Higher Rates of Decline for Women and APOE ε4 Carriers

Dominic Holland, PhD¹, Rahul S. Desikan, MD, PhD², Anders M. Dale, PhD¹,², and Linda K. McEvoy, PhD² for the Alzheimer’s Disease Neuroimaging Initiative³

¹Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
²Department of Radiology, University of California, San Diego, La Jolla, California, United States of America

Abstract

Background and Purpose—Age and the ε4 allele of apolipoprotein E (APOE ε4) are well-known risk factors for Alzheimer disease (AD), but whether female sex is also a risk factor remains controversial. It is also unclear how these risk factors affect rates of structural brain and clinical decline across the spectrum of preclinical to clinical AD. Our objective is to estimate the effects of APOE ε4 and sex on age-specific rates of morphometric and clinical decline in late onset sporadic AD.

Materials and Methods—Using linear mixed effects models, we examined the effect of age, APOE ε4, and sex on longitudinal brain atrophy and clinical decline among cognitively normal older individuals, and individuals with mild cognitive impairment and AD (total = 688). We also evaluated the relationship between these effects and cerebrospinal fluid (CSF) biomarkers of AD pathology.

Results—APOE ε4 significantly accelerated rates of decline, and women in all cohorts experienced higher rates of decline than men. The magnitude of the sex effect on rates of decline were as large as those of ε4, yet their relationship to measures of CSF biomarkers were weaker.

Conclusion—These results indicate that in addition to APOE ε4 status, diagnostic and therapeutic strategies should take into account the effect of female sex on the Alzheimer disease process.

Introduction

The clinical presentation of Alzheimer disease (AD) is not uniform across individuals: in addition to atypical presentations¹ 2 of AD, recent results show that the disease also presents differently in older compared with younger patients³ 4. It is unclear, however, whether common genetic risk variants and sex also affect how the disease manifests and progresses.
In the US, two-thirds of AD cases are women5, but since women live longer than men, and older age is a known risk factor for AD, there remains controversy over whether women are at greater risk of developing AD than men. Several large epidemiology studies have found evidence of higher age-specific rates of incidence6–10 and prevalence11 of AD in women compared with men, although other studies have found no difference12, 13. Elderly women, however, have higher amounts of AD pathology than elderly men14, and women with AD perform more poorly than men on cognitive assessment15. Assessing sex differences in age-specific cognitive and structural rates of decline may help elucidate this controversy.

The strongest known common genetic risk factor for sporadic AD is the apolipoprotein E (APOE) \(\varepsilon\)4 allele16, 17. APOE \(\varepsilon\)4 increases the age-specific risk of developing AD in a dose-dependent manner18, 19, and lowers the age of onset18, 20. Recently we showed3 that rates of both cognitive and structural decline decreased with age in individuals with mild cognitive impairment (MCI) and AD, but increased with age for cognitively healthy (HC) older adults. Since \(\varepsilon\)4 lowers the age of onset, age differences in rates of decline may have arisen partially from differences in \(\varepsilon\)4 prevalence with age. Thus, to better understand AD biomarker trajectories, it is important to assess simultaneously the effects of \(\varepsilon\)4 and age, as well as those of sex, on rates of clinical and structural decline.

We analyzed baseline and longitudinal data from HC, MCI, and mild AD cohorts, aged 65 to 90 years. We investigated the effects of \(\varepsilon\)4 status and sex on cognitive and structural rates of change, and assessed whether such effects could be explained by baseline cerebrospinal fluid (CSF) concentrations of \(\text{A}_\beta\text{1-42}\) and the neurodegeneration-associated tau and phosphorylated tau\textsubscript{181p} (ptau) proteins.

Methods

Participants

We examined participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, www.adni-info.org). Participant enrollment criteria, MR image acquisition, and CSF collection and analysis methods are provided in Supplemental Material.

We evaluated 688 participants, aged 65 years or older at baseline, who had longitudinal cognitive evaluations: 211 HC, 333 MCI, and 144 AD. Of these, 188 HC, 273 MCI, and 105 AD also had longitudinal structural MRI data, Table 1. Longitudinal evaluations were performed at 6- or 12-month intervals for up to 24 (AD) or 36 (HC and MCI) months. The research protocol was approved by each local institutional review board, and written informed consent was obtained from each participant.

MRI Image Processing

We quantified anatomical regional change in serial MRI using Quarc21, 22. We analyzed data from all available time points that passed local quality control (total=2244). Images that suffered degradation due to motion, technical problems, significant clinical abnormalities (e.g., hemispheric infarction), or changes in scanner vendor during the time-series were excluded23. We examined rates of change in medial and lateral temporal lobe structures affected in early AD24–26, and in whole brain volume.

Genetic, CSF, and Clinical Measures

We grouped participants with respect to sex and APOE \(\varepsilon\)4 status (none, \(\varepsilon\)4−, versus at least one \(\varepsilon\)4 allele, \(\varepsilon\)4+), Tables 1 and S7. Baseline CSF data were available on approximately half the ADNI participants. All participants completed the Clinical Dementia Rating Scale, sum of boxes score (CDR-SB)27, 28, the cognitive sub-scale of the Alzheimer Disease
Assessment Scale (ADAS-Cog)29, 30, and the Mini Mental State Examination score (MMSE)31, at each visit.

Mixed Effects Modeling

Longitudinal cognitive and structural MRI atrophy outcomes (Y_{ij} below) represent change with respect to baseline. This is expressed as the difference in test scores for cognitive measures, and as a percentage of baseline size for cortical thickness change and ROI volume change.

Using all available time-points per participant, we investigated the dependence of atrophy rate and rate of clinical decline on $\varepsilon4$ status and sex using a linear mixed effects model32, controlling for baseline age, education, and, in the case of atrophy, baseline clinical severity. For each diagnostic group, the longitudinal outcome measurement Y_{ij} at time t_{ij} for participant i at followup timepoint j is

$$Y_{ij} = (b_0 + \beta_0 t_{ij}) + b_{\text{Cog}} C_i + b_{\text{Edu}} D_i + b_{\text{Age}} A_i + b_{\text{APOE}} E_i + b_{\text{Sex}} S_i + \varepsilon_{ij}. \quad (1)$$

Here, b_0, b_{Cog}, b_{Edu}, b_{Age}, b_{APOE}, and b_{Sex} are group regression parameters to be determined; C_i, D_i, A_i, E_i, and S_i are covariates for participant i, respectively mean-centered baseline clinical severity as measured by ADAS-Cog (for atrophic measures only: $C_i = 0$ when Y_{ij} is a cognitive measure), mean-centered educational level (years of education), mean-centered baseline age, $\varepsilon4$ status ($E_i = 0$ for $\varepsilon4^-$, $E_i = 1$ for $\varepsilon4^+$), and sex status ($S_i = 0$ for male, $S_i = 1$ for female); and ε_{ij} is the within-participant error, assumed to be independent and identically normally distributed with zero mean and variance σ_e^2. The first term on the right side of Eq. (1) incorporates mixed effects, allowing for different participant-specific rates of change: b_0 is the group fixed effect slope and β_0 is the corresponding between-participant random effect slope, with zero mean, assumed to be normally distributed with variance σ_0^2. Subsequent covariate terms involve fixed-effects only. We estimated the model parameters (including σ_0 and σ_e) using the Matlab (R2009b) function nlmefit. A followup set of analyses incorporated additional terms in Eq. (1) for baseline CSF A\textbeta and ptau concentrations to assess whether $\varepsilon4$ or sex effects could be explained by CSF biomarker values.

Results

Rates of Decline in HCs

Table 2 shows the effects of age, $\varepsilon4$ status, and sex on rates of atrophy and clinical decline in HCs. For all brain regions, HC participants showed significant decline over time. The annual rate of change, expressed as a percentage of baseline size, ranged from -0.39%/year for the entorhinal cortex to -0.64%/year for the hippocampus (Table 2, b_0 column). Older age at baseline was associated with a higher rate of change in medial temporal lobe structures, with an additional 0.04%/year loss in the hippocampus, entorhinal cortex, and amygdala for each additional year of age above the group mean (Table 2, b_{Age} column). The presence of an $\varepsilon4$ allele showed a large effect on annual rate of change in the same medial temporal regions, contributing an additional -0.42%/year loss in the hippocampus, -0.52%/year loss in the entorhinal cortex, and -0.63%/year loss in the amygdala (Table 2, b_{APOE} column).

Sex significantly affected rate of change (Table 2, b_{Sex} column), with women showing higher rates of change than men for the hippocampus (an additional -0.25%/year), the entorhinal cortex (-0.49%/year), and the amygdala (-0.53%/year).
In contrast to the strong effects of ε4 and sex on medial temporal atrophy rates, we did not find a significant association between these factors and rate of decline on any of the clinical measures in HCs.

The effects of age, ε4, and sex on rates of decline in the entorhinal and hippocampus are shown in Figure 1 for the HC, MCI, and AD cohorts, at the group average ages, educational levels, and ADAS-Cog scores. Figure 2 shows the effects of age, ε4, and sex on rates of decline in CDR-SB and ADAS-Cog for the three cohorts, at the group average ages and educational levels.

Rates of Decline in MCI

Table 3 shows the effects of age, ε4 status, and sex on atrophy rates and rates of clinical decline in the MCI cohort. With the exception of the hippocampus and amygdala, increased age was associated with a slower rate of decline (b_{Age} coefficients are positive) for all brain regions examined. Significant effects of ε4 status were observed for all medial temporal lobe structures and for the inferior parietal cortex, with the additive effect of ε4 on annual atrophy rate ranging from −0.28 %/year to −0.94 %/year. Independent of ε4, sex significantly affected rate of change in all brain regions examined, except the hippocampus: females atrophied faster than males, with the magnitude of the additive effect exceeding that of the ε4 effect.

Significant ε4 additive contributions to rates of cognitive decline were found for CDR-SB (0.38 points/year), ADAS-Cog (0.72 points/year), and MMSE (−0.81 points/year), while effects of female sex were significant for CDR-SB (0.26 points/year) and ADAS-Cog (1.40 points/year).

Rates of Decline in AD

Table 4 shows the effects of age, ε4 status, and sex on rates of atrophy and clinical decline in AD participants. The effect of age on rates of change was significant for all brain regions examined, with increased age associated with lower rates of decline. The additive contribution to rate of decline for ε4 was significant only for the amygdala (−0.91 %/year), but showed a trend toward significance for the hippocampus and entorhinal cortex. Significant sex effects were found for all regions except the hippocampus and amygdala, with females experiencing higher rates of decline. There were no significant effects of ε4 status or sex on rate of decline on any of the cognitive measures.

Effects of APOE ε4 and Sex on Baseline CSF and Clinical Measures

Controlling for age and sex, ε4 carriers showed significantly lower CSF Aβ concentrations than noncarriers, with the magnitude of the effect decreasing from HC to MCI to AD (Figure 3 and Table S5A). Relative to noncarriers, ε4 carriers showed significantly higher CSF concentrations of tau and ptau in the HC and MCI cohorts, but no significant differences were found for these biomarkers in the AD cohort.

Controlling for age and ε4 status, there were no significant effects of sex on CSF Aβ or ptau concentrations in any of the cohorts (Figure 3 and Table S5A). For tau, the effect of sex approached significance for the MCI cohort only (p = 0.060), with women showing higher tau concentrations than men.

Controlling for age and sex, performance on the clinical tests was significantly affected by ε4 status in MCI participants only, with carriers showing worse performance than noncarriers for CDR-SB and ADAS-Cog, and showing a trend for worse performance on MMSE (Table S5A and Figure S1). Controlling for age and ε4 status, no sex differences
were found on the clinical tests in the patient cohorts, though MCI showed a trend toward significance for MMSE (p=0.072), with women performing more poorly.

Effects of Baseline CSF Aβ and ptau on Rates of Decline

With Aβ in the model, significant effects of ε4 and sex remained for MCI and AD participant, signifying that APOE ε4 exerts an effect on atrophy rate in AD independent of its relation to Aβ (Tables S3A, B, and C). For HCs, however, there were no significant effects of ε4 with CSF Aβ in the model. Adding an additional term for ptau concentrations did not alter these results (Tables S4A, B, and C), but this term was found to be significant in MCI for the amygdala, entorhinal, ADAS-Cog, and MMSE, and in AD for the entorhinal, rendering the Aβ term insignificant for all measures.

Discussion

Our results show that changes in brain structure and function related to aging and AD do not progress uniformly across individuals but instead depend on age, sex, and APOE ε4 status. Age differences in progressive atrophy and clinical decline, whereby older patients with MCI and AD decline at a slower rate than younger patients, but older healthy adults decline at a faster rate than younger healthy adults, have been previously reported. However, our finding that sex differences in atrophy rates are as large as differences associated with the well-known genetic risk factor, APOE ε4, is novel, and has important implications for clinical practice, therapeutics research, and for advancing mechanistic understanding of AD.

The results showed that in all stages, from healthy aging through AD dementia, women experienced higher rates of brain atrophy than men, and the magnitude of the sex differences were at least as large as the magnitude of the APOE ε4 effects. In HCs, sex differences were restricted to the medial temporal areas first affected in AD. In MCI and AD, the sex differences were more widespread, with weaker effects observed in medial temporal areas than in other brain regions. Additionally in MCI, in women compared with men, higher rates of atrophy were accompanied by higher rates of clinical decline.

These findings are consistent with prior large epidemiology studies that showed higher rates of prevalence and incidence of AD in women than in men, with the differences between men and women comparable in magnitude to those between ε4 carriers and noncarriers. They are also consistent with a recent meta-analysis that found lower cognitive performance for women than men diagnosed with AD. A neuropathological study showed that women, especially if ε4 carriers, are at higher risk of both neurofibrillary tangle (NFT) and amyloid plaque neuropathology than men in the earliest stages of AD (NFT stages I–III).

One possible explanation for the sex differences in HCs, where women showed faster rates of atrophy in medial temporal areas, is that the HC women may be showing early signs of AD-related neurodegeneration. However, the lack of sex differences in baseline CSF biomarkers of AD pathology in HCs does not support this view. The finding that CSF biomarkers did not explain the faster rates of decline occurring in women in any of the diagnostic groups suggests that other factors must be contributing to the sex differences. It has been argued that estrogens stimulate alpha secretase activity, and thus enhance nonamyloidogenic processing of amyloid-β precursor protein; the diminution in estrogen levels after menopause would then contribute to higher levels of AD pathology and poorer cognitive performance in women than in men. However, further research is needed to elucidate the basis of the observed sex differences.
The APOE ε4 effects observed here on longitudinal rates of change across cohorts are consistent with the elevated burdens of amyloid and tau pathology observed for ε4 carriers compared with noncarriers at baseline. These baseline differences in CSF biomarkers between carriers and noncarriers agree with earlier reports and with a neuropathological finding that ε4 was associated with greater senile plaque and neurofibrillary tangle pathology in the elderly. APOE ε4 has further been associated with a higher plaque stage for a given age and allocortical NFT stage (Braak stages I–III, which correspond roughly with HC and early MCI) for ε4 carriers compared with noncarriers, whereas at the later, isocortical NFT stages (corresponding to late MCI and dementia), ε4 gene dose was not an important predictor of pathology burden, suggesting that ε4 might exert its strongest effects in the prodromal stages of AD. Recently, Koffie et al. have shown that the ε4 gene increases the amount of the synaptotoxic oligomeric Aβ in neuropil and its colocalization at synapses, even in non-demented control subjects, leading to synaptic injury and loss, a strong correlate of cognitive decline. Our results showing elevated atrophy in ε4 carriers generally, and our finding of marginally significant higher atrophy rates in predementia stages of AD for the medial orbito-frontal cortex and inferior parietal lobule, sites of early amyloid deposition, are consistent with these neuropathological findings.

How ε4 affects rates of cognitive decline across the preclinical, prodromal, and dementia stages of AD has been unclear, but some studies have suggested that the effect of ε4 is stronger in the earlier phases of the disorder. Our results suggest that the accelerating effect of ε4 on rates of decline diminishes with advancing disease stage, which comports with an earlier finding that ε4 gene dose does not have a significant effect on the duration of AD, and supports the hypothesis that as neurodegeneration advances it becomes increasingly independent of initiating events.

This study has several limitations: The ADNI sample is not representative of the general population, and there was sex bias in MCI enrollment, with males outnumbering females. The HC and AD cohorts, however, showed more balanced sex representation. Since similar sex effects were observed across groups, they are unlikely to have arisen from enrollment bias. There is insufficient information within ADNI to address issues of whether history of hormone replacement therapy or age since menopause may have influenced the observed sex differences. Finally, statistical power was limited with respect to analyses of CSF biomarker data. Larger population-based studies that can systematically address hormonal issues, and other medical issues that may differ between the sexes, are needed to elucidate the basis of the observed sex differences in rates of atrophy and cognitive decline.

Conclusion

Our results show that women and APOE ε4 carriers in ADNI experience higher rates of decline in normal aging, MCI, and AD, and that these effects are not fully explained by baseline CSF concentrations of AD-related proteins. Since two-thirds of AD cases in the US are women, and since the higher rates of decline in women compared with men were at least as large as those related to the major genetic risk factor, APOE ε4, it is of particular importance that sex differences in rates of decline in aging and AD be taken into account in the clinical setting and in therapeutics research. Greater understanding of the mechanistic basis of these differences will likely also facilitate further understanding of AD etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

This research was supported by NIH grants R01AG031224, R01AG22381, U54NS056883, P50NS22343, and P50MH081755 (A.M.D.); NIA K01AG029218 (LKM); NIH-NIBIB T32 EB005970 (RSD).

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514.

References

Figure 1.
Entorhinal and hippocampal annual atrophy rates with respect to age for HC, MCI, and AD participants at their group mean educational level and cognitive performance. *Where significant, effects of age (slope), ε4 and sex (shifts along y-axis) are noted. See Tables 2–4.
Figure 2.
Annual rates of cognitive decline, measured with CDR-SB and ADAS-Cog, with respect to age for HC, MCI, and AD participants at their group mean educational level. *Where significant, effects of age (slope), ε4 and sex (shifts along y-axis) are noted. See Tables 2–4.
Figure 3.
Baseline CSF values for Aβ, ptau, and tau, by ε4 status (left) and sex (right) for the HC, MCI, and AD cohorts. Numerical values are in Table S5A. *Significant differences are noted with an asterix.
Table 1

Demographic data for participants with longitudinal structural and clinical measures.

<table>
<thead>
<tr>
<th>Diagnostic Group</th>
<th>ε4−</th>
<th>ε4+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>HC</td>
<td>N</td>
<td>Age (std)</td>
</tr>
<tr>
<td>MCI *</td>
<td>70</td>
<td>75.87 (4.63)</td>
</tr>
<tr>
<td>MCIc #</td>
<td>23</td>
<td>78.53 (5.50)</td>
</tr>
<tr>
<td>AD ^</td>
<td>13</td>
<td>75.51 (5.70)</td>
</tr>
</tbody>
</table>

N = number of participants. Age is in years; values are mean (standard deviation). MCIc = MCI converters to AD.

* MCI: ε4+ females are significantly younger than all other groups (all p’s < 0.01); ε4+ males are significantly younger than ε4− males and ε4− females (p’s < 0.01).

MCIc: ε4+ females are significantly younger than all other groups (all p’s < 0.05); ε4+ males are significantly younger than ε4− males and ε4− females (p’s < 0.05).

^ AD: ε4+ females are significantly younger than ε4− females (p < 0.05).
Table 2

Effects of age, APOE ε4, and sex on rates of change in HC.

<table>
<thead>
<tr>
<th>HC Measure</th>
<th>(b_0)</th>
<th>(b_{\text{Cog}})</th>
<th>(b_{\text{Edu}})</th>
<th>(b_{\text{Age}}) (SE; p)</th>
<th>(b_{\text{APOE}}) (SE; p)</th>
<th>(b_{\text{Sex}}) (SE; p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus</td>
<td>-0.64</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.04 (0.01; 0.002)</td>
<td>-0.42 (0.13; 0.002)</td>
<td>-0.25 (0.13; 0.044)</td>
</tr>
<tr>
<td>Amygdala</td>
<td>-0.41</td>
<td>-0.03</td>
<td>-0.05</td>
<td>-0.04 (0.02; 0.028)</td>
<td>-0.63 (0.16; (1 \times 10^{-4}))</td>
<td>-0.53 (0.15; 5(\times 10^{-4}))</td>
</tr>
<tr>
<td>Entorhinal</td>
<td>-0.39</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.04 (0.02; 0.025)</td>
<td>-0.52 (0.17; 0.003)</td>
<td>-0.49 (0.16; 0.002)</td>
</tr>
<tr>
<td>Inferior parietal</td>
<td>-0.50</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01 (0.01; 0.5)</td>
<td>-0.14 (0.10; 0.2)</td>
<td>0.03 (0.10; 0.8)</td>
</tr>
<tr>
<td>Middle temporal</td>
<td>-0.61</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.00 (0.01; 0.7)</td>
<td>-0.19 (0.12; 0.1)</td>
<td>-0.02 (0.11; 0.9)</td>
</tr>
<tr>
<td>Med-orbito-frontal</td>
<td>-0.48</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.01 (0.01; 0.5)</td>
<td>-0.18 (0.09; 0.050)</td>
<td>-0.03 (0.09; 0.8)</td>
</tr>
<tr>
<td>Whole brain</td>
<td>-0.41</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.00 (0.01; 0.8)</td>
<td>-0.08 (0.06; 0.2)</td>
<td>-0.03 (0.06; 0.7)</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>0.10</td>
<td>—</td>
<td>-0.01</td>
<td>0.00 (0.00; 0.4)</td>
<td>0.01 (0.05; 0.9)</td>
<td>-0.02 (0.04; 0.6)</td>
</tr>
<tr>
<td>ADAS-COG</td>
<td>-0.20</td>
<td>—</td>
<td>-0.04</td>
<td>0.05 (0.02; 0.008)</td>
<td>0.27 (0.20; 0.2)</td>
<td>-0.21 (0.18; 0.2)</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.02</td>
<td>—</td>
<td>-0.02</td>
<td>-0.02 (0.01; 0.009)</td>
<td>-0.14 (0.08; 0.1)</td>
<td>-0.06 (0.08; 0.4)</td>
</tr>
</tbody>
</table>

b-values are coefficients in Eq. (1); for structural measures, units are annual thickness or volume change as a percentage of baseline size (%/year), and for cognitive measures they are annual score change, per ADAS-Cog unit in the case of \(b_{\text{Cog}}\), and per year in the case of \(b_{\text{Edu}}\) and \(b_{\text{Age}}\). ROIs: N = 188; mean age = 76.30 years; mean ADAS-Cog = 6.17; mean years education = 16.02. Clinical: N = 211; mean age = 76.35 years; mean years education = 16.03. SE = standard error. p = p-value. Values significant at p\(<=0.05\) are underlined in bold. Values in the \(b_0\) column show the expected rate of change for an APOE ε4-negative male of mean age, mean education, and with a mean level of cognitive function. The remaining columns show the additional rate of change due to the other factors of interest, and the amount of change experienced by a given individual can be calculated based on the sum of the relevant coefficients. For example, for hippocampal atrophy, each point above the mean baseline ADAS-Cog score contributes an additional 0.06% to the annual atrophy rate; each year of education below the mean contributes an additional 0.04% to annual atrophy rate, as does each year of age above the mean at baseline; presence of an APOE ε4 allele contributes an additional 0.42% to rate of decline, and being female contributes an additional 0.25%. Thus an APOE ε4+ female of mean age, education, and cognitive function at baseline would show a hippocampal atrophy rate of 1.31% (0.64+0.42+0.25).
Table 3

Effects of age, APOE ε4, and sex on rates of change in MCI.

<table>
<thead>
<tr>
<th>MCI Measure</th>
<th>b_0</th>
<th>b_{age}</th>
<th>b_{educ}</th>
<th>b_{Age} (SE; p)</th>
<th>b_{APOE} (SE; p)</th>
<th>b_{Sex} (SE; p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus</td>
<td>-1.83</td>
<td>-0.13</td>
<td>0.03</td>
<td>-0.49 (0.20; 0.045)</td>
<td>-0.29 (0.20; 0.1)</td>
<td></td>
</tr>
<tr>
<td>Amygdala</td>
<td>-1.57</td>
<td>-0.15</td>
<td>0.04</td>
<td>-0.44 (0.17; 0.011)</td>
<td>-0.54 (0.17; 0.002)</td>
<td></td>
</tr>
<tr>
<td>Entorhinal</td>
<td>-1.70</td>
<td>-0.12</td>
<td>0.04</td>
<td>-0.44 (0.17; 0.011)</td>
<td>-0.54 (0.17; 0.002)</td>
<td></td>
</tr>
<tr>
<td>Inferior parietal</td>
<td>-0.91</td>
<td>-0.08</td>
<td>0.02</td>
<td>-0.28 (0.14; 0.040)</td>
<td>-0.40 (0.14; 0.004)</td>
<td></td>
</tr>
<tr>
<td>Middle temporal</td>
<td>-1.40</td>
<td>-0.11</td>
<td>0.00</td>
<td>-0.28 (0.18; 0.1)</td>
<td>-0.52 (0.17; 0.003)</td>
<td></td>
</tr>
<tr>
<td>Med-orbito-frontal</td>
<td>-0.70</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.03 (0.11; 0.8)</td>
<td>-0.24 (0.11; 0.026)</td>
<td></td>
</tr>
<tr>
<td>Whole brain</td>
<td>-0.74</td>
<td>-0.04</td>
<td>0.01</td>
<td>-0.09 (0.08; 0.2)</td>
<td>-0.17 (0.08; 0.022)</td>
<td></td>
</tr>
<tr>
<td>CDR-SB</td>
<td>0.46</td>
<td>—</td>
<td>0.01</td>
<td>0.00 (0.11; 0.023)</td>
<td>0.26 (0.11; 0.021)</td>
<td></td>
</tr>
<tr>
<td>ADAS-COG</td>
<td>0.49</td>
<td>—</td>
<td>0.03</td>
<td>0.32 (0.31; 0.022)</td>
<td>0.40 (0.32; 2×10^{-5})</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>-0.35</td>
<td>—</td>
<td>0.02</td>
<td>-0.81 (0.20; 4×10^{-5})</td>
<td>-0.34 (0.20; 0.1)</td>
<td></td>
</tr>
</tbody>
</table>

ROIs: N = 273; mean age = 76.65 years; mean ADAS-Cog = 11.68; mean years education = 15.61. Cognitive: N = 211; mean age = 76.84 years; mean years education = 15.63. See Table 2 for units and key.
Table 4

Effects of age, APOE ε4, and sex on rates of change in AD.

<table>
<thead>
<tr>
<th>AD Measure</th>
<th>(b_0)</th>
<th>(b_{\text{Age}})</th>
<th>(b_{\text{Edn}})</th>
<th>(b_{\text{APOE}}) (SE; p)</th>
<th>(b_{\text{Sex}}) (SE; p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus</td>
<td>(-2.81)</td>
<td>(-0.06)</td>
<td>0.03</td>
<td>0.06 (0.03; 0.028)</td>
<td>(-0.49) (0.30; 0.1)</td>
</tr>
<tr>
<td>Amygdala</td>
<td>(-2.73)</td>
<td>(-0.05)</td>
<td>0.06</td>
<td>(-0.91) (0.36; 0.012)</td>
<td>(-0.41) (0.31; 0.2)</td>
</tr>
<tr>
<td>Entorhinal</td>
<td>(-2.65)</td>
<td>(-0.04)</td>
<td>(-0.02)</td>
<td>0.04 (0.02; 0.045)</td>
<td>(-0.49) (0.22; 0.025)</td>
</tr>
<tr>
<td>Inferior parietal</td>
<td>(-1.68)</td>
<td>(-0.06)</td>
<td>(-0.03)</td>
<td>0.15 (0.02; <10^{-6})</td>
<td>(-0.69) (0.21; 0.001)</td>
</tr>
<tr>
<td>Middle temporal</td>
<td>(-2.48)</td>
<td>(-0.10)</td>
<td>(-0.05)</td>
<td>0.17 (0.02; <10^{-6})</td>
<td>(-0.88) (0.25; 0.001)</td>
</tr>
<tr>
<td>Med-orbito-frontal</td>
<td>(-0.96)</td>
<td>(-0.02)</td>
<td>(-0.02)</td>
<td>0.05 (0.02; 0.008)</td>
<td>(-0.64) (0.21; 0.002)</td>
</tr>
<tr>
<td>Whole brain</td>
<td>(-0.97)</td>
<td>(-0.04)</td>
<td>(-0.01)</td>
<td>0.06 (0.01; <10^{-6})</td>
<td>(-0.38) (0.12; 0.002)</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>1.39</td>
<td>—</td>
<td>0.11</td>
<td>0.01 (0.03; 0.8)</td>
<td>0.10 (0.29; 0.7)</td>
</tr>
<tr>
<td>ADAS-COG</td>
<td>3.20</td>
<td>—</td>
<td>0.29</td>
<td>-0.15 (0.08; 0.069)</td>
<td>0.49 (0.89; 0.6)</td>
</tr>
<tr>
<td>MMSE</td>
<td>(-1.97)</td>
<td>—</td>
<td>(-0.16)</td>
<td>0.13 (0.05; 0.007)</td>
<td>0.03 (0.52; 1.0)</td>
</tr>
</tbody>
</table>

ROIs: N = 105; mean age = 75.74 years; mean ADAS-Cog = 18.49; mean years education = 14.83. Cognitive: N = 144; mean age = 75.99 years; mean years education = 14.70. See Table 2 for units and key.