the same label mapping approach as

n FastSurferCNN ( Henschel et al., 2020 ). In short, identical cortical re-

ions on the left and right hemisphere are joined into one class unless

hey are in close proximity to each other reducing the total number of

abels from 95 (DKT without corpus callosum segmentations) to 78 dur-

ng network training. The affiliation to the left or right hemisphere are

estored in the final prediction by estimating the closest WM centroid

left or right hemisphere) to each label cluster. A list of all segmen-

ation labels is provided in the Appendix (see Table 5 ). In accordance

ith the FreeSurfer HiRes stream, all MRI brain volumes are conformed

o a uniform coordinate orientation at their respective isotropic voxel

esolutions and robustly normalized to unsigned characters (0... 255),

.e. the trained network does not depend on skull stripping or bias-field

emoval. 

.2. Voxel size independent neural network 

As mentioned above, inside a standard UNet ( Ronneberger et al.,

015 ), fixed transitions between scales (i.e. resolutions) are performed

ia down- and up-sampling operations (e.g. pooling and unpooling, see

ig. 3 ), naturally leading to a reduction in information. Theoretically,

ny scale-transition operation is replaceable with an alternative sam-

ling strategy as long as it still allows gradients to flow effectively

hrough the network. In FastSurferVINN, we use this concept to enforce

oxel size independence by changing the first level transition in the en-

oder and the last in the decoder to a flexible interpolation step (i.e.

etwork-integrated resolution-normalization, see Fig. 3 ). Thus, variable
6 http://surfer.nmr.mgh.harvard.edu/ . 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study-hcp-lifespan-pilot
http://surfer.nmr.mgh.harvard.edu/
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Fig. 4. HiRes weight mask generation. Left: The difference between the gray 

matter label map (blue) and its closure (gray) produces the deep sulci and WM 

strand mask. Right: The difference between the original (blue) and eroded (gray) 

brain mask produces the outer gray matter mask. 
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a  
ransitions between resolutions without restrictions to pre-defined fixed

oxel sizes become possible, both during training and inference. 

.2.1. Network-integrated resolution-normalization 

Similar to spatial transformers ( Jaderberg et al., 2015 ), the

nterpolation-based scale transition can be divided into two parts: (i) cal-

ulation of the sampling coordinates ( grid generator ) and (ii) interpola-

ion operation ( sampler ) to retrieve the spatially transferred output map.

The sampling coordinates are calculated based on the scale fac-

or 𝑆𝐹 ∈ ℝ 

+ – the quotient of the resolution information of the inner

ormalized scale Res inner (a tuneable hyperparameter set to 1.0 mm

hroughout our experiments) and the input image Res native . For optimal

nterpolation, 𝑆𝐹 is slightly adjusted to ensure integer feature map di-

ensions. In the first transition step ( Fig. 3 , pre-IDB to IDB), the output

eature map 𝑉 ∈ ℝ 

𝐻 inner ×𝑊 inner ×𝐶 is produced by sampling the input fea-

ure map 𝑈 ∈ ℝ 

𝐻 native ×𝑊 native ×𝐶 . In the final transition step ( Fig. 3 , CDB

o post-CDB), this process is reversed effectively by using the inverse

cale factor 1∕ 𝑆𝐹 . The interpolation itself is performed by applying a

ampling kernel to the input map 𝑈 to retrieve the value at a particular

ixel in the output map 𝑉 . Different interpolation strategies can be de-

ned based on the selection of the sampling kernel. Theoretically, any

ernel with definable (sub-)gradients is applicable. Here, we evaluate

he bi-linear, bi-cubic, area, and integer sampling kernels ( = NN inter-

olation). The sampling is identical for each channel, hence, conserving

he spatial consistency. 

.2.2. Network architecture modifications 

The proposed interpolation strategy can, in general, be included in

ny CNN equipped with pooling-based scale transitions. Here, due to its

uccess in neuroanatomical segmentation, the principal network design

s based on FastSurferCNN ( Henschel et al., 2020 ) – a UNet-type network

ith a series of four competitive dense blocks (CDB) in the encoder and

ecoder arm separated by a CDB bottleneck layer. In FastSurferVINN

FastSurferVINN) one additional CDB layer is added ( Fig. 3 to each arm,

.e. the pre-IDB and post-CDB). 

CDB design In FastSurferCNN ( Henschel et al., 2020 ), a CDB is formed

y repetitions of the basic composite function consisting of a 5 × 5 con-

olution, followed by batch-normalization (BN) and a probabilistic rec-

ified linear unit (pReLU) activation function. In this work we optimize

he architecture design slightly by replacing each 5 × 5 convolution ker-

el with two 3 × 3 kernels (see Fig. 3 ). This keeps the effective receptive

eld size within each block identical to FastSurferCNN while reducing

arameter load. We implement this change in FastSurferVINN and also,

or better comparability, in an updated FastSurferCNN version denoted

y: FasturferCNN 

∗ . An ablation study detailing the changes from Fast-

urferCNN to FasturferCNN 

∗ is included in the appendix ( Section A.2 ).

s in FastSurferCNN, feature competition is achieved by using maxout

 Goodfellow et al., 2013 ) instead of concatenations ( Jégou et al., 2017 )

n the local skip connections. In order to guarantee normalized inputs

o the maxout activation, the feature map stacking operation is always

erformed after the BN (see position of maxout in CDB design in Fig. 3 ).

Pre-IDB The additional encoder block in FastSurferVINN (see Fig. 3 ,

re-IDB) transfers image intensity information from the native image to

he latent space and encodes voxel size-dependent information before

he internal interpolation step. In contrast to the described CDB, the

aw inputs are normalized by first passing them through a BN-Conv-BN

ombination before adhering to the original composite function scheme

Conv-BN-pReLU) (see Fig. 3 , (pre-)IDB). 

Post-CDB Akin to the pre-IDB, an additional CDB block in the decoder

s used to merge the non-interpolated feature information returned from

he pre-IDB skip connection and the upsampled feature maps from the

etwork-integrated resolution-normalization step. Both maps are com-

ined via a concatenation operation and then fed to a standard CDB

lock (see Fig. 3 , (post-)CDB). After the final 1 × 1 convolution a soft-

ax operation returns the desired class probabilities. 
6 
.3. High-res network modifications 

To improve segmentation accuracy of detailed structural features, we

xplore two network modifications, namely a loss-function weighting

cheme and an adaptive attention mechanism. 

Loss function 

The network is trained with a weighted composite loss function of

ogistic loss and Dice loss ( Roy et al., 2017 ). With 𝑝 𝑙,𝑖 ( 𝑥 ) the estimated

robability of pixel 𝑖 to belong to class 𝑙 and the corresponding ground

ruth probability 𝑦 , the loss function can be formulated as 

 = − 

∑
𝑙,𝑖 

𝜔 𝑖 𝑦 𝑙,𝑖 log 𝑝 𝑙,𝑖 ( 𝑥 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Logistic loss 

− 

∑
𝑙 

2 
∑

𝑖 𝑝 𝑙,𝑖 ( 𝑥 ) 𝑦 𝑙,𝑖 ∑
𝑖 𝑝 𝑙,𝑖 ( 𝑥 ) + 

∑
𝑖 𝑦 𝑙,𝑖 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Soft Dice loss 

(1)

ith 𝜔 𝑖 = 𝜔 median freq. + 𝜔 gradient + 𝜔 GM 

+ 𝜔 WM/Sulci . 

Localized weights Here, 𝜔 median freq. represents median frequency bal-

ncing and 𝜔 gradient boundary refinement through a 2D gradient vector

 Roy et al., 2017 ). We now extend 𝜔 𝑖 by two weighting terms ( 𝜔 GM 

and

 WM/Sulci ) to improve segmentation quality in highly convoluted areas

f the cortex that are better represented in submillimeter scans. The WM

trand and deep sulci mask ( 𝜔 WM/Sulci ) emphasizes thin WM strands and

arrow sulci, and is defined by the voxels added through a binary closing

peration on the gray matter (GM) labels (left side of Fig. 4 ). The outer

ray matter mask ( 𝜔 GM 

) accentuates pixels at the boundary of the cortex

nd is defined by the voxels lost during brain mask erosion (right side

f Fig. 4 ). Overall, 𝜔 GM 

and 𝜔 WM/Sulci aim to adjust the underlying deci-

ion boundary to closely match the target segmentation in PVE-affected

ocations by assigning higher weights to narrow WM strands, deep sulci,

nd tissue boundaries with emphasis on the border between cortex and

erebrospinal fluid (CSF). 

Adaptive attention module Context-driven learnable attention mech-

nisms have been used to automatically select optimal scale or filter

izes for specific image regions and can boost segmentation accuracy

f differently sized structures within an image ( Qin et al., 2018 ). As a

eference, we therefore evaluate the addition of attention in the pre-

ncoder and post-decoder. The generation of the activation map follows

he method proposed in Qin et al. (2018) . A detailed description is given

n the Appendix ( Section A.1 ). In short, learned activation maps from

he attention module are used to dynamically weight each feature re-

ponse generated by the sequence of convolutions within the CDB. This

nline weight calculation introduces non-linearities outside the activa-

ion function into the CDB. 

.4. View aggregation 

In order to account for the inherent 3D geometry of the brain, we

dopt the same view aggregation scheme as in Henschel et al. (2020) for
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ll evaluated models: one F-CNN per anatomical plane is trained and the

esulting probability maps are aggregated through a weighted average.

ue to missing lateralization in the sagittal view, the number of classes

s effectively reduced from 78 to 50 and the weight of the sagittal predic-

ions is reduced by one half compared to the other two views. Inherently,

nd similar to ensemble learning, the view aggregation combines final

oft predictions boosting segmentation accuracy. 

.5. Augmentations 

External scaling augmentation for CNNs (exSA) The current state-of-

he-art method to introduce resolution invariance into neural networks

s extensive scale augmentation (see Fig. 1 B). Therefore, we contrast our

roposed network-integrated resolution-normalization against this ap-

roach. We use random linear transforms with scaling parameters sam-

led from a uniform distribution of the predefined range 0.8 to 1.15

o augment images during the training phase. Every minibatch hence

onsist of a potentially scaled MRI (bi-linear interpolation) and a cor-

esponding equally re-scaled label map (NN sampling). To disentangle

esolution-independence strategies from micro-architecture changes, we

se the same CDB and IDB implementations as for FastSurferVINN de-

cribed above, with the exception of the resolution-normalization. 

Internal scaling augmentation for VINNs (inSA) In order to increase

he robustness of the latent space interpolation, we augment the

cale factor SF introduced by the VINN with a parameter 𝛼, so

𝐹 = Res inner ∕ Res native + 𝛼 during the network-integrated resolution-

ormalization. This effectively introduces small resolution variations

ithin the grid sampling procedure. The values for 𝛼 are sampled from a

aussian distribution with parameters sigma = 0.1 and mean = 0. Overall,

his modification can be interpreted as an internal scale augmentation

andomly resizing the feature maps in the latent space (as opposed to

xternally augmenting the native images). 

.6. Evaluation metrics 

We use the Dice Similarity Coefficient (DSC) and Average Surface

istance (ASD) to compare different network architectures and modi-

cations against each other, and estimate similarity of the predictions

o a number of previously unseen scans with respect to FreeSurfer and

anual labels as a reference. Both are standard metrics to evaluate seg-

entation performance. 

Here, the DSC Dice (1945) ; Sørensen (1948) is defined as twice the

ntersection of ground truth and prediction divided by the sum of their

ardinalities and multiplied by 100. A larger DSC represents better over-

ap between the segmentations with a maximum value of 100 for perfect

greement. The ASD measures the average distance (in mm) between all

oints 𝑥 ∈ 𝑌 , 𝑥 ′ ∈ 𝑃 on the outer surface of the ground truth (Y) and the

rediction (P). It is defined as 

SD = 

1 
|𝑌 |+ |𝑃 |

(∑
𝑥 ∈𝑌 𝑑( 𝑥, 𝑃 ) + 

∑
𝑥 ′∈𝑃 𝑑( 𝑥 ′, 𝑌 ) 

)
(2) 

ith distance 𝑑( 𝑥, 𝑃 ) = min 𝑥 ′∈𝑃 ||||𝑥 − 𝑥 ′||||2 representing the minimum of

he Euclidean norm. In contrast to the DSC, a smaller ASD indicates bet-

er capture of the segmentation boundaries with a value of zero being the

inimum (perfect match). Within each section, improvements in seg-

entation performance are confirmed by statistical testing (Wilcoxon

igned-rank test ( Wilcoxon, 1945 ) after Benjamini-Hochberg correction

 Benjamini and Hochberg, 1995 ) for multiple testing) referred to as cor-

ected p throughout the paper. 

.7. Training setup 

Training dataset Due to the nature of the experiments performed

n this paper, the dataset composition varies between individual sec-

ions. An overview of the different trainingsets is given in the Ap-

endix ( Table 4 ). All representative datasets are balanced with regard
7 
o gender and age. Empty slices were filtered from the volumes. All di-

ectly compared networks are trained under the same conditions unless

tated otherwise. Experimental setups demanding different datasets for

raining are separated by vertical white lines between bar plots and/or

ndicated in the figure legend. We additionally discuss this in the cor-

esponding sections. In the first ablative evaluations of FastSurferVINN

 Sections 4.1 and 4.2 ), 120 representative subjects are selected for train-

ng (60 1.0 mm and 60 submillimeter subjects, see Table 4 : Mix ), leav-

ng on average 155 single view planes per subject and a total training

ize of at least 23k images per network. To determine the generaliza-

ion performance of FastSurferVINN across resolutions, the training set

s changed such that the submillimeter scans are of the same resolu-

ion and study (see Table 4 : No 0.7 mm and No 0.8 mm ). Similarly, the

xed-resolution networks are trained with 60 or 120 0.8 mm scans (see

able 4 : Only 0.8 mm ). For the LowRes version 120 1.0 mm scans are

sed (see Table 4 : Only 1.0 mm ). In Big-FastSurferVINN, the 1.0 mm

omponent is extended to 1255 scans while keeping the same number

60) of HiRes scans as in the original training set (see Table 4 : Mix (Big) ).

Training parameters Independent models for the coronal, axial, and

agittal plane are implemented in PyTorch ( Paszke et al., 2017 ) and

rained for 70 epochs using one NVIDIA V100 GPU with 32 GB RAM. The

odified adam optimizer ( Loshchilov and Hutter, 2019 ) is used with a

earning rate set to 0.001. A cosine annealing schedule ( Loshchilov and

utter, 2017 ) adapts the learning rate during training where the num-

er of epochs between two warm restarts is initially set to 10 and subse-

uently increased by a factor of two. The momentum parameter is fixed

t 0.95 to compensate for the relatively small mini batch size of 16 im-

ges. For maximum fairness, all networks presented within this paper

ave been trained under equal hardware and hyper-parameter settings.

. Results 

We group the presentation of results into two blocks: 1. ablative

rchitecture improvements to determine the best performing multi-

esolution architecture ( Sections 4.1 and 4.2 ), and 2. performance anal-

sis to comprehensively characterize the advantages of our VINN on

 wider variety of datasets, resolutions, scanners, and variations of

he training corpus ( Sections 4.3 –4.5 ). Following best practice in data-

cience, we utilize completely separate datasets during the evaluations:

he validation set Table 4 : Validation (for 1.), and various test sets

able 4 : Testing (for 2.). This avoids data-leakage and overfitting, i.e.,

t ensures that training, architectural design decisions, and final test-

ng cannot influence each other, which could lead to overly optimistic

esults. 

.1. Scaling augmentation versus network-integrated 

esolution-normalization in FastSurferVINN 

The central contribution of this paper is the design and evaluation

f a Voxel-size Independent Neural Network for (sub)millimeter whole

rain segmentation. Here, we compare segmentation performance of our

astSurferVINN, which avoids interpolation of label maps, with several

pproaches that rely on traditional scaling data augmentation. Each sub-

equent improvement in segmentation performance is confirmed by sta-

istical testing (corrected 𝑝 < 0 . 05 ). 
Firstly, the original FastSurferCNN CDBs consecutively perform two

 × 5 convolution operations followed by a final 1 × 1 convolution

 Section 3.2.2 , FastSurferCNN in Fig. 5 ). In total, an average DSC of

8.63 and a SD of 0.317 mm is reached for the subcortical structures

hile the cortical structures average around 87.09 for the DSC and

.283 mm for the ASD. Optimization of the CDB design (kernel size of

 × 3, Section 3.2.2 ) leads to a significant increase in the DSC and reduc-

ion of the ASD on both, the subcortical and cortical structures ( Fig. 5 ,

astSurferCNN 

∗ ). Particularly, the cortical segmentations are improved

ith an average DSC of 88.01 and a SD of 0.257 mm. Similarly, addi-

ion of external scaling augmentation (exSA) to FastSurferCNN 

∗ signifi-
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Fig. 5. Ablative optimization of FastSurferCNN and comparison to FastSurfer- 

VINN. FastSurferCNN (light green) is optimized through a switch to 3 × 3 kernels 

(FastSurferCNN 

∗ , green). Addition of data augmentation (external scaling aug- 

mentation, FastSurferCNN 

∗ + exSA, dark green) improves performance further. 

VINN equipped with internal scaling augmentation (inSA) (FastSurferVINN, or- 

ange) outperforms all other models on both subcortical (left) and cortical (right) 

structures with respect to Dice Similarity Coefficient (DSC, top) and average sur- 

face distance (ASD, bottom). Further addition of external scaling augmentation 

negatively affects performance (VINN + inSA + exSA). Segmentation results 

with FastSurferVINN are significantly better compared to all other models (cor- 

rected 𝑝 < 10 −7 ). 
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Fig. 6. Effect of sampling kernels on network-integrated resolution- 

normalization. Comparison of nearest-neighbour (NN, purple), area (light 

violet), bi-cubic (light yellow), and bi-linear (orange) sampling kernels with 

respect to the Dice Similarity Coefficient (DSC, top) and the average surface 

distance (ASD, bottom) for subcortical (left) and cortical (right) structures. 

Segmentation performance with NN is significantly worse than all other 

interpolation strategies (corrected 𝑝 < 10 −13 ). Area, bi-cubic and bi-linear give 

equivalent results. 
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antly improves segmentation accuracy on the cortical structures ( Fig. 5 ,

astSurferCNN 

∗ + exSA). Performance on the subcortical structures is,

owever, slightly reduced. 

Interestingly, VINN, which avoids label map interpolation al-

ogether, shows a positive effect across structures compared to

astSurferCNN 

∗ with and without scaling augmentation ( Fig. 5 , VINN).

pecifically, combination of VINN with our internal scaling augmen-

ation (VINN + inSA, referred to as FastSurferVINN) strengthens seg-

entation performance significantly. The DSC increases to 89.05 for

he subcortical and 88.93 for the cortical structures representing the

est value across the compared architectures. Similarly, the ASD is sig-

ificantly reduced with a distance of 0.293 mm for the subcortical and

.226 mm for the cortical structures ( Fig. 5 , FastSurferVINN). Finally,

ddition of external scaling augmentation negatively impacts segmen-

ation performance of VINN ( Fig. 5 , VINN + inSA + exSA). On aver-

ge, performance on the subcortical structures is reduced to the level of

astSurferCNN 

∗ + exSA, while the cortical structures still represent the

econd best result for both, DSC and ASD. Overall, FastSurferVINN out-

erforms all traditional scale augmentation approaches by a significant

argin (corrected 𝑝 < 10 −7 ). 
As our network-integrated resolution-normalization directly oper-

tes on continuous 2D feature maps in the latent space, various sampling

ernels can be incorporated. Here, we evaluate the effect of four differ-

nt interpolation strategies, namely NN, area, bi-cubic, and bi-linear. As

isible in Fig. 6 , with the exception of NN changing the sampling kernel

oes not significantly affect segmentation performance. The NN inter-

olation ( Fig. 6 , first column) overall reduces performance by 2% for

SC. The change on the ASD is more severe with a decrease in perfor-
8 
ance by 13% for the subcortical and 7% for the cortical structures. The

i-linear kernel ( Fig. 6 , last column) shows the best performance overall

ith a 89.05 DSC and an ASD of 0.293 mm for the subcortical structures

nd a 88.93 DSC and an ASD of 0.226 mm for the cortical structures.

iven that the bi-linear interpolation is computationally favourable to

i-cubic, we henceforth keep it as the sampling kernel of choice. 

.2. HiRes specific adjustments 

The higher resolution in submillimeter scans reduces PVEs and offers

 potential to optimize segmentation performance (see Fig. 2 ). Overall,

he changes in tissue and border assignment might, however, not be ac-

urately captured during network training as they represent marginal

hanges in the loss compared to the whole brain volume. In order to

ocus on the PVE affected regions (specifically small WM strands and

eep sulci), we test two different modifications. First, a HiRes loss func-

ion (HiRes Loss) up-weights information from the areas in question.

econd, attention mechanisms are introduced to enable automatic re-

ocusing on important information during network training. Here, we

quip FastSurferVINN separately with both modifications and evaluate

he change in segmentation performance with respect to the DSC and

SD. 

Training FastSurferVINN with the new HiRes loss function (see

ig. 7 , + HiRes Loss, right bar) significantly improves segmentation per-

ormance on the cortical structures (corrected 𝑝 < 10 −5 ), while maintain-

ng high accuracy on the subcortical structures (no significant change

onsistent with expectations). A final DSC of 89.3 and an ASD of

.209 mm is achieved for the cortical structures. Further addition of

ttention, while simultaneously adjusting the number of feature maps

o keep the total number of network parameters of FastSurferVINN con-

tant, does not lead to a significant change in segmentation performance

see Fig. 7 , + attention, middle bar). Due to the overall significant im-
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Fig. 7. Adaptation of the original loss function through addition of HiRes 

weights focusing on areas strongly effected by PVEs (HiRes Loss, right bar) sig- 

nificantly improves segmentation performance on the cortical structures (com- 

pared to FastSurferVINN with original loss, left bar). Addition of attention (mid- 

dle bar) does not lead to a significant improvement compared to the baseline. 

Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, bot- 

tom) are shown for subcortical (left) and cortical (right) structures. Cortical 

structures are significantly better segmented with the HiRes Loss (corrected 

𝑝 < 10 −5 ). No significant change was detected on the subcortical structures.. 
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rovement on DSC and ASD, the HiRes Loss modification is included in

ll further comparisons. 

.3. Generalizability 

After selection of the best architectures for both, VINN and CNN,

e now perform a detailed evaluation in a broad selection of test sce-

arios (see Table 4 : Testing). To highlight the advantages of our VINN,

e compare FastSurferVINN with FastSurferCNN 

∗ + exSA. The latter is

mproved over the state-of-the-art FastSurferCNN by architectural up-

ates. The difference between FastSurferCNN 

∗ + exSA and FastSurfer-

INN is exclusively the substitution of external scale augmentation

exSA, Section 3.5 ) with network-integrated resolution-normalization

see Section 3.2.1 ) and internal scale augmentation (inSA, Section 3.5 ).

.3.1. Across datasets 

In this section, we evaluate the generalization capabilities of Fast-

urferVINN in comparison to scale augmentation on the test corpus to

stablish the performance metrics across multiple datasets. 

FastSurferVINN consistently reaches the best DSC and ASD across

ll nine datasets ( Fig. 8 , orange bar). All improvements compared to

xternal scale augmentation (dark green bar) are again significant (cor-

ected 𝑝 < 0 . 01 ). The best performance is reached for the submillimeter

cans from HCP and RS with a subcortical DSC of 88.78 and 90.07 and

 cortical DSC of 89.86 and 89.68, respectively. La5c reaches the high-

st DSC for the 1.0 mm scans (89.51 and 89.07 subcortical and cortical

SC). Similar to the DSC, the ASD is significantly improved for Fast-

urferVINN compared to the scale augmentation by around 5.2% for

he subcortical and 10.5% for the cortical structures. On the cortical
9 
nd subcortical structures the best ASD is reached for HCP (0.31 mm,

.22 mm), RS (0.28 mm, 0.21 mm) and la5c (0.27 mm, 0.22 mm). The

iggest improvement with regards to comparability between FastSurfer-

INN and scale augmentation can be seen for ABIDE-II. Here, the DSC

iffers by 1.1 and 2.1% for the subcortical and cortical DSC and around

1% for the ASD. This again reflects the better cross-resolution general-

zation performance of FastSurferVINN already outlined in the previous

ection. ADNI and OASIS1 also benefit strongly from FastSurferVINN,

pecifically for the cortical structures. Here, the DSC and ASD are im-

roved by around 1.66% and 12.1%, respectively. Overall, the cortical

tructures benefit stronger from the internal resolution-normalization in

astSurferVINN. 

.3.2. Unseen resolutions 

A core aspect of FastSurferVINN is the implicit compatibility with a

ariety of resolutions independent of their explicit presence in the train-

ng corpus. In order to investigate the generalization capacity of Fast-

urferVINN in contrast to scale augmentation approaches, we evaluate

he inter- and extrapolation capabilities of the trained networks based

n the segmentation performance for three resolutions purposefully ex-

luded during network training. 

To this end, we specifically drop either (i) all 30 0.8 mm, or (ii) all

0 0.7 mm scans from the training corpus (see Table 4 : No 0.7 mm and

o 0.8 mm ). In order to ensure comparability with respect to the total

umber of data points and balance between HiRes and LowRes scans, an

qual number of subjects from the other respective HiRes datasets are

dded. In addition, we evaluate performance using the original mixed

raining set on 25 subjects from ABIDE-II, representing an unseen scan-

er type (Philips) and resolution (0.9 mm). 

As presented in Fig. 9 , FastSurferVINN (orange bar) consistently out-

erforms traditional scale augmentation (dark green bar) across all res-

lutions (corrected 𝑝 < 10 −4 ). Segmentation performance on the 0.7 mm

cans reflects the network’s resolution extrapolation capabilities (train-

ng corpus consists of 0.8 mm and 1.0 mm scans only). Here, FastSurfer-

INN reaches a DSC of 86.49 and 87.50 for the subcortical and cortical

tructures, respectively, representing a significant increase compared to

he traditional scale augmentation approach. The improvements on the

SD are even more pronounced with FastSurferVINN reducing the ASD

y 4.5% to 0.397 mm on the subcortical and by 19.7% to 0.294 mm

n the cortical structures. Comparison of the interpolation capabilities

eflected in the 0.8 mm results (training corpus consists of 0.7 mm and

.0 mm) paint a similar picture. FastSurferVINN reaches the highest DSC

nd lowest ASD for both subcortical (DSC: 88.75, ASD: 0.316 mm) and

ortical structures (DSC of 88.28 and ASD of 0.273 mm). The difference

o traditional scale augmentation approaches is again more evident on

he cortical structures. Finally, metrics on the 0.9 mm Philips scans are

ignificantly better with FastSurferVINN. A final DSC of 87.85 and 83.68

nd an ASD of 0.311 mm and 0.313 mm is reached on the subcortical

nd cortical structures, respectively. 

We face the limitation that no publicly available 3T datasets exists

t finer resolutions than 0.7 mm. In order to further explore the ex-

rapolation capabilities of FastSurferVINN in comparison to traditional

cale augmentation (FastSurferCNN 

∗ + exSA), we therefore evaluate

egmentation performance at lower resolutions vastly outside the train-

ng range (1.4 mm and 1.6 mm). Note, that FreeSurfer segmentations are

ot available at lower native resolutions either, as images at resolutions

oarser than 1.0 mm are upsampled to a millimeter voxel resolution in

n initial conversion step ( Fischl, 2012 ). Therefore, we downsample the

igh-resolution FreeSurfer segmentations of HiRes test sets (HCP and

S) by a factor of 2 along each axis using majority voting to generate

ground truth ”. The intensity images used for inference were resampled

sing cubic interpolation. 

In Fig. 10 we illustrate a strong divergence between FastSurferVINN

orange) and FastSurferCNN 

∗ + exSA (dark green) as we test with res-

lutions increasingly outside the training range. With FastSurferVINN,

ccuracy stays consistently high for both, 1.4 mm and 1.6 mm down-
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Fig. 8. Improved generalization performance of FastSurferVINN across nine datasets. FastSurferVINN (orange) outperforms FastSurferCNN 

∗ + external scale aug- 

mentation (+exSA, dark green) across subcortical (left) and cortical structures (right) with respect to Dice Similarity Coefficient (DSC, top) and average surface 

distance (ASD, bottom). Results are consistently better for all datasets (HCP, RS, ABIDE-II, ABIDE-I, ADNI, IXI, LA5C, OASIS1 and OASIS2). 

Fig. 9. Improved generalization performance of FastSurferVINN to resolu- 

tions not encountered during network training (here training datasets are cus- 

tomized, see Sections 4.3.2 and A.3 ). FastSurferVINN (orange) outperforms 

FastSurferCNN 

∗ equipped with external scale augmentation (+ exSA, dark 

green) with respect to Dice Similarity Coefficient (DSC, top) and average surface 

distance (ASD, bottom) across subcortical (left) and cortical structures (right). 

Results are significantly better across all resolutions (0.7 mm, 0.8 mm, and 

0.9 mm, corrected 𝑝 < 10 −4 ). 

Fig. 10. Superior generalization performance of FastSurferVINN to resolutions 

vastly outside the training domain (1.4 mm, 1.6 mm). FastSurferVINN (orange) 

outperforms scale-augmentation (FastSurferCNN 

∗ + exSA, green) highlighting 

its extrapolation capabilities. Results are significantly better with respect to Dice 

Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom) 

across subcortical (left) and cortical structures (right) (corrected 𝑝 < 0 . 001 for 

1.4 mm and 𝑝 < 10 −13 for 1.6 mm). 

10 
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Fig. 11. Performance of FastSurferVINN with respect to manual references. 

Based on the 1.0 mm scans in Mindboggle101 (left plot) FastSurferVINN (or- 

ange) outperforms external scale augmentation (+exSA, dark green) on the 

cortical structures (right, 𝑁 = 78 ) with respect to Dice Similarity Coefficient 

(DSC, top) and average surface distance (ASD, bottom). Results on the subcorti- 

cal structures (left side, 𝑁 = 20 ) are equivalent for both approaches. Similarly, 

segmentation results are better for the 0.8 mm scans of the RS (right plot, 𝑁 = 6 ) 
for white matter (WM), gray matter (GM), and hippocampus (Hippo). 
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ampled images. Here, FastSurferVINN reaches a DSC of above 84.90

nd a ASD of 0.473 mm on the subcortical structures (left plot) and a

SC of around 77.70 (77.88 on the 1.4 mm and 77.69 on the 1.6 mm im-

ges) and an ASD of 0.480 mm and 0.494 mm on the cortical structures

right plot). The difference to FastSurferCNN 

∗ + exSA is again more

vident on the cortical structures. Overall, FastSurferVINN outperforms

he scaling augmentation by 6.74% on the subcortical and 16.80% on

he cortical structures with respect to the DSC when using the downsam-

led 1.6 mm image as an input. Note, that this comparison is solemnly

erformed to visualize the performance difference between VINN and

ugmentation in the absence of high-resolution ground truth beyond the

raining range. We expect a reduction of performance at low resolutions

ue to stronger PVE and an 8-fold information reduction. 

.3.3. Comparison to manual reference 

Due to the limited availability of manual labels, FreeSurfer segmen-

ations have been used as the reference for comparison so far. In order to

ccount for potential biases we now also evaluate DSC and ASD for the

anually edited cortical regions on 78 subjects from the 1.0 mm Mind-

oggle101 dataset ( Klein and Tourville, 2012 ). The subcortical segmen-

ations available for a subset of 20 subjects within this cohort are used

or subcortical evaluations. 

On the subcortical structures (see Fig. 11 , left part of left plot),

astSurferVINN (orange bar) and traditional scale augmentation (dark

reen bar) perform equally well with respect to both, DSC (80.26) and

SD (0.616 mm). The difference between the two methods is more pro-

ounced on the cortical structures ( Fig. 11 , right side of left plot). Fast-

urferVINN reaches a final DSC of 81.89 and an ASD of 0.471 mm),

epresenting a significant improvement compared to the external scale

ugmentation approach (corrected 𝑝 < 0 . 005 ). These results again indi-

ate that the cortical structures specifically benefit from the internal

nterpolation approach of FastSurferVINN. 
11 
In order to evaluate the benefit of FastSurferVINN for submillimeter

cans, we compare segmentation accuracy on three structures (WM, GM

nd hippocampus) on an in-house set, as no manual HiRes full brain seg-

entations are publicly available. Note, while we previously reported

verages across the 45 cortical and 33 subcortical structures listed in

able 5 for clarity, we now calculate performance measures specifi-

ally for these three individual structures. To generate manual anno-

ations, a trained expert corrected FreeSurfer generated segmentations

n six cases from the RS. The results are depicted in the left part of

ig. 11 . FastSurferVINN again outperforms traditional scale augmenta-

ion with a final DSC of 97.54, 96.04, and 93.04 and ASD of 0.075 mm,

.062 mm, 0.181 mm for WM, GM, and hippocampus, respectively. Con-

istent with previous results, the GM segmentations show the strongest

mprovement. Due to the small sample size, no statistical analysis could

e performed. 

.4. Fixed-resolution networks versus FastSurferVINN 

In order to analyse the advantage of the multi-resolution training

pproach over a fixed-resolution network, we compare FastSurferVINN

ith networks trained on (i) 60 0.8 mm subjects, (ii) 120 0.8 mm sub-

ects, and (iii) 120 1.0 mm subjects (see Table 4 : Only 0.8 mm and Only

.0 mm ). Inherently, this analysis highlights how the interplay of HiRes

nformation from submillimeter 3T scans and dataset-variations from

owRes MRIs can mutually benefit segmentation performance on the

ifferent resolutions. Overall, the analysis of Fig. 12 highlights three

mportant properties. 

First, increasing the number of data samples has a strong effect on

egmentation performance. The fixed-resolution network trained with

0 0.8 mm scans (left plot; light green bar) reaches an average DSC of

9.28 and ASD of 0.257 mm for RS data (same cohort as in the training

et). Doubling the number of cases to 120, significantly improves both

easures (corrected 𝑝 < 10 −9 ) with a final DSC of 89.85 and ASD of

.245 mm (FastSurferVINN, orange bar). Interestingly, FastSurferVINN

rained with 60 HiRes (30 0.7 mm and 30 0.8 mm) and 60 LowRes scans

1.0 mm) reaches the same accuracy, as if these scans were actually all

iRes scans from the RS cohort (120 0.8 mm, dark green bar). Benefits

rom the sample size increase are, therefore, independent of the data res-

lution. Advantageously, the additional 90 HiRes cases at 0.8 mm may

asily be integrated into the FastSurferVINN training dataset, hence,

ncreasing the training corpus with another expected performance

ain. 

Second, fixed-resolution networks perform well on the cohort they

re trained on, but lack generalization capability to other datasets

left plot, HCPL). When comparing networks trained with equally sized

atasets (120 HiRes RS fixed-resolution net (dark green bar) and Fast-

urferVINN (orange bar)) on the 0.8 mm HCPL cohort, FastSurferVINN

learly outperforms the fixed-resolution network with an increase in

SC to 88.99 and a decrease of the ASD to 0.326 mm, representing

 significant improvement (corrected 𝑝 < 0 . 005 ). The gap in segmenta-

ion accuracy between the RS and HCP cohort with respect to DSC is

alved for FastSurferVINN compared to the fixed-resolution approach

nd a similar reduction is visible for the difference in ASD. Third, multi-

esolution training benefits 1.0 mm datasets as well. In the right part

f Fig. 12 , we compare FastSurferVINN (orange bar) and two fixed-

esolution 1.0 mm networks – the original FastSurferCNN (CNN, gray

ar) as well as the optimized FastSurferCNN 

∗ (CNN 

∗ , dark green bar)

with DSC (top) and ASD (bottom) metrics. FastSurferCNN is included

o highlight the cumulative performance gain of FastSurferVINN (archi-

ectural optimization already included in CNN 

∗ and voxel-size indepen-

ence via resolution normalization). The training sets of all three net-

orks contain the exact same subjects, with the only difference being

he MRIs resolution: We train the fixed-resolution networks exclusively

ith 1.0 mm images (native or downsampled from HiRes), while Fast-

urferVINN uses all images at their native resolution (1.0 mm, 0.8 mm,

r 0.7 mm). Note, since the FreeSurfer-based label maps are obtainable
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Fig. 12. Flexible- versus fixed-resolution networks. FastSurferVINN (orange) is comparable to, or outperforms, all fixed-resolution networks (green) (left plot: 0.8 mm 

from RS only, right plots: 1.0 mm) with respect to the Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom). On the submillimeter scans 

(left plots) generalization to an unseen dataset (HCPL) is significantly improved. Results are consistently better for the 1.0 mm scans (right plot). To highlight 

cumulative VINN and architectural optimizations, we also compare with the state-of-the-art FastSurferCNN (gray, without optimizations from Sections 4.1 and 4.2 , 

which are already included in CNN 

∗ ). We retrain this 1 mm fixed-resolution network ensuring equal training datasets and conditions. 
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Fig. 13. Big- FastSurferVINN trained with approximately 20 times more 1.0 mm 

scans ( 𝑛 = 1315 , yellow) than the original version ( 𝑛 = 120 , orange) raises seg- 

mentation performance across resolutions. Dice Similarity Coefficient (DSC, 

top) and average surface distance (ASD, bottom) improve on the submillime- 

ter (0.7 mm–0.9 mm) as well as 1.0 mm scans. 
t either resolution, we circumvent resampling with NN. Interestingly,

he HiRes information from submillimeter scans boosts performance for

he 1.0 mm scans. FastSurferVINN reaches a DSC of 87.62 and an ASD of

.296 mm representing a significant improvement in DSC and ASD com-

ared to the fixed-resolution networks (corrected 𝑝 < 0 . 001 ). Compared

o the original FastSurferCNN, on average an improvement of 1.46%

SC and 10.06% ASD (0.93 to 2.37% and 8.3 to 12.7%, respectively,

cross datasets) can be achieved with FastSurferVINN. 

Overall, the inherent voxel size independence of FastSurferVINN and

esulting multi-resolution training option is highly beneficial to both,

ubmillimeter and 1.0 mm scans. 

.5. Big-FastSurferVINN 

Based on the observed performance gain with a larger training cor-

us, we evaluate whether ASD and DSC can be further improved across

esolutions by expanding the training set from 120 to 1315 cases when

xclusively adding 1.0 mm scans. 

As illustrated in Fig. 13 , expansion of the training corpus ( 𝑛 = 1315 ,
ellow bar) leads to a noticeable performance gain. Specifically the

.0 mm dataset benefits from the sample increase with a final DSC of

0.26 and an ASD of 0.231 mm. On average, a 2.95% increase in the DSC

nd 16.26% decrease in the ASD can be observed for the 1.0 mm scans

ompared to the smaller training set ( 𝑛 = 120 , orange bar), representing

 significant performance gain (corrected 𝑝 < 10 −20 ). Additionally, ASD

nd DSC are significantly improved for the 0.7 mm, 0.8 mm and most

trongly for the 0.9 mm scans ( 𝑝 < 10 −5 , Wilcoxon signed-rank test).

ere, DSC and ASD improve by 3.77% and 24.08%, respectively. Note,

hat the 0.9 mm dataset is exclusively present in the testing corpus and

hus completely new to the networks. A significant resolution bias in the
12 
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7 https://humanconnectome.org/disease-studies . 
raining set, hence, does not decrease, but rather elevate performance

cross 1.0 mm and submillimeter scans. 

. Discussion 

In this paper, we present the first multi-resolution deep learning

ool for accurate and efficient (sub)millimeter 3T MRI whole brain

egmentation. FastSurferVINN addresses the two main difficulties as-

ociated with HiRes MRIs, namely limited availability and diversity

pecifically for certain groups (e.g. neurodegeneration or scanner types)

s well as resolution non-uniformity. Applicability of deep learning

pproaches is generally restricted to domains were enough training

ata exists (traditionally 1.0 mm scans). FastSurferVINNs’ network-

ntegrated resolution-normalization provides independence to the input

oxel grid during both, training and inference, and favourably extends

rocessing spans to resolutions not explicitly included in the training

orpus. Further, both, LowRes and HiRes scans, can be included dur-

ng training and, in turn, benefit from each others favourable prop-

rties, i.e. coverage and size versus better representation of detailed

tructures. 

The current state-of-the-art to approximate voxel size independence

n networks is data augmentation. Here, transformations with ran-

omly sampled scale parameters are applied to the images (both in-

ensity and label map) in the native space. In FastSurferVINN, we

hift this step into the latent space by replacing the first scale transi-

ion from a pooling/unpooling operation to interpolation-based down-

upsampling. This network-integrated resolution-normalization inter-

olates the continuous feature maps on both the encoder and de-

oder arms and avoids alteration of the underlying ground truth labels

ntirely. 

When optimizing the network architecture, we first show that the

est results are achieved with a 3 × 3 kernel and bilinear interpolation.

lso, our HiRes loss which focuses segmentation performance on PVE-

ffected structures (deep sulci, thin white matter strands and GM-CSF

oundary) improves DSC and ASD specifically for the cortical structures.

nterestingly, the improvement is consistent across resolutions, indicat-

ng that the structural information learned from the HiRes scans is effec-

ively transferred to the 1.0 mm scans. Finally, we evaluate the introduc-

ion of attention mechanisms into the architecture. Overall, performance

oes not improve if the total number of parameters of the network with

nd without attention is controlled, indicating that network capacity

i.e. number of learnable parameters) rather than adaptive attention is

he important factor here. 

We demonstrate FastSurferVINN’s superior performance compared

o state-of-the-art data augmentation for the fast and detailed seg-

entation of whole brain MRI. Our network-integrated resolution-

ormalization in combination with internal scale augmentation outper-

orms traditional scale augmentation in terms of accuracy by a signif-

cant margin both with respect to FreeSurfer and a manual standard.

cross nine different datasets and four resolutions, including both de-

aced (HCP) and full-head images, our network achieves the highest DSC

ompared to FreeSurfer as a reference (88.38 on average), as well as

he lowest ASD (0.283 mm on average). In addition, FastSurferVINN

chieves the best results on the manually labeled 1.0 mm Mindbog-

le101 dataset with a DSC of 81.89 and an AVG HD of 0.471 mm on

he cortical structures. Correspondingly, WM, GM, and hippocampus are

etter segmented with FastSurferVINN on six manually corrected scans

rom the submillimeter RS dataset. 

One possible explanation for the consistently improved segmentation

etrics with our VINN compared to traditional scale augmentation is the

ircumvention of label interpolation. For discrete labels, NN or majority

oting have to be applied. These kernels are prone to remove impor-

ant structural details and create jagged segmentation maps ( Allebach,

005; Parker et al., 1983; Schaum, 1993; Thevenaz, 2009 ). This is un-

erlined by the observation that segmentation performance deteriorates

or FastSurferVINN when external scale augmentation is added. Further,
13 
nalysis of the interpolation methods during the network-integrated

esolution-normalization also highlights the negative impact of the NN

nterpolation kernels. While all other methods (area, bi-linear, and bi-

ubic) performed equally well, performance drops for NN kernels on

verage by approximately 2% DSC and 10% ASD. Overall, NN seems

o have a systematic negative effect on segmentation performance and

hould, hence, be avoided wherever possible. 

In addition, our resolution-normalization interpolates a feature map

f vectors instead of a single scalar image slice. As each vector de-

cribes a neighborhood in the input image, the available contextual

nformation is extended before the interpolation step and may sub-

equently support a smoother transition between resolutions. Further,

ur network-integrated resolution-normalization reduces the range of

erceived anatomical size variation in the inner blocks, thereby lib-

rating resources to focus on structural details at a common metric

cale (structures have similar sizes after normalization). Finally, a skip-

onnection transfers the non-interpolated feature maps from the pre-

DB into the post-CDB, potentially improving ambiguous label borders

ith details available at the native resolution. The differentiation be-

ween native voxel-scale and normalized inner scale may specifically be

elpful in settings with large inter-subject size similarities (e.g. head

ize is relatively stable). As such, our network-integrated resolution-

ormalization approach is not limited to the neuroimaging context,

ut can be expected to benefit segmentation performance in other

omains. 

FastSurferVINN further demonstrates excellent generalization per-

ormance with respect to inter- and extrapolation, achieving the best

esults for a variety of unseen submillimeter resolutions excluded from

he training corpus. Especially more detailed cortical structures targeted

ith HiRes acquisition show a significant DSC increase on the 0.7 mm,

.8 mm and 0.9 mm scans, respectively. Similarly, ASD improved by

9.7%, 10% and 11% highlighting specifically the improved extrapola-

ion capabilities of FastSurferVINN on the left-out 0.7 mm dataset com-

onent compared to traditional scale augmentation. Given the lack of

 de-facto standard in HiRes datasets, consistent performance towards

nseen resolutions is an important property. Specifically, new releases

uch as the upcoming HCP disease studies 7 may benefit from a flexi-

le and validated method to process scans with good accuracy at their

ative submillimeter resolution. Conveniently, FastSurferVINN avoids

ossy image downsampling, as well as time intensive re-training, and

implifies re-validation. One future aspect to investigate, is the extend

o which this generalization is effective. Unfortunately, with increasing

esolutions, evaluation becomes virtually impossible due to (i) unavail-

bility of manual segmentations and (ii) limited support by existing neu-

oimaging pipelines (i.e. validation is difficult here as well due to point

i)). Our substitute evaluation on the downsampled, lower resolution

mages underlines that FastSurferVINN robustly generalizes beyond the

ested resolution range (see Section 4.3.2, Fig. 10 ). Specifically, differ-

nces to traditional data augmentation are magnified with a more than

6.8% increase in DSC for the 1.6 mm scans. The improved generaliz-

bility of FastSurferVINN to under- or unrepresented resolutions espe-

ially indicates superior performance in real applications. Furthermore,

astSurferVINN was trained and evaluated on 3T scans only. Adoption

o ultra high-field MRI capable of producing resolutions below 0.5 mm

s an interesting future avenue, as direct transferability is limited due

o the strong signal, contrast, and noise differences ( van der Kolk et al.,

013; van der Zwaag et al., 2016 ). 

Overall, FastSurferVINN allows processing of both LowRes and HiRes

ata without reducing precision on either set. On the contrary, we

emonstrated that FastSurferVINN even outperforms a fixed-resolution

.0 mm network by a significant margin. As the only difference in the

raining corpus is the increased image resolution of 60 subjects, the gain

https://humanconnectome.org/disease-studies
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C  
n accuracy seems to be predominantly motivated by the structural de-

ails provided by the submillimeter scans. 

Further, the intensity and demographical variety added by the

.0 mm scans promoted generalization performance to the HCPL com-

onent when FastSurferVINN was compared to a fixed-resolution RS

iRes network. This is of special interest in longitudinal settings, where

raining on images from only the first time point may introduce a bias

owards healthier or younger brains, which can be mitigated by intro-

ucing appropriate LowRes out-of-study cases. 

Similarly, potential future variations of acquisition parameters

ithin studies may negatively affect performance of fixed-resolution

etworks and, hence, would require their retraining. 

Comparison to fixed-resolution networks revealed another promising

pplication of FastSurferVINN. 

As shown in Section 4.4 , FastSurferVINN’s segmentation perfor-

ance improves across resolutions even if only additional 1.0 mm scans

re included. Surprisingly, performance is dominated by the training

orpus size and not significantly influenced by its heterogeneous resolu-

ion. On RS, the performance was comparable for FastSurferVINN when

raining with a mixed resolution corpus (120 total, with only 30 0.8 mm

S cases) as opposed to a fixed-resolution network trained exclusively on

20 0.8 mm RS scans (see Section 4.4 ). This can be exploited in settings

here training cases are scarce at a specific resolution and new acquisi-

ions difficult (e.g. manual segmentations or custom sub-resolution ac-

uisition protocols). FastSurfer-VINN’s resolution flexibility is optimally

uited to integrate a breadth of already existing resources, reducing the

mount of newly acquired data necessary to achieve good performance.

Finally, the results of Big-FastSurferVINN indicate that an imbalance

etween 1.0 mm and submillimeter data distribution does not introduce

 resolution bias. 

On the contrary, increasing the 1.0 mm component in Big-

astSurferVINN by a factor 20 improved segmentation performance

cross all resolutions (0.7 to 1.0 mm). Specifically, the 0.9 mm dataset

ABIDE-II) benefits from the training set extension with an 3.67% in-

rease in DSC and 22.11% decrease in ASD. Unlike HCP and RS, the

.9 mm ABIDE-II scans were acquired on a Philips scanner, which is

resent in a larger proportion in the extended training set (30% Philip

canners compared to 1.6%). However, no submillimeter Philips scan

as included at any point during training. The improved performance

n ABIDE-II, therefore, highlights the potential for FastSurferVINN to

ctively reduce scanner-biases through inclusion of 1.0 mm MRIs. Ex-

loring an expected alleviation of age- or disease-biases in submillimeter

atasets with FastSurferVINN presents an interesting direction for future

ork. 

Overall, we introduce a fast, voxel size independent neural network

hat scales well to large datasets and enables seamless integration of a

ariety of resolutions during both, training and inference. Thereby, Fast-

urferVINN offers the potential to improve generalization performance

o future HiRes datasets without retraining, reduce potentially existing

ataset biases, and curtail necessary labour and time intensive manual

abeling efforts. 

FastSurferVINN will be made available as part of the open source

astSurfer ( Henschel et al., 2020 ) package. 8 
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Table 2 

FastSurferCNN optimization. Average surface distance 

evaluation. 

ASD 

Datasets Subcortical Cortical 

FastSurferCNN 0.317 ( ± 0.081) 0.283 ( ± 0.085) 

+3 × 3 , 64F 0.312 ( ± 0.077) 0.267 ( ± 0.08) 

+3 × 3 , 71F 0.311 ( ± 0.08) 0.264 ( ± 0.084) 

FastSurferCNN 

∗ 0.307 ( ± 0.077) 0.257 ( ± 0.082) 
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ated by the Laboratory for Neuro Imaging at the University of Southern
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nd Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes

nd Centers that support the NIH Blueprint for Neuroscience Research ;

nd by the McDonnell Center for Systems Neuroscience at Washington

niversity. 

ppendix A 

1. Attention 

A context-driven learnable attention mechanism following the

ethod proposed in Qin et al. (2018) is evaluated as a reference. This

odular mechanism can be inserted into any CDB and offers variable

lacement across the network architecture. Here, we investigate the ad-

ition of attention in the pre-IDB and post-CDB (see Section 3.2.2 ) as

hey are predominantly dealing with feature maps at the native image

esolution. In short, a sequence of two convolutions ( �̃� 

𝑎 
1 : 3 × 3 kernel,

alf the number of filters as the input; �̃� 

𝑎 
2 : 1 × 1 kernel, one more filter

han convolutions in the dense blocks) is followed by a final element-

ise softmax function normalizing the activations, denoted as 𝜆0 , 𝜆1 , 𝜆2 
nd 𝜆3 , to a sum of 1. The activation map 𝜆0 is used for weighting the

nput features representing an effective receptive field of 1. Each voxel

s, therefore, assigned a different attention value driven by the image

ontext. In contrast to Qin et al. (2018) , the feature responses at differ-

nt scales ( 𝑐 1 , 𝑐 2 and 𝑋 𝑎 ) are generated by a sequence of convolutions

ithin the CDB ( 𝐻 

1 
𝑎 
, 𝐻 

2 
𝑎 

and 𝐻 

3 
𝑎 
). Each convolution increases the recep-

ive field size by ( 𝑘 1 − 1 × 𝑘 2 − 1) with ( 𝑘 1 × 𝑘 2 ) representing the kernel

ize. The calculated attention maps are then used to weight the local

kip connections which combine the outputs of each convolution within

hese blocks. This is mathematically formulated in Eqs. (A.1a) –(A.1c) . 

 𝐚 = 𝜆3 𝐻 

3 
𝑎 
( 𝑐 2 ) (A.1a) 

 2 = 𝑚𝑎𝑥 ( 𝜆2 𝐻 

2 
𝑎 
( 𝑐 1 ) , 𝑐 1 ) (A.1b) 

 1 = 𝑚𝑎𝑥 ( 𝜆1 𝐻 

1 
𝑎 
( 𝑋 𝑎 −1 ) , 𝜆0 𝑋 𝑎 −1 ) 

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Attention CDB 

(A.1c) 

2. Ablative optimization of FastSurferCNN 

Ablative evaluation of the CNN base architecture optimizations are

ummarized in Tables 1 and 2 . Training and validation are based on

he multi-resolution datasets listed in Table 4 ( Mix ). The original Fast-

urferCNN CDBs consecutively perform two 5 × 5 convolution opera-

ions followed by a final 1 × 1 convolution ( Section 3.2.2 , first row in

ables 1 and 2 ). In total, an average DSC of 88.63 and 87.09 and a ASD

f 0.317 mm and 0.283 mm is reached for the subcortical and cortical

tructures, respectively. Changing the kernel size to 3 × 3 while keeping

he effective receptive field size of 9 × 9 per CDB constant ( Tables 1

nd 2 , 3 × 3, 64 F) leads to a significant improvement in DSC ( 𝑝 < 0 . 01 ,
Table 1 

FastSurferCNN optimization. Dice Similarity Coeffi- 

cent evaluation. 

DSC 

Datasets Subcortical Cortical 

FastSurferCNN 88.63 ( ± 1.87) 87.09 ( ± 2.4) 

+3 × 3 , 64F 88.75 ( ± 1.78) 87.68 ( ± 2.35) 

+3 × 3 , 71F 88.79 ( ± 1.79) 87.78 ( ± 2.41) 

FastSurferCNN 

∗ 88.85 ( ± 2) 88.01 ( ± 2.4) 
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15 
ilcoxon-signed rank test). Increasing the number of filters per layer

rom 64 to 71 preserves the original number of trainable parameters

approximately 1 . 85 × 10 6 ). This change leads to a slight improvement

n the subcortical and cortical structures. For comparability to our final

INN, we also add the pre-IDB and post-CDB blocks ( Tables 1 and 2 ,

astSurferCNN 

∗ ). This addition merely assures comparability between

he augmentation and interpolation approach. As visible in Tables 1 and

 , this change improves segmentation accuracy further with a final DSC

f 88.85 and 88.01 and an ASD of 0.307 mm and 0.257 mm. The opti-

ized FastSurferCNN 

∗ architecture is used as the baseline for all com-

arisons (i.e. augmentation and interpolation). 

3. 1.0 mm Datasets 

ABIDE I The Autism Brain Imaging Data Exchange I Di Mar-

ino et al. (2013) is a cross-sectional study involving 17 international

ites and focuses on autism spectrum disorders. It contains data for 1112

ndividuals between 7 and 64 years of age. Scanner and sequence param-

ters vary depending on the site and can be accessed on the ABIDE web-

ite ( https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html ). All

RI data were acquired using 3 Tesla scanners (either Philips, Siemens

r GE). 20 cases from the ABIDE-I were used for testing, 68 for training

ig-FastSurferVINN. 

ADNI The Alzheimer’s Disease Neuroimaging Initia-

ive ( Mueller et al., 2005 ) was launched in 2003 as a public-private

artnership, led by principal investigator Michael W. Weiner, MD.

he ADNI database has > 2000 participants and is available online

t http://adni.loni.usc.edu . The primary goal of ADNI has been to

est whether serial MRI, positron emission tomography, other biolog-

cal markers, and clinical and neuropsychological assessment can be

ombined to measure the progression of mild cognitive impairment

nd early Alzheimer’s disease (see www.adni-info.org for up-to-date

nformation). Data were acquired at a resolution of 1 . 0 𝑥 1 . 0 𝑥 1 . 2 mm with

.5T and 3T-MRIs scanners from the three largest MRI vendors (GE,

hilips and Siemens) using an MP-RAGE sequence. Scanner parameters

re optimized for the different vendors (see Jack et al. (2008) for

etails). 15 cases from ADNI where used for training, 8 for validation

nd 215 for training Big-FastSurferVINN. 40 different cases were used

or assessing accuracy and generalizability in the final testset. 

IXI This data collection provides 600 MRIs from normal,

ealthy subjects. The data has been collected at three differ-

nt sites in London, UK on one GE (1.5T) and two Philips

1.5T and 3T) scanners and is available online ( https://brain-

evelopment.org/ixi-dataset/ ) under Creative Commons License BY-NC-

D 3.0 ( https://creativecommons.org/licenses/by-sa/3.0/legalcode ).

etailed sequence parameters are available at the given URL. 43 scans

rom IXI were used for testing and 400 for training Big-FastSurferVINN.

LA5c The cross-sectional UCLA Consortium for Neuropsychiatric

henomics LA5c Study ( Poldrack et al., 2016 ) includes 142 individ-

als diagnosed with a neuropsychiatric or neurodevelopmental disor-

er (schizophrenia, bipolar disorder, ADHD) and 130 normal controls

ages 21–50). All participants were scanned on a 3T Siemens Trio at a

ingle-center. T1-weighted MP-RAGE images were acquired with field

f view of 250, 256x256 matrix, and 176 1.0 mm sagittal partitions.

https://doi.org/10.13039/100000135
https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://adni.loni.usc.edu
http://www.adni-info.org
https://brain-development.org/ixi-dataset/
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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Table 3 

Summary of datasets used for training, validation and testing. Table lists the scanner manu- 

facturer, field strength, (disease) groups, age range and isotropic resolution (Res) used in the 

paper. 

Dataset Scanner 1.5T/3T Groups Age Res 

HCP Siemens 3T Normal 22–35 0.7 mm 

HCPL Siemens 3T Normal 25–75 0.8 mm 

RS Siemens 3T Normal 30–95 0.8 mm 

ABIDE-II ETHZ1 Philips 3T ASD/Normal 20–31 0.9 mm 

ABIDE-I Philips/GE/Siemens 3T ASD/Normal 18–64 1.0 mm 

ADNI Philips/GE/Siemens 1.5T/3T AD/MCI/Normal 55–93 1.0 mm 

IXI Philips/GE 1.5T/3T Normal 19–87 1.0 mm 

LA5C Siemens 3T Neuropsych/Normal 21–50 1.0 mm 

MBB Siemens 3T Normal 20–77 1.0 mm 

MIRIAD GE 1.5T AD/Normal 55–86 1.0 mm 

OASIS1 Siemens 1.5T/3T Normal 18–90 1.0 mm 

OASIS2 Siemens 1.5T/3T AD/Normal 60–96 1.0 mm 

Table 4 

Composition of training, validation and testing set used throughout the paper. The asterisk ( ∗ ) indicates submillimeter datasets are resampled to 1.0 mm. 

Usage Datasets (subjects) n 

Mix HCP (30), RS (30), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), OASIS2 (8) 120 

No 0.8 mm HCP (60), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), OASIS2 (8) 120 

No 0.7 mm RS (60), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), OASIS2 (8) 120 

Only 0.8 mm RS (small = 60, big = 120) 60/120 

Only 1.0 mm HCP ∗ (30), RS ∗ (30), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), OASIS2 (8) 120 

Training Mix (Big) HCP (30), RS (30), ABIDE-I (68), ADNI (215), IXI (400), LA5C (203), MBB (195), MIRIAD (30), 

OASIS1 (79), OASIS2 (65) 

1315 

Mix (Big), No 0.8 mm, No 0.7 mm HCP (20), RS (20), ADNI (8), LA5C (9), MIRIAD (7), 80 

OASIS1 (11), OASIS2 (5) 

Only 0.8 mm RS (20) 20 

Validation Only 1.0 mm HCP ∗ (20), RS ∗ (20), ADNI (8), LA5C (9), MIRIAD (7), 

OASIS1 (11), OASIS2 (5) 80 

Mix HCP (80), RS (80), ABIDE-II (25), ABIDE-I (20), ADNI (40), 

IXI (43), LA5C (15), OASIS1 (30), OASIS2 (17) 350 

No 0.7 mm, 

No 0.8 mm HCP (80), RS (80), ABIDE-II (25) 185 

Manual Labels RS (6), Mindboggle (78) 84 

Only 0.8 mm, RS (102), HCPL (10), ABIDE-I (20), ADNI (40), IXI (43) 

Only 1.0 mm LA5C (15), OASIS1 (36), OASIS2 (17) 259 

Testing Mix (Big) HCP (80), RS (80), ABIDE-II (25), ABIDE-I (20), ADNI (40), 

IXI (43), LA5C (15), OASIS1 (35), OASIS2 (17) 355 
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n TI of 1.1 s, TE of 3.5-3.3 ms, TR of 2.53 s and flip angle of 7 ◦

as used for all scans. This data was obtained from the OpenfMRI

atabase ( https://openfmri.org/dataset/ds000030/ ). Its accession num-

er is ds000030. 16 cases from LA5c were used for training, 9 for vali-

ation, 203 for training Big-FastSurferVINN, and 15 for the final testset.

Mindboggle-101 The largest manually corrected set of free, pub-

icly accessible ( https://osf.io/nhtur/ ) labeled brain images based on

 consistent human cortical labeling protocol (DKTatlas) Klein and

ourville (2012) . Mindboggle-101 consists of 101 labeled brain sur-

aces and volumes derived from T1-weighted brain MRIs of healthy

ndividuals. Except for five subjects (MMRR-3T7T-2, Twins-2, and

fterthought-1), all MRIs are from publicly available collections (i.e.

est-Retest OASIS1 ( Marcus et al., 2007 ), the Multi-Modal Repro-

ucibility Resource ( Landman et al., 2011 ), Nathan Kline Institute

est-Retest and Nathan Kline Institute/Rockland Sample, Human Lan-

uage Network subjects ( Morgan et al., 2009 ), and Colin Holmes

7 template ( Holmes et al., 1998 ), see ( Klein and Tourville, 2012 )

or details). Manually labeled subcortical segmentations are available

or the OASIS1 Test-Retest portion (20 subjects) within Mindboggle-

01 (released under Creative Commons License BY-NC-ND 4.0

 http://creativecommons.org/licenses/by-nc-nd/4.0 ) by Neuromorpho-

etrics, Inc. ( http://Neuromorphometrics.com/ )). All 78 volumes with

sotropic voxel sizes are used to evaluate network performance with re-

pect to a manual reference. 

MIRIAD The Minimal Interval Resonance Imaging in Alzheimer’s Dis-

ase ( Malone et al., 2013 ) is a publicly available longitudinal study
16 
ith focus on neurodegeneration (see http://miriad.drc.ion.ucl.ac.uk/ ).

RIs of 23 elderly controls and 46 Alzheimer’s diseased patients (ages

5+) were acquired at a single center with a 1.5T Signa MRI scanner

GE Medical systems), using an inversion recovery prepared fast spoiled

radient recalled sequence, field of view of 24 cm, 256 × 256 matrix,

24 1.5 mm coronal partitions (voxel size 0 . 9 × 0 . 9 × 1 . 5 ), TR 15 ms,

E 5.4 ms, flip angle 15 ◦, and TI 650 ms. 7 cases from MIRIAD were

sed for training and validation, respectively, and 23 for training Big-

astSurferVINN. 

Mind-brain-b ody The MPI Leipzig Mind-Brain-Body cohort ( A mind-

rain, 2019; Mendes et al., 2019 ) consists of 321 healthy participants

etween 20 and 77 years of age. MRIs were acquired on a Siemens Ve-

io 3T with a weighted T1 Magnetization-Prepared 2 Rapid Acquisition

radient Echoes (MP2RAGE) protocol and sagittal acquisition orienta-

ion, one 3D volume with 176 slices, TR of 5000 ms, TE of 2.92 ms,

I1 of 700 ms, TI2 of 2500 ms, flip angle 1 or 4 degrees, flip angle 2

f 5 degrees, echo spacing of 6.9 ms, 1.0 mm isotropic voxel size and

eld of view of 256 mm. This data was obtained from the OpenfMRI

atabase. Its accession number is ds000221. 195 MRIs were used for

raining Big-FastSurferVINN. 

Oasis-1 Marcus et al.(2007) and Oasis-2 Marcus et al.(2010) The

pen Access Series of Imaging Studies 1 and 2, are publicly avail-

ble ( https://www.oasis-brains.org/ ) cross-sectional (Oasis-1) and lon-

itudinal (Oasis-1) studies covering non-demented and demented indi-

iduals with very mild to moderate Alzheimer’s disease. All subjects

ere scanned at a single-center using either a 1.5T Vision or a 3T TIM

https://openfmri.org/dataset/ds000030/
https://osf.io/nhtur/
http://creativecommons.org/licenses/by-nc-nd/4.0
http://Neuromorphometrics.com/
http://miriad.drc.ion.ucl.ac.uk/
https://www.oasis-brains.org/
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Table 5 

FastSurfer (FastS) internal segmentation IDs and mapping to FreeSurfer (FreeS). 

Subcortical structures FastS FreeS Cortical structures FastS FreeS 

Cerebral white matter (lh) 1 2 caudalanteriorcingulate (lh) 34 1002 

Lateral Ventricle (lh) 2 4 caudalmiddlefrontal (lh, rh) 35 1003, 2003 

Inferior Lateral Ventricle (lh) 3 5 cuneus (lh) 36 1005 

Cerebellar White Matter (lh) 4 7 entorhinal (lh, rh) 37 1006, 2006 

Cerebellar Cortex (lh) 5 8 fusiform (lh, rh) 38 1007, 2007 

Thalamus (lh) 6 10 inferiorparietal (lh, rh) 39 1008, 2008 

Caudate (lh) 7 11 inferiortemporal (lh, rh) 40 1009, 2009 

Putamen (lh) 8 12 isthmuscingulate (lh) 41 1010 

Pallidum (lh) 9 13 lateraloccipital (lh, rh) 42 1011, 2011 

3rd-Ventricle 10 14 lateralorbitofrontal (lh) 43 1012 

4th-Ventricle 11 15 lingual (lh) 44 1013 

Brain Stem 12 16 medialorbitofrontal (lh) 45 1014 

Hippocampus (lh) 13 17 middletemporal (lh, rh) 46 1015, 2015 

Amygdala (lh) 14 18 parahippocampal (lh) 47 1016 

CSF 15 24 paracentral (lh) 48 1017 

Accumbens (lh) 16 26 parsopercularis (lh, rh) 49 1018, 2018 

Ventral DC (lh) 17 28 parsorbitalis (lh, rh) 50 1019, 2019 

Choroid Plexus (lh) 18 31 parstriangularis (lh, rh) 51 1020, 2020 

Cerebral white matter (rh) 19 41 pericalcarine (lh) 52 1021 

Lateral Ventricle (rh) 20 43 postcentral (lh) 53 1022 

Inferior Lateral Ventricle (rh) 21 44 posteriorcingulate (lh) 54 1023 

Cerebellar White Matter (rh) 22 46 precentral (lh) 55 1024 

Cerebellar Cortex (rh) 23 47 precuneus (lh) 56 1025 

Thalamus (rh) 24 49 rostralanteriorcingulate (lh, rh) 57 1026, 2026 

Caudate (rh) 25 50 rostralmiddlefrontal (lh, rh) 58 1027, 2027 

Putamen (rh) 26 51 superiorfrontal (lh) 59 1028 

Pallidum (rh) 27 52 superiorparietal (lh, rh) 60 1029, 2029 

Hippocampus (rh) 28 53 superiortemporal (lh, rh) 61 1030, 2030 

Amygdala (rh) 29 54 supramarginal (lh, rh) 62 1031, 2031 

Accumbens (rh) 30 58 transversetemporal (lh, rh) 63 1034, 2034 

Ventral DC (rh) 31 60 insula (lh, rh) 64 1035, 2035 

Choroid Plexus (rh) 32 63 caudalanteriorcingulate (rh) 65 2002 

WM-hypointensities 33 77 cuneus (rh) 66 2005 

isthmuscingulate (rh) 67 2010 

lateralorbitofrontal (rh) 68 2012 

lingual (rh) 69 2013 

medialorbitofrontal (rh) 70 2014 

parahippocampal (rh) 71 2016 

paracentral (rh) 72 2017 

pericalcarine (rh) 73 2021 

postcentral (rh) 74 2022 

posteriorcingulate (rh) 75 2023 

precentral (rh) 76 2024 

precuneus (rh) 77 2025 

superiorfrontal (rh) 78 2028 

Table 6 

Compiled results of Fig. 5 - Ablative optimization of FastSurferCNN and comparison 

to FastSurferVINN. Microarchitectural changes from FastSurferCNN yield the optimized 

FastSurferCNN 

∗ . Combination of external scale augmentation (+exSA), network-integrated 

resolution-normalization (VINN) and internal scale augmentation (VINN + inSA = FastSurfer- 

VINN) with FastSurferCNN 

∗ are shown. Dice Similarity Coefficient (DSC) and average surface 

distance (ASD) are reported for the subcortical and cortical structures. 

DSC ASD 

Networks Subcortical Cortical Subcortical Cortical 

FastSurferCNN 88.63 ( ± 1.87) 87.09 ( ± 2.4) 0.317 ( ± 0.081) 0.283 ( ± 0.085) 

FastSurferCNN ∗ 88.85 ( ± 2) 88.01 ( ± 2.4) 0.307 ( ± 0.077) 0.257 ( ± 0.082) 

FastSurferCNN ∗ + exSA 88.79 ( ± 1.33) 88.33 ( ± 2.23) 0.311 ( ± 0.066) 0.242 ( ± 0.077) 

VINN 88.86 ( ± 1.82) 88.42 ( ± 2.28) 0.308 ( ± 0.081) 0.243 ( ± 0.077) 

FastSurferVINN 89.05 ( ± 1.7) 88.93 ( ± 2.01) 0.293 ( ± 0.076) 0.226 ( ± 0.066) 

FastSurferVINN + exSA 88.83 ( ± 1.31) 88.6 ( ± 2.13) 0.31 ( ± 0.066) 0.23 ( ± 0.069) 
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rio Siemens Scanner in sagittal orientation with a voxel resolution of

.0x1.0x1.25 mm. For acquisition, a MP-RAGE sequence with a TR of

.7 ms, TE of 4.0 ms, flip angle of 10 ◦ and TI of 20 ms was used. Oasis-

 includes 416 subject between ages 18 to 96, while the longitudinal

asis-2 focuses on older adults (150 subjects at age 60+). 14 cases from

asis-1 and 8 from Oasis-2 were used for training, 11 and 5 for valida-
17 
ion, 79 and 65 for training Big-FastSurferVINN and 35 and 17 for final

esting. 

Participants of the individual studies gave informed consent in accor-

ance with the Institutional Review Board at each of the participating

ites. Complete ethic statements are available at the respective study

ebpages. 
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Table 7 

Compiled results of Fig. 6 - Influence of sampling kernels in the network-integrated 

resolution-normalization of FastSurferVINN. Comparison of nearest-neighbour (NN), 

area, bi-cubic and bi-linear sampling kernels. Dice Similarity Coefficient (DSC) and 

average surface distance (ASD) are reported for the subcortical and cortical struc- 

tures. 

DSC ASD 

Networks Subcortical Cortical Subcortical Cortical 

NN 87.17 ( ± 1.95) 87.24 ( ± 2.3) 0.343 ( ± 0.081) 0.24 ( ± 0.071) 

Area 88.99 ( ± 1.72) 88.85 ( ± 2.06) 0.304 ( ± 0.078) 0.228 ( ± 0.068) 

Bi-Cubic 89.04 ( ± 1.73) 88.91 ( ± 2.08) 0.304 ( ± 0.079) 0.226 ( ± 0.068) 

Bi-Linear 89.05 ( ± 1.7) 88.93 ( ± 2.01) 0.303 ( ± 0.076) 0.226 ( ± 0.066) 

Table 8 

Compiled results of Fig. 7 - High-Resolution specific adjustments of the original loss func- 

tion (FastSurferVINN). Addition of attention (+ Attention) or high-resolution weights 

focusing on areas strongly effected by PVEs (+ HiRes Loss). Dice Similarity Coefficient 

(DSC) and average surface distance (ASD) are reported for the subcortical and cortical 

structures. 

DSC ASD 

Networks Subcortical Cortical Subcortical Cortical 

FastSurferVINN 89.05 ( ± 1.7) 88.93 ( ± 2.01) 0.303 ( ± 0.076) 0.226 ( ± 0.066) 

+ Attention 88.99 ( ± 1.71) 88.79 ( ± 2.03) 0.304 ( ± 0.077) 0.230 ( ± 0.068) 

+ HiRes Loss 89.03 ( ± 1.73) 89.30 ( ± 2.07) 0.298 ( ± 0.074) 0.209 ( ± 0.063) 

Table 9 

Compiled results of Fig. 8 : Generalization comparison between optimized FastSurferCNN 

∗ + external scale 

augmentation (exSA) and FastSurferVINN. Dice Similarity Coefficient (DSC) and average surface distance 

(ASD) for the subcortical and cortical structures across nine different datasets are reported. 

Subcortical Cortical 

FastSurferCNN ∗ + exSA FastSurferVINN FastSurferCNN ∗ + exSA FastSurferVINN 

HCP 88.5 ( ± 1.25) 88.78 ( ± 1.2) 89.12 ( ± 1.93) 89.86 ( ± 1.89) 

Rhineland 89.54 ( ± 0.94) 90.07 ( ± 0.88) 88.71 ( ± 2.16) 89.68 ( ± 2.21) 

abide-i 86.55 ( ± 2.37) 86.67 ( ± 2.31) 84.42 ( ± 3.12) 84.97 ( ± 3.13) 

abide-ii 86.9 ( ± 1.2) 87.85 ( ± 1.19) 81.92 ( ± 1.72) 83.68 ( ± 1.55) 

adni 88.65 ( ± 1.86) 88.58 ( ± 2) 87.3 ( ± 2.99) 87.96 ( ± 2.69) 

ixi 86.51 ( ± 3.33) 86.54 ( ± 3.67) 85.94 ( ± 3.01) 86.2 ( ± 2.83) 

la5c 89.49 ( ± 0.51) 89.63 ( ± 0.49) 88.86 ( ± 1.83) 89.46 ( ± 1.49) 

oasis1 88.9 ( ± 0.88) 89.12 ( ± 0.91) 88.33 ( ± 0.88) 89.03 ( ± 0.8) 

DSC oasis2 88.35 ( ± 1.59) 88.49 ( ± 1.65) 87.00 ( ± 2.21) 87.57 ( ± 2.26) 

HCP 0.317 ( ± 0.06) 0.306 ( ± 0.059) 0.245 ( ± 0.126) 0.224 ( ± 0.128) 

Rhineland 0.291 ( ± 0.043) 0.276 ( ± 0.042) 0.241 ( ± 0.13) 0.215 ( ± 0.131) 

abide-i 0.428 ( ± 0.114) 0.421 ( ± 0.108) 0.366 ( ± 0.225) 0.345 ( ± 0.226) 

abide-ii 0.347 ( ± 0.058) 0.311 ( ± 0.054) 0.352 ( ± 0.079) 0.313 ( ± 0.073) 

adni 0.307 ( ± 0.07) 0.31 ( ± 0.075) 0.278 ( ± 0.176) 0.261 ( ± 0.164) 

ixi 0.44 ( ± 0.203) 0.416 ( ± 0.151) 0.296 ( ± 0.107) 0.281 ( ± 0.102) 

la5c 0.279 ( ± 0.038) 0.274 ( ± 0.034) 0.236 ( ± 0.076) 0.217 ( ± 0.062) 

oasis1 0.291 ( ± 0.034) 0.283 ( ± 0.034) 0.233 ( ± 0.031) 0.215 ( ± 0.028) 

ASD oasis2 0.312 ( ± 0.058) 0.309 ( ± 0.065) 0.255 ( ± 0.064) 0.24 ( ± 0.064) 

Table 10 

Compiled results of Fig. 9 - Generalization of FastSurferCNN 

∗ + exSA (external scaling augmentation) and 

FastSurferVINN to unseen resolutions purposefully excluded from the training set (0.7 mm, 0.8 mm and 

0.9 mm). Dice Similarity Coefficient (DSC) and average surface distance (ASD) are reported for the subcor- 

tical and cortical structures. Note, that comparisons between the different data resolutions are not possible 

due to differing training sets. 

DSC ASD 

Data Networks Subcortical Cortical Subcortical Cortical 

FastSurferCNN ∗ + exSA 85.8 ( ± 1.69) 86.11 ( ± 1.69) 0.416 ( ± 0.088) 0.367 ( ± 0.088) 

0.7 mm FastSurferVINN 86.49 ( ± 1.62) 87.5 ( ± 1.62) 0.397 ( ± 0.084) 0.294 ( ± 0.084) 

FastSurferCNN ∗ + exSA 88.31 ( ± 1.13) 87.31 ( ± 1.13) 0.328 ( ± 0.057) 0.273 ( ± 0.057) 

0.8 mm FastSurferVINN 88.75 ( ± 0.93) 88.28 ( ± 0.93) 0.316 ( ± 0.042) 0.246 ( ± 0.042) 

FastSurferCNN ∗ + exSA 86.9 ( ± 1.2) 81.92 ( ± 1.2) 0.347 ( ± 0.052) 0.352 ( ± 0.052) 

0.9 mm FastSurferVINN 87.85 ( ± 1.19) 83.68 ( ± 1.19) 0.311 ( ± 0.049) 0.313 ( ± 0.049) 

18 
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Table 11 

Compiled results of Fig. 10 - Generalization of FastSurferCNN 

∗ + exSA (external scaling augmentation) and 

FastSurferVINN to resolutions vastly outside the training range (1.4 mm and 1.6 mm). Synthetic ground 

truth labels and input images have been resampled with majority voting and cubic interpolation from the 

0.7 mm and 0.8 mm data to allow comparisons here. Dice Similarity Coefficient (DSC) and average surface 

distance (ASD) are reported for the subcortical and cortical structures. 

DSC ASD 

Data Networks Subcortical Cortical Subcortical Cortical 

FastSurferCNN ∗ + exSA 84.54 ( ± 2.12) 76.73 ( ± 2.96) 0.482 ( ± 0.087) 0.597 ( ± 0.198) 

1.4 mm FastSurferVINN 84.94 ( ± 1.65) 77.88 ( ± 2.06) 0.473 ( ± 0.084) 0.480 ( ± 0.136) 

FastSurferCNN ∗ + exSA 80.33 ( ± 6.13) 66.52 ( ± 7.57) 0.758 ( ± 0.329) 1.302 ( ± 0.674) 

1.6 mm FastSurferVINN 85.74 ( ± 1.33) 77.69 ( ± 2.48) 0.473 ( ± 0.062) 0.494 ( ± 0.142) 

Table 12 

Compiled results of Fig. 11 - Part 1: Performance of FastSurferCNN 

∗ + external scale augmen- 

tation (exSA) and FastSurferVINN on the 1.0 mm manual reference Mindboggle. Dice Similarity 

Coefficient (DSC) and average surface distance (ASD) are reported for the subcortical ( 𝑛 = 20 ) and 

cortical structures ( 𝑛 = 78 ). 

DSC ASD 

Networks Subcortical Cortical Subcortical Cortical 

FastSurferCNN ∗ + exSA 80.06 ( ± 1.17) 81.23 ( ± 1.63) 0.617 ( ± 0.03) 0.489 ( ± 0.062) 

FastSurferVINN 80.06 ( ± 1.2) 81.89 ( ± 1.67) 0.616 ( ± 0.029) 0.471 ( ± 0.062) 

Table 13 

Compiled results of Fig. 11 - Part 2: Performance of FastSurferCNN 

∗ + external 

scale augmentation (exSA) and FastSurferVINN on 𝑛 = 6 manually corrected 0.8 mm 

FreeSurfer labels. Dice Similarity Coefficient (DSC) and average surface distance (ASD) 

are reported for the white matter (WM), gray matter (GM) and hippocampus. 

Measure FastSurferCNN ∗ + exSA FastSurferVINN 

GM 95.77 ( ± 0.46) 96.04 ( ± 0.5) 

WM 97.40 ( ± 0.4) 97.54 ( ± 0.38) 

DSC Hippocampus 92.94 ( ± 1.02) 93.04 ( ± 1.07) 

GM 0.067 ( ± 0.016) 0.062 ( ± 0.018) 

WM 0.079 ( ± 0.025) 0.075 ( ± 0.024) 

ASD Hippocampus 0.185 ( ± 0.078) 0.181 ( ± 0.081) 

Table 14 

Compiled results of Fig. 12 - Part 1: Comparison of fixed-resolution networks and multi-resolution 

FastSurferVINN. FastSurferCNN 

∗ trained on 𝑛 = 60 or 𝑛 = 120 high-resolution subjects are compared 

to FastSurferVINN trained on a mixed set (60 high-resolution and 60 1.0 mm scans). Dice Similarity 

Coefficient (DSC) and average surface distance (ASD) are reported for the two 0.8 mm datasets 

(Rhineland study (RS) and Human Connectome Project Lifespan (HCPL)). 

DSC ASD 

Networks RS HCPL RS HCPL 

FastSurferCNN ∗ ( 𝑛 = 60 ) 89.28 ( ± 0.06) 87.42 ( ± 0.05) 0.391 ( ± 0.05) 0.257 ( ± 0.062) 

FastSurferCNN ∗ ( 𝑛 = 120 ) 89.83 ( ± 0.06) 88.14 ( ± 0.05) 0.358 ( ± 0.05) 0.240 ( ± 0.062) 

FastSurferVINN ( 𝑛 = 120 ) 89.85 ( ± 0.06) 88.99 ( ± 0.03) 0.326 ( ± 0.033) 0.245 ( ± 0.063) 
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4. Tabulated results 

In Table 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . we provide numeric val-

es for DSC and ASD metrics for Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 . A note

n reproducibility: Authors wishing to compare their methods to Fast-

urferVINN and FastSurferCNN are strongly encouraged to download
19 
ur code from our repository (github.com/DeepMI/FastSurfer). For re-

roducibility and fair comparison, we provide a reproducibility guide

ith training and evaluation instructions for FastSurferVINN and Fast-

urferCNN on github. Particularly, we recommend re-running evalua-

ions to avoid inconsistencies in non-identical training and evaluation

atasets (subjects) as well as reference segmentation. 
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Table 15 

Compiled results of Fig. 12 - Part 2: Comparison of fixed-resolution networks and multi-resolution 

FastSurferVINN. State-of-the-art FastSurferCNN and optimized FastSurferCNN 

∗ trained on 120 

1.0 mm scans are compared to FastSurferVINN trained on a mixed set (60 high-resolution and 

60 1.0 mm scans). Note, that the scans are equivalent between the training sets and only differ in 

their resolution. Dice Similarity Coefficient (DSC) and average surface distance (ASD) are reported 

for six 1.0 mm datasets. 

Networks FastSurferCNN ( 𝑛 = 120 ) FastSurferCNN ∗ ( 𝑛 = 120 ) FastSurferVINN ( 𝑛 = 120 ) 

ABIDE-I 83.33 ( ± 4.29) 84.55 ( ± 3.46) 85.30 ( ± 2.88) 

ADNI 86.99 ( ± 2.15) 87.59 ( ± 2.09) 87.94 ( ± 1.91) 

IXI 84.46 ( ± 4.61) 85.22 ( ± 5.05) 86.14 ( ± 3.70) 

LA5C 88.3 ( ± 1.40) 88.84 ( ± 1.33) 89.25 ( ± 1.35) 

OASIS1 88 ( ± 1.38) 88.53 ( ± 1.37) 88.89 ( ± 1.39) 

DSC OASIS2 87.36 ( ± 1.53) 87.81 ( ± 1.51) 88.18 ( ± 1.26) 

ABIDE-I 0.441 ( ± 0.140) 0.416 ( ± 0.129) 0.402 ( ± 0.125) 

ADNI 0.315 ( ± 0.094) 0.294 ( ± 0.086) 0.281 ( ± 0.079) 

IXI 0.381 ( ± 0.128) 0.367 ( ± 0.148) 0.332 ( ± 0.106) 

LA5C 0.273 ( ± 0.045) 0.256 ( ± 0.044) 0.241 ( ± 0.043) 

OASIS1 0.278 ( ± 0.062) 0.264 ( ± 0.063) 0.255 ( ± 0.066) 

ASD OASIS2 0.29 ( ± 0.048) 0.276 ( ± 0.048) 0.262 ( ± 0.039) 

Table 16 

Compiled results of Fig. 13 : Influence of training set size. Comparison of FastSurferVINN trained on the original training set ( 𝑛 = 120 ) and a version with approx- 

imately 20 times more 1.0 mm scans ( 𝑛 = 1315 ). Dice Similarity Coefficient (DSC) and average surface distance (ASD) are reported for four different resolutions 

(0.7 mm, 0.8 mm, 0.9 mm and 1.0 mm). 

Datasets FastSurferVINN + inSA ( 𝑛 = 120 ) FastSurferVINN + inSA ( 𝑛 = 1300 ) FastSurferVINN + inSA ( 𝑛 = 120 ) FastSurferVINN + inSA ( 𝑛 = 1300 ) 

0.7 mm 89.4 ( ± 1.29) 89.87 ( ± 1.28) 0.259 ( ± 0.08) 0.243 ( ± 0.080) 

0.8 mm 89.84 ( ± 1.46) 90.57 ( ± 1.44) 0.241 ( ± 0.079) 0.218 ( ± 0.080) 

0.9 mm 85.45 ( ± 1.13) 88.75 ( ± 1.39) 0.347 ( ± 0.050) 0.263 ( ± 0.052) 

DSC 1.0 mm 87.67 ( ± 2.51) 90.26 ( ± 1.54) ASD 0.296 ( ± 0.105) 0.231 ( ± 0.074) 
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