
METHODS ARTICLE
published: 20 February 2014

doi: 10.3389/fnagi.2014.00020

Regions of interest computed by SVM wrapped method for
Alzheimer’s disease examination from segmented MRI
Antonio R. Hidalgo-Muñoz*, Javier Ramírez, Juan M. Górriz and Pablo Padilla

Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain

Edited by:

Hari S. Sharma, Uppsala University,
Sweden

Reviewed by:

Hari S. Sharma, Uppsala University,
Sweden
John Suckling, University of
Cambridge, UK
Manuel Grana, Universidad del Pais
Vasco, Spain

*Correspondence:

Antonio R. Hidalgo-Muñoz,
Department of Signal Theory,
Networking and Communications,
University of Granada, C/ Periodista
Daniel Saucedo Aranda s/n, 18071
Granada, Spain
e-mail: arhidalgom@gmail.com

Accurate identification of the most relevant brain regions linked to Alzheimer’s disease
(AD) is crucial in order to improve diagnosis techniques and to better understand this
neurodegenerative process. For this purpose, statistical classification is suitable. In this
work, a novel method based on support vector machine recursive feature elimination (SVM-
RFE) is proposed to be applied on segmented brain MRI for detecting the most discriminant
AD regions of interest (ROIs). The analyses are performed both on gray and white matter
tissues, achieving up to 100% accuracy after classification and outperforming the results
obtained by the standard t -test feature selection.The present method, applied on different
subject sets, permits automatically determining high-resolution areas surrounding the
hippocampal area without needing to divide the brain images according to any common
template.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive, neurodegenerative
disorder that gradually impairs memory and other cognitive skills,
such as spatial orientation, judgment or language, preventing a
healthy aging. Currently, scientists are interested in researching
different kinds of brain imaging to detect possible dementia at a
very early stage, when medical and psychological treatments are
more effective. For Alzheimer’s disease, it is necessary to deter-
mine the brain regions of interest (ROIs); magnetic resonance
imaging (MRI) provides valuable information on that matter.
Several useful atlases and templates are reported in the literature
(Shen et al., 2012). However, choosing the most appropriate one
is difficult and it is not possible to use only one brain map to
cover every specific characteristic from each neurological disor-
der. From a clinical standpoint, doctors generally require rigorous
technical basis or mathematical methods (Rosenberg and Hillis,
2009). Therefore, a straightforward method is needed for discrim-
inating the most relevant regions related to neurodegenerative
diseases (López et al., 2011; Shen et al., 2011). In this study, an
approach combining image segmentation and a wrapped classifi-
cation algorithm is proposed for computing the ROIs from MRI,
which differ meaningfully between AD patients and healthy elderly
people.

Structural MRI has been widely explored in AD, giving valu-
able information about its underlying anatomical progression. For
instance, the Alzheimer’s disease neuroimaging initiative (ADNI)
has compiled an MRI database of AD, and mild cognitive impair-
ment (MCI) that has been widely employed (Jack et al., 2010;
Weiner et al., 2010). MRI and AD research goals vary. Several
researchers in this field have focused on volume and integrity mea-
surement of different brain tissues (Shen et al., 2011; Zhang et al.,

2013) in order to find relevant early AD biomarkers or MCI onset
(Desikan et al., 2009). Furthermore, much research attempts to
achieve more efficient automated classification of AD patients as
compared to MCI patients or healthy aging (Klöppel et al., 2008;
Aguilar et al., 2013; Ortiz et al., 2013a). Overall, most of these
studies determine the ROIs before the classification block accord-
ing to previously delimited regions, which have been split based
on any standard template (Mazziotta et al., 1995; Shattuck et al.,
2008; Cuingnet et al., 2011).

Determining adequate brain ROIs is an important topic in
medical image processing and computer-aided diagnostics (CAD)
with many applications like morphology detection (Kapur et al.,
1996) or 3-D visualizations for surgical planning (Suetens et al.,
1993; Clarke et al., 1995). Usually, MRI is segmented into three
quantitatively distinct tissues, that is, gray matter (GM), mainly
linked to the cortex, white matter (WM),mainly composed by neu-
ronal axons, and cerebrospinal fluid (CSF; Salas-Gonzalez et al.,
2011). Despite the recent development of new MRI segmenta-
tion methods (Ortiz et al., 2013b; Salas-Gonzalez et al., 2013),
the most recognized approach models intensity value distribu-
tion by a mixture of Gaussian distributions (MOG; Ashburner
and Friston, 2003). This method is implemented in commonly
used software like statistical parametric mapping (SPM; Frack-
owiak, 2004), which is utilized in diverse clinical protocols,
and obtains the probability of each image voxel belonging to
any tissue according to location and intensity level in a gray
scale.

In general, machine-learning and classification techniques are
increasingly used as an alternative to other multivariate statisti-
cal approaches. The aim of these pattern recognition techniques
is not limited to achieving good results in classification tasks
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or for artificial intelligence applications, but rather to gage the
relevance of some extracted features and search for differences
between experimental conditions (Shieh and Yang, 2008; Hidalgo-
Muñoz et al., 2013a,b; Tomé et al., 2013). Following this line,
methods where the feature selection algorithm is wrapped around
the classification algorithm recursively to identify the least rele-
vant features constitutes a good option (Kohavi and John, 1997).
These algorithms are suitable for dealing with high-dimensional
data like medical images, since the parameters of the classifier
serve as scores to select the ROIs and the corresponding clas-
sification performance guides the iterative procedure. On the
other hand, generalizing results will depend on the size of the
dataset, and the cross-validation (CV) method used to evalu-
ate the classification accuracy (Burges, 1998). Either way, these
methods permit covering a whole set of initial features with-
out being restricted to any specific region to check its relevance.
In this work, the recursive feature elimination (RFE) algorithm,
proposed by Guyon et al. (2002), and based on the support
vector machine (SVM; Ben-Hur et al., 2008), is used. Support
vector machine recursive feature elimination (SVM-RFE) has
been successfully implemented in various neuroscience applica-
tions (De Martino et al., 2008; Chu et al., 2012; Hidalgo-Muñoz
et al., 2013a); nevertheless, it has hardly been used for image
analyses.

The presented work focuses separately on GM and WM tissues
to delimit the most discriminant brain ROIs for examining AD
from MRI. This paper presents an innovative and effective method
for feature selection, the SVM-RFE technique, that has never been
used before for this purpose as far as authors are aware. This
affordable and intuitive method, easily implementable in medical
apparatuses, intends to contribute to a complete diagnosis and
examination of AD and its progression.

MATERIALS AND METHODS
DATASET
Data used in the preparation of this article was obtained from
the (ADNI) database (http://adni.loni.usc.edu/). The ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership. The primary goal
of ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and the progression
of MCI, and early AD. Determining sensitive and specific markers
of very early AD progression is intended to aid researchers and
clinicians to develop new treatments, as well as reduce the time
and cost of clinical trials. The Principal Investigator of this initia-
tive is Michael W. Weiner, MD, VA Medical Center and University
of California, San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was
to recruit 800 adults, ages 55 to 90, to participate in the research:
approximately 200 cognitively normal older individuals to be fol-
lowed for three years, 400 people with MCI to be followed for three

years and 200 people with early AD to be followed for two years.
For up-to-date information, see www.adni-info.org.

In this article, only the data from T1-weighted MR images was
considered. The participants were separated into two different
classes:

– Normal. Control subjects. Clinical Dementia Rating (CDR;
Morris, 1993) of zero. They were non-depressed, non-MCI and
non-demented.

– AD. CDR of 0.5 or 1, met NINCDS/ADRDA criteria for
probable AD (McKhann et al., 2011).

Table 1 shows the demographic details of the subjects who
compose the dataset used in this work.

IMAGE PRE-PROCESSING
The SPM software was originally designed for analyzing functional
brain images. The package also contains routines for realignment,
smoothing, and spatial normalization into a standard space of
T1-weighted MR images. To this end, the template implemented
within the VBM8 Toolbox was used, specifically DARTEL, to
achieve an accurate realignment of the images and a good nor-
malization (http://dbm.neuro.uni-jena.de/vbm/). It is worthwhile
to stress that spatial normalization or the registration algorithm is
always a critical component to any classifier that uses voxel-wise
features (Cuadra et al., 2005). Within these routines, a modulation
step was implemented in order to conserve the amount of tissue
and not the intensities (see Ashburner et al., 2012; p. 192). After
the transformation of the images from the ADNI database, they
were resized to the dimensions 121 × 145 × 121 with voxel sizes of
1.5 mm (sagittal) × 1.5 mm (coronal) × 1.5 mm (axial). Neither
smoothing nor dimension reduction were performed after that.
One high-quality image per subject was chosen.

IMAGE SEGMENTATION
In this work, GM and WM image segmentation was implemented
in SPM, which models the intensity value distribution of the T1-
weighted MRI by a MOG (Ashburner and Friston, 2003, 2005) and
takes voxel location into consideration via a tissue probability map
(TPM). Using this methodology, which is described, for example,
in Ashburner et al. (2012), it has been possible to overcome the
partial volume effect (PVE), such that a voxel may not be purely of
one tissue class, but can contain signals from a number of different
tissues.

Within this work the central features are the probability values
for GM or WM in a given voxel, not the intensity values per se.
Once the images have been segmented, the resulting dataset is
ready for further processing and analysis. The subsequent analyses
were carried out with MATLABTM.

SVM WRAPPED METHOD
As mentioned, medical images may provide clinicians valuable
information about disease status, diagnosis and prognosis. How-
ever, extracting significant features from high-dimensional data
as an image is always a complex task. Usually, some reduction
methods, and their subsequent feature selection, greatly trans-
form the original data, making eventual clinical interpretations
difficult. The aim of this paper is to select a reasonable number of

Frontiers in Aging Neuroscience www.frontiersin.org February 2014 | Volume 6 | Article 20 | 2

http://adni.loni.usc.edu/
http://www.adni-info.org
http://dbm.neuro.uni-jena.de/vbm/
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Hidalgo-Muñoz et al. MRI regions in Alzheimer’s disease

ROIs with high predictive value and whose aspect could then be
medically meaningful.

In the wrapper approach, the feature selection algorithm wraps
around the classification algorithm. The feature selection con-
sists of searching high-dimensional data sets using the induction
algorithm itself as part of the evaluating function (Kohavi and
John, 1997). Hence the parameters of the classifier serve as scores
to select (or to eliminate) features; the consequent classification
performance guides an iterative procedure. When this recursive
feature elimination strategy uses a linear SVM-based classifier, the
resulting method is known as support vector machine-recursive
feature elimination (SVM-RFE; Guyon et al., 2002). The valida-
tion method will be crucial to avoiding creating a system that is
over-trained, that is, that fits well only to the experimental data,
losing generality and providing misleading results.

An SVM-based classifier separates a given set of binary-labeled
training data with what is known as the maximal margin hyper-
plane, which is maximally distant from two classes (for example,
AD and Normal classes). The objective is to build a function that
will correctly classify new examples (for example, MRI-segmented
images).

Linear SVM parameters define a decision hyperplane in the
multidimensional feature space (Burges, 1998; Ben-Hur et al.,
2008; Illán et al., 2011), that is:

g(x) = wTx + b = 0

where x denotes the feature vector, w is known as the weight
vector and b is known as the threshold. The decision hyperplane
position is determined by vector w and b: the vector is orthogonal
to the decision plane and b determines its distance to the origin. For
linear SVM, the vector w can be explicitly computed. The design
of the classifier consists of finding the unknown parameters, that
is, w components of w (wn, n = 1. . .M, where M = number of
features) and b, which allows building a hyperplane that separates
the two classes optimally.

Figure 1 illustrates a 2D toy-example of a binary classifica-
tion problem, where the points x=[x1 x2], marked like red circles,
belong to one class, and the ones marked like blue crosses belong to
the other one. The problem is not linearly separable since it is not
possible to find a line (2D hyperplane) that perfectly separates all
training instances of the two classes. However, if a small number of
misclassifications are tolerated, the problem becomes linearly sep-
arable. The figure shows the result of three training sessions with
the same data, but different misclassification margins (C parame-
ter). The vector w = ∑Ns

1 yiλixi is a weighted sum of the support
vectors which are the Ns elements, inside the margin, chosen from
the set used during the training phase. In Figure 1, these support
vectors are marked with circles around the training data points.
λi are the corresponding Lagrangian parameters which are also
optimized (0 < λi < C). Finally, the value of the threshold b is
estimated by solving the equations related to the hyperplanes that
define the margin. In Ben-Hur et al. (2008), an extensive algebraic
explanation of SVM applied to biological sciences is reported.

The value of C must be assigned to run the optimization algo-
rithm and represents the weight of the penalty term of the function
that is related with the training set misclassification error. It is a

FIGURE 1 | SVM schemes using different C values. (A) C =100. (B)

C =1. (C) C =0.1. Thicker line: decision lines (hyperplane). Thinner lines:
margin limits depending on the C parameter.

parameter that indirectly controls the margin width of the classifier
(see Figure 1). A trade-off exists between the width of the margin
and the number of accepted misclassifications. There is no opti-
mal procedure to assign this parameter, but it has to be expected
that if C is large, the misclassification errors are relevant during
the optimization function and the margin should be narrow. On
the other hand, if C is small, the misclassification errors are not
relevant and a large margin has is expected.

According to SVM-RFE algorithm, the relevance of the feature
vector’s n–th entry is determined by the corresponding value wn

in the weight vector. In particular, if |wn|� 0, the correspond-
ing feature does not contribute significantly for the value of g(x).
Then, sorting these absolute values, the relevance of the features is
determined. Therefore, in each loop of the algorithm, a concrete
number of features (τ ) can be discarded following this criterion
(see Figure 2).

The method explained above is closely linked to the princi-
ple of the nested CV approach for classifier optimization (Varma
and Simon, 2006; Gallix et al., 2012). The nested CV techniques
use loops into the training blocks for designing and tuning the
classifier’s parameters (see Figure 2). Therefore, following the
recommendations reported in the literature (Varma and Simon,
2006), validating the complete algorithm was carried out on dif-
ferent subsets from the initial whole sample in order to diminish
biased results (see section 2.5).

As described in the previous section, the feature values after
segmentation represent the probability of belonging to the tissue
(GM or WM) of every voxel of the image. Therefore, the initial set
of features, using a voxel-as-feature (VAF) approach, is composed
of 121 × 145 × 121 = 2,122,945 voxels from each original image.
Then, the number of features is reduced for each classification
task, since only those from the separated segments were used as
algorithm inputs. As a result, the number of initial features for the
GM class (M = 568,273 voxels) was slightly higher than for the
WM class (M = 504,329 voxels).

Assuming the trade-off between resolution and computational
cost, after empirical trials, a step (τ ) of 20,000 features to be elim-
inated in each SVM-RFE loop (approximately 3.5–4% of the total
number of features) was considered as a proper option in the
experiments.
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FIGURE 2 | SVM-RFE scheme. SVM1 parameters are computed taking all
the available samples for the training block and determining the relevance
of the features. SVM2 classification is performed in order to check the
suitability of the previous selected features by SVM1 and serves as a guide
to achieve the optimal number of features. CV: Cross-validation.

PERFORMANCE MEASUREMENT
As indicated in Table 1, a total of 370 subjects (185 AD and 185
Normal) were employed in the experiment. However, in order to
reduce the computational cost and get a more reliable generaliza-
tion, several subsets were formed from the original whole set to
carry out selection and classification (both GM and WM alter-
natives). The sets were composed of 60 subjects (30 AD and 30
Normal).

The subjects were organized randomly and the first 30 sub-
jects belonging to each group (AD or Normal) were taken as the
first set. Then, a “sliding window” with an overlap of 25 subjects
for each group went across all the subjects, forming new groups.
Thus, a total of 32 different sets were constituted to carry out the
mentioned selection and classification tasks. Finally, the global
accuracy of the method was computed by averaging the partial
accuracies obtained using each set. Additionally, by applying SVM-
RFE on different sets, the feature selection permits quantifying
more exhaustively the extent to which the results are generalizable.
Obviously, there were subjects that belonged to several groups and
some redundance was unavoidable. Once the main features were
selected by the first blocks of SVM-RFE, an independent SVM clas-
sification task was performed using 10-fold as a CV strategy for
evaluating the classifier accuracy (see SVM2 in Figure 2), which
is a suitable method for diminishing image variability or peculiar-
ity influence and has been strongly suggested in machine-learning
applications (Kohavi, 1995; Ortiz et al., 2013a). The 10–fold CV

Table 1 | Sociodemographic data.

Group Subjects Sex: M/F Age:μ(SD) MMSE:μ(SD)

Normal 185 95/90 75.85(5.11) 29.15(0.97)

AD 185 98/87 75.39(7.56) 23.28(2.05)

p − − 0.489 <0.001

MMSE: mini-mental state examination (Folstein et al., 1975). μ: mean; SD:
standard deviation; p: significance of t-test contrast between-groups.

consists of using all the samples in each subset for training the sys-
tem except 10, which is used as a test. This procedure is repeated
S times, S being the number of 10–sample groups in the dataset,
after which a global accuracy value is computed.

STATISTICAL ANALYSIS
In order to check the statistical significance of the differences
between voxels belonging to the averaged images from the AD and
Normal groups, Student’s t-tests for independent samples were
performed, assuming a significance level of p = 0.05, which is
widely used in brain image processing (Du et al., 2001; Liu et al.,
2010; Hölzel et al., 2011; Li et al., 2011).

Moreover, a study on the different sets’ global accuracy was
carried out, computing the mean and standard deviation (SD) for
each loop of the algorithm.

RESULTS
REGIONAL DIFFERENCES IN GM
Figure 3 shows the differences in representative axial sections from
GM segmented images between AD and Normal groups in order
to get a rough idea about the location of the most evident ROIs.
Only GM segmentation is represented, which is emphasized in this
kind of research, since it is only for visualization purposes.

ROIs ACCORDING TO t -TEST (GM AND WM)
Using the significant features determined by the t-test thresh-
old, the obtained accuracy applying the same procedure yielded
78.66% for GM and 77.8% for WM. Applying the t-test on the
complete sample (a total of 185 subjects for each group to com-
pute the contrast and performing only one global classification
task after the feature selection, 10–fold validation), the accu-
racy improved to 89.46% for GM and 93.24% for WM, although
these values are still lower than those obtained by SVM-RFE, as
described in the next section. Furthermore, if only the top 20%
of the relevant features according to the t-test (and correspond-
ing p values) was employed, the accuracy decreased to 63.98%
and 74.59% for GM, applying the same CV method explained in
section 2.5 (32 sets) and using the complete sample, respectively,
and 77.85% and 93.24% for WM. Note that in the case of WM, the
results are similar taken specifically the significant features or only
the 20% because of the number of significant features (p <0.05)
matched up approximately to the 20% of the total features.

ROIs ACCORDING TO SVM-RFE (GM AND WM)
Figure 4 shows the most relevant ROIs (GM and WM segmented
images) according to the remaining features after applying SVM-
RFE using multiple groups for the algorithm training (see section
2.5). According to the accuracy values obtained in both classifica-
tion tasks, and intending to get a representative amount of features
to make illustrative comparisons, only the top 20% most-relevant
features pointed by SVM-RFE were chosen as ROIs.

The number of features considered relevant by diverse number
of sets is represented in Figure 5. In Figure 5, two binomial prob-
ability density functions (PDFs) are represented as well, whose
parameters are n = 32 (number of sets) and p = 0.2 (success
probability being considered as relevant). If the feature selection
by every set had been random and independent of the rest
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FIGURE 3 | Averaged differences in the probabilities of belonging to GM between AD and Normal groups. Horizontal sections (z axis, 23 <z <42). Color
bars represent these differences. (A) ROIs where the GM probability is higher in Normal than AD (maximal difference =0.5). (B) ROIs where the GM
probability is higher in AD than Normal (maximal difference =0.1).

FIGURE 4 | Representative axial sections (z axis, 23 <z <42) where relevant differences have been found that delimit ROIs by SVM-RFE. Only the 20%
most-relevant features are taken into account. Color bars represent the number of training sets that select each feature. (A) GM segmentation. (B) WM
segmentation. Note that the most brilliant regions are the most relevant.

of the sets’ decisions and the features had the same probabil-
ity of being chosen and were statistically independent as well,
these binomial PDF shapes would have been expected in the
graphs.

Note that SVM-RFE leads to a substantial reduction in the
number of relevant features. Either way, if the target of this work
had been to design a potential classifier, instead of computing
ROIs, other external data should have been tested.

Figure 6 shows the accuracy values and standard deviations
of the AD vs. Normal classification tasks, selecting the relevant
features basing on SVM-RFE. The maximum averaged accuracy
values were 99.64% using GM images and 99.74% using WM
images.

Since the objective of the method is to achieve maximum accu-
racy (practically 100%) in order to discriminate the ROIs, it is
not necessary to include either sensitive or specificity measures,
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FIGURE 5 | Number of times that specific features have been selected

as relevant ones from the total of the 32 sets. Solid lines represent the
result obtained by applying SVM-RFE; dash lines represent the
corresponding binomial PDF for both conditions.

in contrast to other applications whose goals focus on designing
the best classifiers and clinical repercussions of their errors.

In order to check again the method’s generalization capability,
a global classification task was performed after the previous fea-
ture selection by SVM-RFE. In this classification task, different
amounts of features were chosen based on different required per-
centages of sets that indicated features as belonging to the 20%

most-relevant ones. In other words, the features were grouped
depending on how many times they were selected by all the sets.
In this case, the complete sample was considered (185 subjects per
group) and 10-fold validation method applied. The results sug-
gested an acceptable generalization, since 94.32% accuracy was
reached for GM images taking into consideration only those fea-
tures selected as relevant by at least 18 of the 32 sets (56%of the
sets). However, the accuracy value decreases to 82.16% if only
those features selected by 100% of the sets are chosen because too
few features are reckoned in that case. Similar results occur with
WM segmented images, where 95.14% accuracy is achieved when
the features selected by at least 14 sets (44% of the sets) are cho-
sen. However, it is important to note that, in this case, the 10-fold
validation method is not a strict CV, since the previous ROIs were
selected using the complete sample. Either way, the results can give
an idea about potential reproducibility.

3-D ILLUSTRATIONS
Figures 7 and 8 show three-dimensional illustrations of the ROIs
computed by the SVM-RFE method for GM and WM, respectively.
In the graphs are marked only those voxels that were selected by
the majority of the training sets (more than 75% of the sets’ total)
in order to show the most robust results.

DISCUSSION
In this work, a novel application of a wrapper method based on
SVM was performed to determine the ROIs from MRI, belonging
to both GM and WM tissues, in order to better detect AD. Neither
reduction of the data dimensionality nor previous voxel selection
was required, thereby keeping the highest possible resolution to
delimit the mentioned ROIs (see Figures 7 and 8).

From the beginning, the SVM-RFE algorithm was widely used
in studies in order to select important genes (Guyon et al., 2002;
Tang et al., 2007; Mundra and Rajapakse, 2010). Nonetheless, its
potential applications have hardly been considered for image pro-
cessing and specifically for ROIs computing from brain images. In

FIGURE 6 | Accuracy values (%) for (A) GM and (B) WM segmentations by applying SVM-RFE.
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FIGURE 7 | 3-D illustration of the ROIs determined by SVM-RFE

algorithm in GM segmented MRI selected at least by 75% of training

sets to 100%.

FIGURE 8 | 3-D illustration of the ROIs determined by SVM-RFE

algorithm in WM segmented MRI selected at least by 75% of training

sets to 100%.

this paper, SVM-RFE has been shown to be able to select relevant
ROIs that may aid an early diagnosis of AD. This is achieved by
means of using the probabilities of belonging to GM or WM tis-
sues of each voxel as features, which composes a segmented MRI.
Methods based on SVM classifiers are suitable for analyzing big
data, such as image processing, where the curse of dimensionality
is a very common concern, since the SVM algorithm is not sensi-
tive to over-fitting thanks to its margin definition (C parameter).
In any case, it is fair to reiterate this concern to be cautious for the
generalization of this kind of results.

The results obtained in the presented experiments have sug-
gested that SVM-RFE selects discriminant features more efficiently
than t-test significance for classification purposes (see section
3.4), as other research works report (Hidalgo-Muñoz et al.,
2013a), specifically in digital signal processing. Furthermore,

since wrapped algorithms are based on the same classification
technique, the complete method becomes more simple and intu-
itive than other multivariate statistical approaches. Moreover,
the SVM-RFE permits choosing features from a huge set, with-
out needing the multiple comparison corrections that are still
a controversial issue in statistics (Perneger, 1998). Either way,
the CV method into the wrapper algorithm is a key block for
evaluating the accuracy and testing the capability of classifier
generalization.

Regarding region morphology, ROIs delimited by SVM-RFE
are located mainly in specific regions where more differences are
evident by comparing the MRI averages, matching up consid-
erably within the expected regions that are statistically different
between groups (see Figures 3 and 4). However, the ROIs are
not limited to the statistically significant regions, but also cover
voxels surrounding these regions and disregard numerous voxels
inside them. These regions’ borders could be particularly impor-
tant, since they could be related to the cortical atrophy suffered
by AD patients in early stages (Quiroz et al., 2013). However, it
would be necessary to check individually whether the ROI differ-
ences are mainly due to tissue deterioration (especially GM) or if
they are influenced by some internal heterogeneity of the matter.
For this reason, maintaining high MRI resolution is essential. This
fact could question the suitability of some predefined ROIs by
general brain templates (Magnin et al., 2009; Shen et al., 2011) in
machine-learning applications that deal with such concrete neu-
rological disorders as AD, whereas SVM-RFE takes all the features
from MRI as a whole set without preconceived areas of interest.

The ROIs computed by SVM-RFE correspond intimately to the
regions pointed in the literature as most affected by AD: hippocam-
pus, entorrhinal cortex, parahippocampal region (Du et al., 2001;
Velayudhan et al., 2013) and insular cortex (Xie et al., 2012) among
other regions like the amygdala, lenticular nucleus or fusiform
gyrus (Tzourio-Mazoyer et al., 2002). As is well known, the hip-
pocampus is a basic subcortical structure involved in declarative
memory consolidation and spatial orientation (Squire, 1992; Tsien
et al., 1996), which are skills severely affected by AD. These regions
show an evident inter-hemisphere symmetry, particularly for GM
segments (see Figures 4 and 7).

In addition, Figures 4 and 7 show that although neocor-
tex deterioration is often evident in AD (Quiroz et al., 2013), it
is possible to point out a more general pattern for all patients
in temporal lobes and insular cortex, whereas frontal lobe
damage seems to be more diffuse in this inter-subject study.
This fact can be influenced by the images’ high-resolution,
the necessary pre-processing and the specific and different
development of the frontal lobes in people, depending on
their experiences and even their educational level (Stuss and
Knight, 2013) suggesting a remarkable contribution of individual
differences.

The 3-D illustration helps to understand the possible general-
ization of the results for aid diagnosis or for clinical evaluations.
Once the first ROIs have been determined, it would be possi-
ble to focus on these regions exclusively and separately in order
to enclose and analyze in detail the pertinent anatomical regions
(Ahmed et al., 2013). For instance, some research suggests that
distinct regions of the hippocampus are affected differently in
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AD (Burger, 2010; Lee et al., 2012). Therefore, a rigorous study
using SVM-RFE might be recommended for exhaustive anatomi-
cal inspections and analyzing particular cases. On the other hand,
by maintaining the high-resolution, it would be possible to exam-
ine some regions that are difficult to delimit in averaged images
due to their location and size, such as the locus coeruleus or the
fornix.

Regarding the comparison between GM and WM, the for-
mer tissue provides more relevant information and delimits
more properly the important ROIs, as is suggested in much
research that analyzes the GM directly (Thompson et al., 2003;
Karas et al., 2004). Whereas for GM segmentation there are
more highlighted regions using SVM-RFE, for WM segmenta-
tion the ROIs are distributed vaguely similarly to the results
obtained with t-test. In any case, by means of the proposed
methodology, it is possible to achieve practically 100% accu-
racy on average for both GM and WM segmentation options
(Figure 6) after running a complete SVM-RFE in different feature
sets.

In future works, it could be suggested to apply the same method
to GM and WM segments obtained by other sophisticated MRI
processing approaches. In addition, it is possible to employ the
method in artificial intelligence applications in medicine for inves-
tigating diverse neurological disorders linked to senescence, such
as fronto-temporal lobar degeneration, different forms of demen-
tia or Parkinson’s disease among others, where an accurate MRI
information management is crucial.

CONCLUSION
In this paper, the main region of brain interest involved in
Alzheimer’s disease has been delimited by means of a SVM-based
wrapper method applied on structural images, that is, MRI. The
proposed method, which recursively eliminates the least-relevant
features from the initial set (SVM-RFE), has proven to outperform
t-test selection in terms of accuracy, achieving practically 100%.
The high-resolution ROIs have been computed for both gray and
white segmented matters, matching up with recent research that
designates the hippocampal region as one of the most important
in Alzheimer’s disease development. In addition, 3-D illustrations
of the regions have been provided in order to better understand the
anatomical morphology linked to AD. Furthermore, this method,
previously unexplored for MRI, could give valuable information
about brain structures in other clinical applications on aging
research.
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