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Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and
this number is projected to significantly increase in the coming decades. Proposed imaging-based markers
have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or
normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as
input, as means of deriving such AD-relatedmarkers. A common characteristic of this line of research is a focus
on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but
reporting separate results for each. One strategy to improve on the success of these methods is to leverage all
available imaging modalities together in a single automated learning framework. The rationale is that some
subjects may show signs of pathology in one modality but not in another—by combining all available images a
clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel
Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a
maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an
optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification
experiments MKL outperformed an SVM trained on all available features by 3%–4%. We are especially
interested in whether such markers are capable of identifying early signs of the disease. To address this
question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from
Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group
differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These
differences weremost significant inMMDMs based on imaging data.We also discuss the relationship between
our MMDM and an individual's conversion from MCI to AD.
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Introduction

A significant body of existing literature (Johnson et al., 2006;
Whitwell et al., 2007; Reiman et al., 1996; Canu et al., 2010;
Thompson and Apostolova, 2007) suggests that pathological mani-
festations of Alzheimer's disease begin many years before the patient
becomes symptomatic—which is typically when cognitive tests can be
used to make a diagnosis (Albert et al., 2001). Unfortunately, by this
time significant neurodegeneration has already occurred. In an effort
to identify AD-related changes early, a promising direction of ongoing
research is focused on exploiting advanced imaging-based techniques
to characterize prominent neurodegenerative patterns during the
prodromal stages of the disease, when only mild symptoms of the
disease are evident. A set of recent papers (Davatzikos et al., 2008a,b;
Fan et al., 2008b; Vemuri et al., 2008) including work from our group
(Hinrichs et al., 2009a,b) have demonstrated that this is indeed
feasible by leveraging and extending state-of-the-art methods from
the fields of Statistical Machine Learning and Computer Vision. Good
discrimination (in identifying whether an image corresponds to a
control or AD subject) has been obtained on classification tasks
making use of MR or FDG-PET images (i.e., one type of image data)
(Davatzikos et al., 2008a,b; Fan et al., 2008b; Vemuri et al., 2008;
Hinrichs et al., 2009a). A natural question then is whether we can
exploit data from multiple modalities and biological measures (if
available) in conjunction to (1) obtain improved accuracy, and (2)
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identify more subtle class differences (e.g., sub-groups within MCI).
This paper considers exactly this problem—i.e., methods for
systematic combination of multiple imaging modalities and clinical
data for classification (i.e., class prediction) at the level of individual
subjects.

Recently, we have seen evidence that various aspects of AD-related
neurodegeneration such as structural atrophy (Jack et al., 2005;
deToledo-Morrell et al., 2004; Thompson et al., 2001), decreased
blood perfusion (Ramírez et al., in press), and decreased glucose
metabolism (Hoffman et al., 2000; Matsuda, 2001; Minoshima et al.,
1994) can be identified (in structural and functional images) in Mild
Cognitive Impaired (MCI) and AD subjects, as well as at-risk individuals
(Small et al., 2000; Querbes et al., 2009; Davatzikos et al., 2009). A
number of groups have made significant progress by adapting well-
known machine learning tools to the problem—this includes Support
Vector Machines (SVMs), logistic regression, boosting, and other
classification mechanisms. In the usual classification setting, a number
of image acquisitions (training examples) are provided for which the
subjects' clinical diagnosis is as certain as diagnostically possible. The
objective is to choose a discriminating function which optimizes a
statistical measure of the likelihood of correctly labeling ‘future’
examples. Such measures may be based on certain brain regions, (e.g.,
the hippocampus or posterior cingulate cortex) for example. The
function's output can then be used as a targeted disease marker in
individuals that are not part of the training cohort. In the remainder of
this section, we briefly review several interesting AD classification-
focused research efforts, and lay the groundwork for introducing our
contributions (i.e., truly multi-modal analysis).

The machine learning, or classification approach has been used
to provide markers for various neurological disorders including
Alzheimer's disease (Davatzikos et al., 2008b; Klöppel et al., 2008;
Vemuri et al., 2008; Duchesne et al., 2008; Arimura et al., 2008;
Soriano-Mas et al., 2007; Shen et al., 2003; Demirci et al., 2008).
These efforts have primarily utilized brain images, though some
have also used other available biological measures. In Fan et al.
(2008a,b) and Davatzikos et al. (2008a,b)), the authors implemen-
ted a classification/pattern recognition technique using structural
(sMR) images provided by the Baltimore Longitudinal Study of
Aging (BLSA) dataset (Shock et al., 1984). The proposed method-
ology was to first segment the images into different tissue types,
and then perform a non-linear warp to a common template space to
allow voxel-wise comparisons. Next, voxels were selected to serve
as “features” (using statistical measures of (clinical) group
differences), used to train a linear Support Vector Machine (SVM)
(Bishop, 2006). The reported accuracy was quite encouraging.
Klöppel et al. (2008) also used linear SVMs to classify AD subjects
from controls using whole-brain MR images. An additional focus of
their research was to separate AD cases from Frontal Temporal
Lobar Degeneration (FTLD). The authors reported high accuracy
(N90%) on confirmed AD patients, and less where post-mortem
diagnosis was unavailable. In a related work, Vemuri et al. (2008)
demonstrated a slightly different method of applying linear SVMs
on another dataset obtaining 88−90% classification accuracy. More
recently, the methods in Fan et al. (2008a), Misra et al. (2008) and
Hinrichs et al. (2009a) have been applied to the Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset, (|http://www.loni.ucla.
edu/ADNI/Data/|) (Mueller et al., 2005) consisting of a large set of
Magnetic Resonance (MR) and (18-fluorodeoxyglucose Positron
Emission Tomography) FDG-PET images, giving accuracy measures
similar to those reported in Fan et al. (2008a,b) and Davatzikos et al.
(2008a,b)). In Hinrichs et al. (2009a), we proposed a combination
of l 1 sparsity and spatial smoothness bias, implemented via
augmentation of the linear program used in training. The spatial
bias lead to an increase in accuracy, and made the resulting images
more interpretable. Steady increases in the levels of accuracy on
this problem, i.e., separating AD subjects from controls, have lead
some researchers in the field to move towards the more challenging
problem of making similar classifications on MCI subjects, with the
expectation of extending such methods for identifying signs of the
disease in its earlier stages. We provide a brief review of some
preliminary efforts in this direction next.

Several recent studies (Schroeter et al., 2009; deToledo-Morrell et al.,
2004; Dickerson et al., 2001; Hua et al., 2008) have shown that certain
markers are significantly associated with conversion from MCI to AD. In
deToledo-Morrell et al. (2004) and Dickerson et al. (2001), the authors
show that traced volumes of the hippocampus and entorhinal cortex
show significant group-level differences between converting and non-
converting MCI subjects. We note that these studies show (in a post-hoc
manner) that certain brain regions are correlated with AD histopathol-
ogy; what we seek to do instead is to evaluate such markers in terms of
their ability to classify novel examples. In Hua et al. (2008) a large
number of ADNI subjects were tracked longitudinally using Tensor-Based
Morphometry (TBM). The authors compared conversion fromMCI to AD
over 1 year with atrophy in various regions, but a discussion of the
predictive accuracy results was relatively limited (i.e., included p-values
of 0.02 between converters and non-converters). In Davatzikos et al.
(2009), the authors applied statistical techniques to both ADNI and BLSA
subjects (Shock et al., 1984). A classifier was trained using ADNI subjects,
and applied toMCI and control subjects (in the BLSA cohort) to provide a
SPARE-AD disease marker. This procedure could successfully separate
MCI and control subjects with high confidence (AUC of 0.885), and it was
demonstrated that the MCI group had a larger increase in SPARE-AD
scores longitudinally. However, themain focus in Davatzikos et al. (2009)
was not on predicting which MCI subjects would progress to AD, but
rather on finding a marker for MCI itself. In Querbes et al. (2009), cortical
thickness measures were used on a large set of ADNI subjects to
characterize disease progression in AD and MCI subjects. Freely available
tools (FreeSurfer) were used to calculate cortical thickness values at
points on the surface of each subject's brain (after warping to MNI
template space) and then the thickness measures were agglomerated
into 22 Regions of Interest (ROI), which the authors used as features (i.e.,
covariates) in a logistic regression framework. Using age as a covariate, a
set of AD and control subjects were used to train a logistic regression
classifier for each subject, yielding a Normalized Thickness Index (NTI). It
was found that this NTI was able to give 85% accuracy in separating AD
subjects vs. controls, and had 73% accuracy (0.76 AUC) in predicting
which MCI subjects would progress to full AD within 3 years. The latter
objective is of special interest in the context of the techniques presented
in this paper.

A common trend in the studies mentioned above is their focus on
using a single scanning modality and processing pipeline. For
instance, in a recent study (Schroeter et al., 2009), the authors
surveyed 62 original research papers in a meta-analysis aimed at
identifying which brain regions might make the most useful markers
of AD-related atrophy, in a variety of different scanning modalities. A
fundamental assumption is that the studies use only one scanning
modality and analysis method in isolation, rather than combining the
several available modalities into a single disease marker. However,
each scanning modality and processing method can reveal informa-
tion about different aspects of the underlying pathology. For instance,
structural MR images may reveal patterns of gray matter atrophy,
while FDG-PET images may reveal reduced glucose metabolism (Ishii
et al., 2005), PIB imaging highlights the level of amyloid burden in
brain tissue (Klunk et al., 2004), and SPECT imaging can allow an
examination of cerebral blood flow (Ramírez et al., in press); similarly,
Voxel-Based Morphometry (VBM) shows gray matter density at
baseline, while Tensor-Based Morphometry (TBM) shows longitudi-
nal patterns of change (Hua et al., 2008). Another important issue one
must consider is that as new types of biologically relevant imaging
modalities become available, (e.g., new tracers for use in PET scanners,
or new pulse sequences in MRI scanners), it is desirable for the
diagnostic process to incorporate such advances seamlessly. Further,
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since AD pathology is known to be heterogeneous, (Thompson et al.,
2001) it may be advantageous to includemultiple scanningmodalities
in a single classification framework. Indeed, a wide variety of markers
may be available, and it is desirable to make the best use of all such
information in a predictive setting. The main difficulty is that as the
number of available input features grows, many machine learning
algorithms may lose their ability to generalize to unseen examples,
due to the disparity between the sample size and the increased
dimensionality. To address this problem, we propose to employ a
recent development in the machine learning literature, called Multi-
Kernel Learning (MKL), which is designed to deal with multiple data
sources while controlling model complexity. We have evaluated this
method's performance on subjects from the ADNI data set, and report
these results below. We have also applied the multi-modal classifier
to MCI subjects, showing a promising ability to predict which subjects
will convert from MCI to full AD in the ADNI sample.

The principal contributions of this paper are: (1) We propose a
new application of Multi-Kernel Learning (MKL) to the task of
classifying AD, MCI, and control subjects, which permits seamless
incorporation of tens of imaging modalities, clinical measures, and
cognitive status markers into a single predictive framework. The main
ideas behind MKL are presented in the Multi-Kernel Pattern
Classification section; (2) We have conducted an extensive set of
experiments using ADNI subjects, aimed at providing a rigorous
evaluation of the method's ability to predict disease progression
under conditions designed to match a clinical setting. We present
these results in the Results and analysis section; (3) We employ our
method to produce a Multi-Modality Disease Marker (MMDM) for
MCI subjects, and present an analysis of its predictive value on rates of
conversion from MCI to AD in the Correlations and predictions on the
MCI population section. A discussion of our results is given in the
Discussion section.2

Algorithm

Support vector classification

In the following section, we present a brief overview of Support
Vector Machines, (Cortes and Vapnik, 1995) illustrate the connection
to Multi-Kernel Learning, and how this relates to the problem of
disease classification from multiple modalities.

Machine learning methods are designed to find a classifier (i.e.,
function) that correctly (or maximally) classifies a set of n training
examples (i.e., where class labels are known), while simultaneously
satisfying some other form of inductive bias which will allow the
algorithm to generalize, i.e., correctly label future examples. Given a
collection of points in a high dimensional space, SVM frameworks
output a decision function separating classes (in a maximum margin
sense) in that space; the ‘bias’ here is toward selecting functions with
large margins. A linear decision boundary describes a separating
hyper-plane—parameterized by a weight vector w, and an offset b.
Classifying a new example x involves taking the inner product
between x and w plus the offset b; the sign of this quantity indicates
which side of the hyperplane x falls on (i.e., its predicted class). In
order to find the classifier, SVMs try not only to assign correct labels to
each training example by placing them on the correct side of the
hyperplane, but also attempt to place them some distance away. The
measure of this distance is controlled by ‖w‖2, or l 2-norm of w. Thus,
by rewarding the algorithm for reducing the magnitude of w,
classifiers that correctly label the data (and have the widest margin)
are selected, see Schoelkopf and Smola (2002) for details. SVMs
2 A preliminary conference version of this paper appeared as (Hinrichs et al.,
2009b).
choose an optimal classifier by optimizing the following primal/dual
problem, whose solution w gives the separating hyperplane:
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In the primal problem (1), the slack variables ξ implement a soft
margin objective. That is, for each example i that is not placedmore than
unit distance from the separating hyperplane, the slack variable ξi takes
the value of the remaining distance from example i to themargin, which
is then penalized in the objective. C is a constant parameter controlling
the amountof emphasis on separating thedata (ifC is large,) vs.widening
the margin (if C is small). Thus, the soft-margin objective allows for a
trade-off between perfectly classifying every example, andwidening the
margin. The bias term b allows for separating hyperplanes (wTx+b)
which do not pass through the origin. Class labels for each example are
given as yi=±1, so that yi(wTxi+b) will be positive if wTx+b gives xi
the correct sign specified by yi.

Note that the hyperplane parameters w can be given as a linear
combination of examples. It is a special property of the SVM
formulation that the dual variables3 α are exactly the coefficients of
such a linear combination, i.e., w=∑ iαiyixi. For typical settings of C,
the support of αwill be sparse, giving rise to the term “Support Vector
Machine”.

Note that in the dual problem (2), the examples only occur as inner
products bxi,xjN. These inner products can be captured in a single n×n
matrix called a Grammatrix or kernel matrix,K; see Bishop, (2006). In
practice, K is specified by the user and expresses some notion of
similarity between the examples—that is, the magnitude of a kernel
function of two examples expresses an inner product between
corresponding points in an implicit Reproducing Kernel Hilbert
Space H. The translation from the original data space to H is
commonly denoted as ϕ(x); when the kernel function is modified4,
the kernel space H and translation function ϕ(x) are correspondingly
modified. The kernel function can also be calculated analytically—
among those commonly used are linear, polynomial, and Gaussian
kernels. Briefly, a linear kernel function is simply the inner product of
two examples in the original data space; thus, unmodified SVMs use a
linear kernel. A polynomial kernel function is one in which each inner
product is squared (or cubed etc.). Such kernels allow for polynomial
decision boundaries, rather than simple hyperplanes. Finally, Gauss-
ian kernels are based on the Euclidean distance between examples, by
the formula

exp
−‖xi−xj‖

2σ

� �

where σ is a bandwidth parameter and xi and xj may denote examples
i and j. Gaussian kernel-based SVMs can be thought of as training a
3 In linear and quadratic optimization, every primal problem has an associated dual
problem; the optimal solution to one can be used to recover the optimal solution to
the other.

4 Any such modification must preserve the positive-definite property of the original
kernel function.



Table 1
Demographic and neuropsychological characteristics of the study population.

Controls
(mean)

Controls
(s.d.)

MCI
(mean)

MCI
(s.d.)

AD
(mean)

AD
(s.d.)

Age at baseline 76.2 4.59 75.1 7.44 76.6 6.28
Gender(M/F) 40/26 – 79/40 – 25/23 –

APOE carriers 17 – 63 – 37 –

MMSE at baseline 29.17 0.85 27.18 1.64 23.50 1.92
MMSE at 24 months 28.67 3.73 25.54 4.84 18.98 6.60
ADAS at baseline 9.94 4.27 17.26 6.13 28.27 9.80
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Gaussian mixture model as the pattern classifier. If a modified kernel
function is used, corresponding to a non-linear transformation of the
data, then the learned classifier is a linear function (i.e., hyperplane) in
the kernel space H. Such a function typically maps back to a non-
linear decision function in the original data space. A thorough
treatment is given in Bishop, (2006).

Multi-kernel pattern classification

An extension of this idea is to combine many such functions of
the data (i.e., multiple kernels, each pertaining to one modality for
example, or to different parameterizations of the kernel function, or
to different sets of selected features), to create a single kernel
matrix from which a better classifier can be learnt. Multi-kernel
learning (MKL) (Lanckriet et al., 2004; Sonnenburg et al., 2006;
Rakotomamonjy et al., 2008; Gehler and Nowozin, 2009; Mukherjee
et al., 2010) formalizes this idea. This is achieved by adding a set of
optimization variables called subkernel weights which are coeffi-
cients in a linear combination of kernels. The subkernel weights are
chosen so that the resulting linear combination of kernel matrices
(another kernel matrix) yields the best margin and separation on
the training set, with additional regularization to reduce the
chances of overfitting the data due to the increase in the degrees
of freedom of the model.

min
wk ;ξ;β;b

∑
k
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2
2

s:t: yi ∑
k

wT
kϕk xið Þ + b

� �
≥1−ξi ∀i

ð3Þ

Here, βk is the subkernel weight of the k-th kernel, and wk is the
set of weights for the k-th feature space, while ξi is a slack variable as
described above. Regularization of the subkernel weights is accom-
plished by penalizing the squared 2-norm of β in the objective. Thus,
in addition to minimizing the magnitude of each set of weights, the
MKL algorithm also tries to minimize the magnitude of the subkernel
weight vector. Thus as βk grows larger, the corresponding wk is
penalized less, and therefore tends to have a larger contribution to the
final classifier. The combined classifier is defined as f xð Þ =
∑kwT

kϕk xð Þ + b. Thus, the implicit kernel function is equal to
∑kβkϕk xið ÞTϕk xj

� �
. In the context of our application, it is helpful to

think of the various kernel matrices as being derived from different
sources of data (e.g., different modalities), different choice of kernel
function or parameters, (e.g., bandwidth parameter in a Gaussian
kernel function,) or a different set of features. Their assigned weights
can then be interpreted as their relative influence in learning a good
classifier (i.e., discriminative ability). Because there is a natural
mechanism to control the greater complexity resulting from the
increased dimensionality of multi-modality data, we believe that MKL
is a preferable option rather than simply ‘concatenating’ all features
together and using a regular SVM. Our proposed method then, is to
calculate various kernel matrices from each available input modality—
including brain images, cognitive scores and other characteristics,
such as CSF assays or APOE genotype, and use MKL to train an optimal
combined kernel and classifier.

Note that in the term ‖βk‖2
2 the subkernel weights are penalized

according to the Euclidean, or 2-norm5. A recent focus in MKL
research has been to generalize this formulation to include other
norms (Kloft et al., 2010), having different effects on the sparsity of
the resulting vector of subkernel weights. For instance, the 1-norm is a
sparsity inducing norm, while the 2-norm is not; norms between 1
and 2 allow a trade-off of emphasis between sparse and non-sparse
solutions. When combining multiple imaging modalities for AD
5 In general, the p-norm of a space X is given as jj xð Þjjp = ∑i jxi jpð Þp , for x∈X.
classification, it is preferable not to encourage sparsity, as the
algorithm will be very likely to completely ignore some modalities.
Experimental setup

Data

Data used in the evaluations of our algorithm were taken from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression ofmild cognitive impairment (MCI) and early
Alzheimers disease (AD). Determination of sensitive and specific
markers of very early ADprogression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. The principal investigator
of this initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California— San Francisco. ADNI is the result of the efforts of
many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to recruit 800
adults, ages 55 to 90, to participate in the research — approximately 200
cognitivelynormal older individuals to be followed for 3 years, 400people
with MCI to be followed for 3 years, and 200 people with early AD to be
followed for 2 years.

Our data consisted of ADNI subjects for whom both MR and FDG-
PET scans roughly 24 months apart were available (as of October
2009). For quality control purposes, several (16) subjects were
removed due to motion artifacts (MR), reconstruction artifacts
(FDG-PET) or other problems visible to an expert. All such evaluations
were made before any classification experiments were conducted, so
as not to unfairly bias the experimental results. Finally, we had data
for 233 subjects (48 AD, 66 healthy controls, and 119 MCI subjects).
Demographic data are shown in Table 1. Subject ID numbers are given
in Tables 12–14. See Supplemental materials.
Preliminary image-processing

In order to apply SVM and MKL methods to imaging data, it is
necessary to extract features which are common to all subjects. Using
standard voxel-based morphometry methods, as described below, we
warped the scans into a common template space, and used voxel
intensities as features. That is, after extracting foreground voxels, (i.e.,
those corresponding to brain tissue,) each subject can then be treated
as a vector of fixed length.
Years of education 16.15 3.02 15.73 2.82 14.60 3.17
Geriatric depression 0.97 1.35 1.40 1.28 1.71 1.47
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Table 3
Non-imaging cognitive markers used to construct kernels for experiments.

Cognitive measure Subjects available

Rey auditory/verbal 1–5 scores 233
Rey auditory delayed recall scores 233
Category fluency scores 233
Trail-making A & B 233
Digit-span scores 233
Boston naming scores 233
ANART errors 233
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T1-weighted MR images
Cross-sectional image processing of the baseline T1-weighted

images was first performed using Voxel-Based Morphometry (VBM)
toolbox in Statistical Parametric Mapping software (SPM, http://
www.fil.ion.ucl.ac.uk/spm). The ADNI study provides repeated acqui-
sitions of theMR scans, which we utilized by first performing an affine
warp between duplicates, and then averaging them in order to boost
the signal/noise ratio. We then segmented the original anatomical MR
images into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) segments. Then by using the “DARTEL Tools” facility in
SPM5, a study-cohort customized template was calculated based on
all subjects' baselineMR imageswith the registration results as well as
all relevant flow fields (representing the transformations). All
individual MR scans were subsequently warped to this new template.
Modulated GM and WM segments were produced in the DARTEL
template space, using both the original scans (Ashburner, 2007).
Finally, the normalized maps were smoothed using an 8 mm isotropic
Gaussian kernel to optimize signal to noise and facilitate comparison
across participants. Analysis of gray matter volume employed an
absolute threshold masking of 0.1 to minimize the inclusion of the
white matter in analysis. Longitudinal MR image processing of
baseline and 24-month MR scans were performed with a tensor-
based morphometry (TBM) approach in SPM5. We first co-registered
the baseline and follow-up scans with rigid body affine transforma-
tion, and applied bias correction and intensity normalization to make
both images comparable. Pre-processing TBM procedures are de-
scribed in detail in a previous article (Kipps et al., 2005). Briefly, a
deformation field was used to warp the corrected late image to match
the early one within subject (Ashburner and Friston, 2000). The
amount of volume change was quantified by taking the determinant
of the gradient of deformation at a single-voxel level (i.e., Jacobian
determinant). Each subject's Jacobian determinant map was normal-
ized to the cohort-specific DARTEL template and smoothed using a
12 mm isotropic Gaussian kernel.
FDG-PET images
All FDG-PET images were first co-registered to each individual's

baseline MR-T1 images and subsequently warped to the cohort-
specific DARTEL template (see above). A mask of the Pons was
manually drawn in the DARTEL template as the reference region. All of
the normalized FDG-PET images were scaled to each individual's Pons
average FDG uptake value and smoothed with a 12 mm isotropic
Gaussian kernel.
Other biological and neurological data
In addition to MR and FDG-PET images, other biological measures

and cognitive status measures are provided by ADNI for some
subjects. These include CSF assays for certain compounds thought to
be involved in neurodegeneration, such as AB1-42, total Tau, and P-
tau 181; NeuroPsychological Status Exam scores (NPSEs); and APOE
genotype data. The complete list of biological measures, and their
availability in the study population are shown in Tables 2 and 3.
Table 2
Non-imaging biological measures used to construct kernels for experiments. Cerebro–
Spinal Fluid (CSF) assays and APOE genotype data were utilized.

Type Subjects available

Tau 130
Amyloid-Beta 142 130
P-Tau 181P 130
T-Tau 130
APOE Genotype 233
Experimental methodology

We performed two sets of classification experiments: (1) We first
performed multi-modal classification experiments for separating AD
and control subjects using baseline and longitudinal imaging data,
(MR and FDG-PET), and other available cognitive/biological measures
(CSF assays, NeuroPsychological Status Exams (NPSE), and APOE
genotype). For comparison, we also present single-kernel experi-
ments for each data modality (except APOE, since APOE genotype
alone is not sufficient to diagnose AD), and on an SVM trained on the
sum of all kernels, (or equivalently, the concatenation of all feature
vectors). (2) Finally, we trained a classifier on the entire set of AD and
control subjects and then applied it to the MCI population, giving a
Multi-Modality Disease Marker (MMDM). We compared this marker
with NPSEs taken at 24 months, and examined its utility in predicting
which MCI subjects would progress to AD, as opposed to remaining
stable as MCI. Note that this is different from separating MCI subjects
from AD/controls.

Kernel matrices
Kernel matrices used in our experiments were computed using a

varying number of voxel-wise features, (i.e., intensity values at each
voxel,) and kernel functions i.e., linear, quadratic and Gaussian, for
each imagingmodality. For each fold, voxels were ranked by t-statistic
between AD and control training subjects. That is, each voxel's
intensity value can be thought of as a random variable, uponwhichwe
performed a t-test, and ranked the features by the resulting p-values.
Separate kernels were computed using the top 250,000, 150,000,
100,000, 65,000, 25,000, 10,000, 5000 and 2000 features, respectively.
These sets of features were chosen beforehand so as to give a
reasonable coverage of the range of features available, while allowing
the algorithm to choose a linear combination that leads to a
discriminative kernel. In addition to performing an implicit feature
selection step, this allows us to evaluate the MKL algorithm's ability to
integrate tens to hundreds of kernels, as in the case when many more
modalities are available. For each set of features, we constructed
linear, quadratic, and Gaussian kernels, using a bandwidth parameter
of 2 times the number of features for the Gaussian kernel. The
Gaussian kernel bandwidth parameter should be chosen to be within
the same order of magnitude as the majority of pairwise distances.
Thus, when voxel-wise intensity values fall in the range [0, 1], a
common choice for the bandwidth parameter is a small number times
the number of features. By this process, we obtained 24 separate
kernel matrices for each imaging modality. For non-imaging modal-
ities, i.e., CSF assays, NPSEs, and APOE genotype, all features were
used, giving three kernels per modality. The biological measures used
are shown in Table 2. Because only a subset of subjects had such
measures available, we used zero values for those who did not. This
means that kernel matrices had zero values where such data were
missing, and therefore added nothing to the classification on those
subjects. We chose a conservative approach to this problem, meaning
that results can only improve if a statistical interpolation method
were to be introduced. For computing the MMDM for MCI subjects, all
AD and CN subjects were used both in feature selection and training.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Before training a classifier using the kernels constructed as
described above, it is necessary to perform some normalization;
consider that the vector w which defines the separating hyperplane is
a linear combination of examples. If the average magnitude of
examples as implicitly represented by one kernel is several orders
of magnitude larger than that of another kernel, then for the same
subkernel weights, one kernel will have a far greater contribution to
w. In order to ensure that this is not the case, we adopted a standard
approach to kernel normalization. The first step is to divide each
kernel by the largest entry, so that all entries are in the range [0, 1].
Second, we re-centered the points in each kernel space by subtracting
row and column mean values, and then dividing by the trace. See
Bakir et al. (2007) for details. As a consequence of normalizing the
kernels, the C parameter which controls the regularization trade-off
can be set to a small integer.We therefore set C=10; no fine tuning or
model selection was necessary.

Recall that when longitudinal data are available, there is more than
one way to perform spatial normalization of scans, and we treat them
as different imaging modalities, because we expect different types of
information to be revealed by each. From MR images, we have both
baseline VBM, and TBM modalities; in FDG-PET we have the baseline
and 24 month scans, as well as the voxel-wise difference and ratio
between scans at different time points. Kernels based on the
longitudinal voxel-wise difference and ratio in FDG-PET images
were found to have poor performance relative to the raw FDG-PET
values (60%–70% accuracy), and we did not make further use of them
in our experiments.

ROC curves
We also computed Receiver Operator Characteristic curves (ROCs)

for each set of experiments. Briefly, while a classification algorithm
must output a ±1 group label, our algorithm can also output a
‘confidence’ level for each test subject which in this case is the signed
output of the classifier. By ordering the confidence levels of the entire
study population, and calculating a True Positive Rate (TPR or
sensitivity) and False Positive Rate (FPR or 1—specificity) for each
level, an ROC curve qualitatively shows not only how many examples
are misclassified, but provides a sense of how the classifier's
confidence relates to its correctness.

Cross-validated classification
For the first set of experiments, we performed AD vs. control

classification experiments using 30 realizations of 10-fold cross-
validation. That is, in each realization the study population was
randomly divided into ten separate groups, or folds. Each fold was
used as a “test” set, while the remaining data was used as a “training”
set. Therefore, the algorithm was evaluated on AD and control
examples which were unseen during the training process, while
permitting us to use the entire dataset effectively. Various accuracy
measures, such as test-set accuracy (% of test examples properly
labeled as AD or control,) sensitivity, (% of AD cases labeled as such)
and specificity (% of controls labeled as such), and area under ROC
curves were computed by averaging over all 30 realizations. Using this
methodology, we first evaluated each kernel function on its own, in an
SVM framework. We then evaluated each modality in an MKL
framework, by combining different kernel functions, all derived
from the same modality and features. Finally, we combined all
imaging modalities into a multi-modality MKL classification frame-
work. We did the same for cognitive scores and biological measures,
allowing for a comparison between different types of subject data in
terms of their ability to identify signs of AD.

Comparison of subkernel weight vector regularization norms
Another interesting area of investigation is on the effect of

different MKL norm regularizers, especially with regard to sparsity
of the resulting classifier. Sparsity is often advantageous in the
presence of non-informative or error-prone kernels, however an
overly sparse combination can discard useful information, leading to a
sub-optimal classifier. Thus, it is important to understand this trade-
off. Using the cross-validation setup described above, we compared
different subkernel norm regularizers, (1, 1.25, 1.5, 1.75, and 2), using
all available kernel types, as shown in Tables 2 and 3. In order to
demonstrate MKL's ability to combine fundamentally different
sources of information, we also constructed additional kernels using
subject age, APOE genotype, years of education, and geriatric
depression scale as features. We expect that some of these additional
kernels may or may not be as useful to the learning algorithm, so as to
allow a meaningful assessment of the usefulness of applying sparsity
in the kernel norm. For baseline comparisonwe trained an SVM on the
sum of all kernels, which is equivalent to simply concatenating all
feature vectors, by definition of the inner product of vectors.

MMDMs
Our next set of experiments were conducted to evaluate the ability

of imaging-based markers to predict which subjects would convert
from MCI to AD. In order to do this, we first trained an MKL classifier
using all 114 AD and CN subjects, and then applied it to all 119 MCI
subjects, giving an MMDM measure. This procedure was repeatedly
performed using (a) imaging-based, (b) cognitive marker-based, and
(c) biological measure-based kernels, so as to evaluate each type of
data separately, and facilitated a better comparison among them. We
also differentiated between baseline and longitudinal data.

To quantify the predictive value of the MMDMs, we separated the
MCI subjects into three groups – thosewho had progressed to AD after
three years, those who remained stable, and those who reverted to
normal status – and calculated p-values of group differences using a t-
test. We also computed ROC curves to quantitatively measure the
degree of differentiation between theMCI groups as given by different
types of biological measures. There are two ways to compute such
ROCs: based on the differentiation between progressing and reverting
MCI subjects, ignoring the stable MCI subjects; and based on the
differentiation between progressing and non-progressing MCI sub-
jects. In the former case, we treat stable MCI subjects as though their
final status is not yet known, and thus the task is to predict whether a
given subject will eventually revert, or progress. For our analysis, we
calculated both kinds of ROC curves, and present results below.

Implementation
Our validation experiments and analysis framework were imple-

mented in Matlab using an interface to the Shogun toolbox
(Sonnenburg et al., 2006) (http://www.shogun-toolbox.org). The
source code for this project and supplemental information will be
made available at http://pages.cs.wisc.edu/~hinrichs/MKL_ADNI
[upon publication].

Results and analysis

We present here the results of our experiments on the ADNI data
described in the Experimental setup section, and an analysis of the
MKL algorithm in the context of MCI progression.

Separating AD subjects and controls

As a first step, we separately evaluated the kernels produced by
each modality by comparing their performance at classifying AD vs.
control subjects using an MKL norm of 2.0, so as not to discard any
useful information. Results of these experiments are shown in Fig. 1.
Note that the color scale is the same between all figures.

Our first set of multi-kernel experiments also focused on whether
the algorithm could learn to separate AD subjects from controls. Our
experimental method was to use 10-fold cross-validation repeated 30
times, using kernel matrices computed as described in the

http://www.shogun-toolbox.org
http://pages.cs.wisc.edu/~hinrichs/MKL_ADNI


Fig. 1. Accuracies of single-kernel, single-modality methods. Color represents classification accuracy on unseen test data, ranging from blue (lowest, 50% accuracy,) to red (highest,
100% accuracy). The modalities used are, (a) FDG-PET scans at baseline, (b) VBM-processed MR baseline scans, (c) FDG-PET scans at 24 months, and (d) TBM-processed MR scans.

Table 5
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Experimental methodology section. Accuracy, sensitivity, and speci-
ficity results are shown in Table 4. In order to compare the efficacy of
imaging-based disease markers with other biological measures, we
performed experiments (1) using only image-derived data, (2) using
other biological measures, (3) using only NPSEs, and finally using all
available data modalities.

Note that the accuracy achieved using imaging-based MMDMs is
nearly as good as that achieved using NPSEs. We believe this is
promising, because NPSEs should be expected to perform better than
imaging modalities when AD-related cognitive decline is present,
even if the NPSEs were not used in making the diagnosis. This is
because AD is currently diagnosed according to the patient's cognitive
status, and while the NPSEs we utilized are not the same as those used
in making a clinical diagnosis, they are nonetheless markers of
detectable decline in cognition, and as such are not directly
comparable to imaging-based markers. Rather, we include these
experiments only to facilitate indirect comparison. Thus, for the
imaging-based markers to be nearly as effective is quite promising.

The areas under each ROC curve (another measure of classification
performance) are provided in Table 4. In terms of area under ROC
curve, all modalities performed about as well as the other accuracy
Table 4
Comparison of 2-norm MKL with different types of input data modalities.

Modalities used Accuracy Sensitivity Specificity Area under ROC

Imaging modalities 0.876 0.789 0.938 0.944
Biological measures 0.704 0.581 0.794 0.767
Cognitive scores 0.912 0.892 0.926 0.983
All modalities 0.924 0.867 0.966 0.977
measures would suggest. Again, we note that imaging modalities and
cognitive scores performed very similarly under this measure.

In order to compare the effect of subkernel weight norms, we
repeated the above experiments using all kernels and modalities
available and MKL norms in the range of (1, 1.25, 1.5, 1.75, 2). These
results are shown in Table 5. Note that among the MKL norms,
accuracy increases slightly with MKL norm up to the point where
sparsity is no longer strongly encouraged (at about 1.5), suggesting
that overly sparse MKL norm regularizers do indeed lose information.
We also note that the SVM's performance suffered significantly.

When using a 1-norm, out of the 72 available kernels, only 4 had
non-zero weights: one TBM Gaussian kernel using 10,000 features, two
VBM kernels, (one linear with 10,000 features, one quadratic with
25,000), none from the baseline FDG-PET scans, and one linear kernel
with 2000 features. In contrast, the subkernel weights chosen when
using anMKL norm of 2 were all non-zero, and are shown in Fig. 2. This
means that in the context of AD classification, different modalities (and
different representations of information from those modalities)
contributed to in varying proportions to yield a discriminative classifier.
Comparison of different MKL norms in the presence of uninformative kernels, and an
SVM trained on a concatenation of all features for comparison.

MKL norm used Accuracy Sensitivity Specificity Area under ROC

1.0 0.914 0.867 0.949 0.977
1.25 0.916 0.865 0.954 0.980
1.5 0.921 0.874 0.956 0.982
1.75 0.923 0.872 0.961 0.982
2.0 0.922 0.870 0.959 0.981
SVM (concatenated
features)

0.882 0.844 0.910 0.970



Fig. 2. Subkernel weights (β) chosen by the MKL algorithm with 2-norm regularization. Weights are relative, and have no applicable units. The modalities used are, (a) FDG-PET
scans at baseline, (b) VBM-processed MR baseline scans, (c) FDG-PET scans at 24 months, and (d) TBM-processed MR scans.
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It is perhaps interesting to note that most of the weight was placed on
the VBM kernels, followed by the TBM and FDG-PET kernels.

Classifier brain regions

An important component of the evaluation of our method is an
analysis of the brain regions selected by the algorithm. That is, if the
algorithm is only given linear kernels from brain images, then the
decision boundary itself can be interpreted as a set of voxel weights,
using the formula wm = βm∑iαiϕm xið Þ where ϕm xð Þ is the implicit
(possibly non-linear) transform from the original data space to the
kernel Hilbert space. An examination of these weights can reveal
which brain regions were found to be most useful or discriminative
Fig. 3. Voxels used in the classifier for FDG-PET baseline images. Weights are relative, and ha
indicates zero or neutral weight, while red indicates positively weighted regions associated
slices.
(by the algorithm) in its predictions. Thus, the images of brain regions
below are taken from the multi-modality classifier trained on all four
imagingmodalities used in our experiments, using only linear kernels.
Note that from Fig. 1, we can see that among the kernels derived from
FDG-PET images, the most informative kernel used more than 65,000
voxels, which implies that classification strategies can benefit from
using whole-brain images rather than examining small, localized brain
regions, or ROIs in FDG-PET imaging. The results are shown in Figs. 3–6.
Note that these weightswere all calculated simultaneously in theMKL
setting. These images can be interpreted as follows: image intensity in
voxels showing a stronger red color contributes to a subject's healthy
(positive) diagnosis, while intensity in voxels showing a stronger blue
color contributes to a subject's diseased (negative) diagnosis, and
ve no applicable units. Blue indicates negative weights, associated with AD, while green
with healthy status. Green bars in the axial and sagittal views correspond to coronal

image of Fig.�2
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Fig. 4. Voxels used in the classifier for FDG-PET images at 24 months. Weights are relative, and have no applicable units. Blue indicates negative weights, associated with AD, while
green indicates zero or neutral weight, while red indicates positively weighted regions associated with healthy status. Green bars in the axial and sagittal views correspond to coronal
slices.

Fig. 5. Voxels used in the classifier for TBM-processedMR images.Weights are relative, and have no applicable units. Blue indicates negative weights, associated with AD, while green
indicates zero or neutral weight, while red indicates positively weighted regions associated with healthy status. Green bars in the axial and sagittal views correspond to coronal
slices.
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intensity in yellow-, green- or cyan-colored voxels is essentially
ignored. Note that these weights are purely relative, and thus have no
applicable units. Each subject's final score is thus the difference
between the weighted average intensity in the red and orange regions
and the blue and cyan regions. We interpret this as meaning that red-
orange (positive weighted) regions are those inwhich image intensity
Fig. 6. Voxels used in the classifier for VBM-processed (GM density) MR images. Weights are
AD, while green indicates zero or neutral weight, while red indicates positively weighted regi
to coronal slices.
is a prerequisite of healthy status. For blue-cyan (negative weighted)
regions, the literal interpretation is that the algorithm found higher
intensity among the AD group than in the controls.

In some cases, we observe that negative weights are assigned in
regions where higher image intensity is usually associated with
positive status. There are several possible explanations for this, such as
relative, and have no applicable units. Blue indicates negative weights, associated with
ons associated with healthy status. Green bars in the axial and sagittal views correspond

image of Fig.�4
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image normalization artifacts which artificially boost the intensity of
these regions in some AD subjects. For instance in FDG-PET images,
image intensity was normalized using a map of the Pons, and thus
irregularities in this region could produce artificially inflated intensi-
ties in the rest of the image. Another possibility is brought up by
Davatzikos et al. (2009), which is that in MR images of gray matter,
periventricular white matter may be mis-segmented as gray-matter,
due to certain types of vascular pathology. A third possibility is that
there is a small set of subjects whose characteristics are heterotypical
of their group, and thus induce negative weights in regions which
would otherwise have positive weights. Evidence of such a group was
found in Hinrichs et al. (2009a). In order to examine this possibilitywe
found a set of subjects (5 subjects based on baseline FDG-PET scans,
and 4 subjects based on baseline MR scans) who had unusually strong
intensity in regionswhich had been assigned negativeweights, and re-
trained the MKL classifier without them. The resulting classifier was
nearly free of such anomalous negative weights, which strongly
suggests that these negative weights are entirely the result of the
influence of a small group of outlier subjects, (9 out of 114). We have
investigated this issue briefly in our previous work. (Hinrichs et al.,
2009a) Theweights assigned by this classifier can be seen in Fig. 7. It is
important to note that these subjects were removed for visualization
purposes only, and were still used in computing accuracy and other
performance estimates, and in the MCI analyses described below.

In Fig. 3, we can see that heteromodal, frontal, parietal regions and
temporal lobes are given negative weights. The posterior cingulate
cortex, lateral parietal lobules (bilaterally) and pre-frontal midline
structures are prerequisites of an indication of healthy status. The
weights assigned to the FDG-PET scans taken at 24 months show a
similar pattern, and are shown in Fig. 4.

Among the MR-based kernels, the most informative kernels (as
measured in a single-kernel setting,) used 5000 to 25,000 voxels,
implying that smaller regions, can be used to identify signs of AD-
related gray matter atrophy. Thus, we expect to see a similar pattern
in the multi-modality setting. Using the same interpretation of color
as above, we can see that in the baseline GM density images, (VBM)
hippocampal and parahippocampal regions are highlighted more
clearly, consistent with the single-modality results which indicated
that a small number of voxels are most informative in this modality. In
the TBM-based images, we see that the hippocampal regions and
parahippocampal gyri are highlighted, as well as middle temporal
lobar structures bilaterally, indicating that longitudinal atrophy is
concentrated in these regions, which is again consistent with the
single kernel results, (and prior literature), (Braak et al., 1999) in
which the top 25,000 voxels produced the most informative classifier.

Correlations and predictions on the MCI population

For the second set of experiments, which involved MCI subjects,
we trained a classifier on the entire AD and control population using
MKL. This classifier was then applied to the MCI population, giving a
Multi-Modality Disease Marker (MMDM). Using this methodology,
only AD and control subjects were used to train the model, while MCI
subjects were only used for evaluation, rather than other methodol-
ogies in which MCI subjects are used for training purposes (Hua et al.,
2008, 2009; Davatzikos et al., 2009). This process was repeated for
eachmodality separately, as well as in groups of modalities. That is, all
imaging modalities were combined, as were all NPSEs and biological
measures. The outputs for each subject are shown in Fig. 8. Subjects
who remained stable are shown in blue; subjects who progressed to
AD after 3 years or less are shown in red; subjects who reverted to
normal cognitive status are shown in green. The four plots are divided
between baseline (left) and longitudinal (right), and imaging-based
(top) and NPSE-based (bottom) MMDMs. In each plot, a maximum
accuracy cut-point is plotted as a solid black line. On the left we can
see that neither of the baseline scans shows much differentiation
between the groups, and the maximum accuracy separating line is
essentially choosing the majority class. On the right, both the
imaging-based and NPSE-based MMDMs provide better separation
of the 2 groups.We also computed a set of MMDMscores based on CSF
measures and APOE genetic markers, which did not show any ability
to differentiate the 2 groups. An encouraging sign is that none of the
reverting subjects were given negative scores.

In order to quantify these differences, we evaluated the degree of
group-wise separation between progressing, reverting, and stable
MCI subjects, under each of the available modalities, using a t-test. As
shown in Table 6, the resulting p-values of the imaging-based MMDM
(in separating progressing subjects from non-progressing) are several
orders of magnitude lower than those based on NPSEs at 24 months,
and two orders lower at baseline, suggesting that imaging modalities
offer a better view of future disease progression than current cognitive
status. We believe this is an interesting result of our analysis.

Area under ROC curve results are shown in Table 7; the
corresponding ROC curves are shown in Fig. 9. For ROCs showing
separation between progressing and reverting subjects, the AUCs are
very high, as we would expect. These curves are shown on the left in
Fig. 9. For comparison, we also computed ROC curves for single
modalities, which are also shown in the figure. Of special relevance is
the fact that the MMDM based on imaging data alone outperformed all
others, both at baseline and at 24 months.

The second comparison we made via ROC curves was between
progressing subjects and all others. We accomplish this by using a
different ground truth for computing the ROC curves. In this case, the
task is to understand which of the MCI subjects will progress to AD in
the near term (2–3 years), and which will remain stable or revert.
These curves are shown on the right in Fig. 9. In this case, the imaging-
based MMDM, (shown in green) outperformed all others, most
significantly at 24 months. The AUC for the image-based MMDM was
0.79, while that of the NPSE-based MMDM was 0.74. The highest
leave-one-out accuracy achieved by the image-based MMDM was
0.723. For the NPSE the highest accuracy was 0.681. For the Biological
measure-based MMDMs, it was not possible to achieve an accuracy
greater than chance.

Discussion

We have shown in our experiments that our approach can offer a
flexible means of integrating multiple sources of data into a single
automated classification framework. As more types of information
about subjects become available, either through new scanning
modalities or new processing methods, they can simply be added to
this framework as additional kernel matrices in a seamless manner.
For instance, rather than choose whether to use TBM or VBM in our
experiments, we used both by delegating the task of choosing the
better (i.e., more discriminative) view of the data to our model.

The principal novelty of this work is to introduce a new machine
learning algorithm, Multi-Kernel Learning, to the application of
discriminating different stages of AD using neuroimaging and other
biological measures. Many existing works (Davatzikos et al., 2008a,b,
2009; Fan et al., 2008a,b; Vemuri et al., 2008; Duchesne et al., 2008;
Querbes et al., 2009; Klöppel et al., 2008; Ramírez et al., in press;
Kohannim et al., 2010; Walhovd et al., 2010), use either general linear
models based on summary statistics, or machine learning algorithms
such as SVMs, logistic regression, or AdaBoost, with extensive pre-
and post-processing of imaging data which adapts these methods to
the particular application. Of the machine learning methods men-
tioned here, all three are discriminative max-margin learning
algorithms. Logistic regression uses a sigmoid function to approxi-
mate the hinge-loss function, and must be optimized via iterative
methods. AdaBoost implicitly finds a margin by iteratively increasing
the importance of examples which are misclassified, much the same
way that examples inside the margin become support vectors in the
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SVM framework. Ourmethod shares some commonalities in the sense
that pre-processing of brain scans is also required before a classifier
can be trained. However, by incorporating MKL, we can extend this
framework to allow seamless integration of multiple sources of data
while controlling the complexity of the resulting classifier without the
need for creating summary statistics, (which discard a large amount of
information).
Fig. 7. Voxel weights assigned by the MKL classifier when the outlier subjects were remove
baseline MR images; (d) TBM-processed longitudinal MR scans.
We note that several studies have reported better raw perfor-
mance at classifying AD and control subjects. There are several factors
which can affect such results. First, there is the issue of the severity of
the disease, and of the availability of gold-standard diagnosis. For
instance, Klöppel et al. (2008) reported that their accuracy suffered
when autopsy data were not available due to the difficulty of
diagnosing AD in vivo. The ADNI data set, on which our experiments
d. (a) FDG-PET baseline images; (b) FDG-PET images at 24 months; (c) VBM-processed
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Table 7

Fig. 8. MMDMs applied to the MCI population. Subjects which remained stable are shown in blue; subjects which progressed to AD are shown in red; subjects which reverted to
normal cognitive status are shown in green. In each figure, a line giving maximal post-hoc accuracy is shown. Note that in some cases, the best accuracy can be achieved by simply
labeling all subjects as the majority class. In some cases, MMDM scores were truncated to ±2 so as to preserve the relative scales. On the left (a, c) are shown MMDMs based on
information available at baseline. Note the homogeneity of the groups, leading to poor separability. Imaging-based MMDMs are shown at the top (a), while MMDMs based on NPSEs
are shown below (c). On the right (b, d) are shownMMDMs based on all modalities available at 24 months. Note the improved separability between the progressing (red) and stable
(blue) MCI subjects. Note that the imaging-based marker above (b) shows slightly greater separation of the 2 groups.
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were based, consists entirely of living subjects, having relatively mild
AD (see Table 1). Other studies have used ADNI subject data
(Davatzikos et al., 2009; Querbes et al., 2009; Fan et al., 2008a), and
while some have reported better performance than we have, issues
such as image registration andwarping, subject inclusion criteria (e.g.,
image quality), or choice of feature extraction/representation might
have a greater effect on the final outcomes. A recent study, (Cuingnet
et al., 2010), addressed exactly these issues, finding that when these
Table 6
Significance of group-level differences in MMDM scores assigned to MCI subjects. There
are 3 groups ofMCI subjects—those who reverted to normal status, those who remained
stable for 3 years, and those who progressed to full AD in 3 years.

Modalities used Reverting vs. rest Progressing vs. rest

Biological measures (baseline) 0.65 0.58
Imaging data (baseline) 1.31×10−3 1.78×10−6

Imaging data (longitudinal) 5.69×10−4 3.29×10−7

NPSEs (baseline) 2.63×10−3 5.51×10−4

NPSEs (longitudinal) 2.44×10−4 2.19×10−6
issues are controlled, the accuracy results are closer to those reported
in this study (see Table 4). For example, if a pre-processing method is
found to be particularly useful for discriminative purposes, that
method can be swapped with our current pre-processing methods, or
incorporated as additional kernels. The more important comparison is
between single modality and multi-modality methods, using the same
Area under ROC curves for predicting whether MCI subjects will progress to AD or not.
In the left column are AU ROCs for the task of separating only progressing subjects from
reverting subjects, while ignoring stable MCI subjects. On the right are AU ROCs for
separating progressing subjects from all other subjects.

Modalities used Progressing vs. reverting Progressing vs. rest

Biological measures (baseline) 0.4368 0.5292
Imaging data (baseline) 0.9532 0.7378
Imaging data (longitudinal) 0.9737 0.7911
NPSEs (baseline) 0.9298 0.6693
NPSEs (longitudinal) 0.9415 0.7385
All modalities 0.9708 0.7667

image of Fig.�8


Fig. 9. ROC curves for multi-modality learning on disease progression of MCI subjects using various disease markers. The ROC curves for separating progressing and reverting MCI
subjects on the left (a, c). The ROC curves for separating progressing MCI subjects from all others are shown on the right, (b, d). The top row (a, b) shows the curves derived from the
information available at baseline, while those on the bottom (c, d) were derived from scans and markers taken at both baseline and 24-months.
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data and pre-processing pipeline. In addition, our experiments
comparing MKL with concatenated-features SVM show that MKL
has advantages in the presence of non-informative kernels.

Single-modality results

Our experiments in single-modality AD classification give an
indication of the relative merits of various scanning modalities. We
note first that in FDG-PET scans, the top performing kernels are those
which make use of at least 65,000 voxels, indicating that a
performance gain of five percentage points or more can be made
from using the entire brain volume, rather than using smaller selected
regions6. That is, while most subjects can be identified by examining
smaller regions, some subjects can only be identified by examination
of whole-brain atrophy. This suggests that there is a small group of
subjects having atypical disease progression (in the case of AD
subjects) or that some control subjects may show early signs of
disease. A somewhat surprising result is that longitudinal analysis of
FDG-PET images did not have much discriminative power. Neither of
the twomethods we considered (voxel-wise temporal difference, and
6 The authors of (Fan et al., 2008b) found similar results in FDG-PET images.
voxel-wise temporal ratio) had accuracy higher than about 65%. This
is perhaps an indication that signs of atrophy in FDG-PET images
accumulate slowly enough that changes over a 2-year period alone are
not enough to distinguish AD with high accuracy.

In the MR-based modalities, we can see that in baseline VBM
images, the highest performing kernels are those that focus on small
brain regions of a few thousand voxels, while in TBM images, the best
performance is obtained from larger regions of about 25,000 voxels.
We interpret this to mean that (in classifying AD and control
subjects,) the most indicative signs of atrophy already present at
baseline can be found in hippocampal and para-hippocampal regions
(not shown), but the atrophy occurring at the stage of full AD (i.e., that
which occurs in the two years following diagnosis), is more diffuse.
This suggests that early signs of AD are more likely to be concentrated
in smaller regions, such as the hippocampus, and other structures
known to be affected by AD.

Secondly, we note that linear kernels performed as well as, or
better than quadratic and polynomial kernels in all modalities
examined, indicating that there are few quadratic or exponential
effects which can be used for discriminative purposes. This can be
interpreted that indications of pathology in each voxel contribute
independently and cumulatively to the final diagnosis.

image of Fig.�9
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Multi-modality results

An interesting comparison which arose in our experiments was
between the various imaging-based kernels individually, (see Fig. 1),
and the MKL experiments combining groups of modalities (see
Table 4). MKL produces linear combinations of kernels, and therefore
does not examine the interactions between them when evaluating
new subjects. This means that the ideal situation is where the errors
present in each kernelmatrix are drawn randomly and independently.
When combining modalities with strong similarities, it is therefore
expected that some errors will cancel out, to the extent that those
errors do not themselves arise from shared properties of both
modalities. The rationale for combining modalities into groups for
comparison is that while imaging modalities are expected to contain
distinct (and useful) information about each subject, we expect that
they will have some information in common. For instance, properties
such as total inter-cranial volume or particular anatomical artifacts
will be present in different scanning modalities, but not in other
biological measures. Thus, we first examine MKL's ability to integrate
groups of similarmeasures andmodalities, before examining its ability
to combine dissimilar sources of information.

First, we note that none of the individual kernels derived from
imaging modalities achieved an accuracy greater than MKL when
given the combination of imaging modalities. Moreover, when MKL
was given the entire set of kernels from all available sources of
information, it outperformed any of the groups of modalities, except
for the NPSEs, where the differences were not significant. This is
expected, because clinical diagnosis is already known, meaning that
the disease has already reached a stage where cognitive status effects
are measurable, in contrast to earlier stages, in which anatomical and
physiological changes have begun to occur, but outward signs have
not. Indeed, in the analysis of MCI progression (Tables 6 and 7), it is
the imaging-based modalities which have the strongest performance.
Finally, it is interesting that for the biological measures, such as CSF
assays and APOE genotypes, while there is certainly some information
contained in the kernels generated from these measures, by
themselves they do not have nearly the discriminative power of
either the imagingmodalities, or the NPSEs. This may be due in part to
the fact that these measures are not available for all subjects.

In Table 7 it may be surprising that the MMDM trained on all
available modalities underperformed the one trained only on
longitudinal imaging modalities. This is likely due to the fact that
the training task and evaluation taskwere closely related, but slightly
different. Thus, the subkernel weights estimated to give the optimal
performance on the training task (AD vs. controls), may have been
slightly less than optimal on the related task, (MCI progression).
Despite this, the disparity in performance is small, and the MMDM
using all combinedmodalities still outperformed all otherMMDMs. It
is also interesting to note that while the NPSEs dominated in the AD
vs. control task of the Separating AD subjects and controls section, in
this task, the longitudinal NPSEs are roughly at parity with the
baseline imaging modalities (see Tables 6 and 7). This suggests that
signs of impending progression from MCI to AD are present in the
imaging modalities approximately two years ahead of clinical
psychological measures.

MKL-norm results

In our experiments with varying MKL norm, we found that norms
which encouraged sparsity performed slightly worse than those which
do not, suggesting that information is being needlessly discarded. The
results in Table 5 show that above about 1.5, sparsity makes less of a
difference, but at 1 or 1.25, sparsity is encouraged enough to affectMKL's
performance. In contrast, the concatenated-features SVM's performance
was significantly lower overall, as it has no mechanism for discarding
non-informative kernels, especially when there are more kernels from
manydifferent sources.Whengivenonly kernels froma singlemodality,
the SVM's performance was closer to parity with MKL, however, this is
expected, due to the relative ease of combining kernels from similar
sources of information. Rather, it is when there is greater variety in the
information content of the various kernels that MKL incrementally
shows an advantage over the concatenated-features SVM. This
demonstrates that regardless of the norm chosen, MKL has the ability
to automatically detect and discard sets of features which do not
contribute significantly to the optimal classifier.

One could, in theory, manually select which features to include,
and how to weight them, but this would essentially emulate the MKL
process by hand using a regular SVM. With the proper construction of
kernels, it is even conceivable that MKL could be used to automatically
select ROIs.

Brain regions selected

The classifier chosen by MKL consists of a set of kernel combination
weights β, as well as a set of example combination weights α. These
weights canbe combined togive a single linear classifierbasedonvoxel-
wise features. The distribution of these voxel-weights chosen by the
MKLalgorithmtherefore gives some insight into the relative importance
of various brain regions, and we expect that a good classifier will place
greater weight on regions known to be involved in AD.

It is well known that the Posterior Cingulate Cortex is involved in
memory retrieval and related self referential processes (Northoff and
Bermpohl, 2004; Piefke et al., 2003; Shannon and Buckner, 2004). As
part of the limbic system, it has reciprocal connections with other
memory areas including the dorsomedial and dorsolateral prefrontal
cortex, the posterior parahippocampal cortex, presubiculum, hippo-
campus, entorhinal cortex, and thalamus (Mesulam, 2000). Previous
imaging studies suggest the PCC is affected in AD even before clinical
symptoms appear, consistent with the very early memory symptoms in
AD (Xu et al., 2009; Ries et al., 2006). Interestingly, the earliest cerebral
hypometabolism finding in AD involves the PCC-precuneus rather than
the hippocampus (Villain et al., 2008). Although the mechanism
connecting cortical atrophy and hypometabolism in neurodegenerative
disorders is not fully understood, intuitively, a positive relationship is
expected. Both brain atrophy and cerebral hypometabolism reflect loss
of neurons/synapses (Bobinski et al., 1999) and decrease in synaptic
density/activity (Rocher et al., 2003). As mentioned in the Classifier
brain regions section, the brain regions selected by theMKLalgorithm in
FDG-PET images, as shown in Figs. 3 and 4, include the PCC and
precuneus, the lateral parietal lobules, hippocampal and medial
temporal regions, and the pre-frontal midline.

In MR longitudinal images (TBM, Fig. 5), regions well-known to be
atrophic in AD, such as the hippocampus, parahippocampal gyri,
fusiform gyri and other middle temporal structures (Braak and Braak,
1991) are well highlighted. Expansion, (or reduced contraction) is
associatedwith healthy status, and thus these regions are given positive
weights, shown in red. Conversely, expansion in ventricles, and in the
CSF surrounding the hippocampus is shown in blue. Expansion in these
regions is correlated with AD pathology, and so these regions are given
negative weights. In the baseline gray matter density images, (VBM,
Fig. 6) similar hippocampal and medial temporal regions are shown.

MCI conversion

The task of predicting conversion fromMCI to full AD is known to be
difficult, (Querbes et al., 2009; Davatzikos et al., 2009), and presents
challenges beyond that of classifying AD and control subjects, or even
that of classifying AD/control and MCI subjects. This difficulty arises
largely from the “lag” between brain atrophy and cognitive decline.
There are several interesting aspects of theMMDMswehave examined.
First, we note that at baseline, neither NPSEs nor imaging modalities
have a strong ability to detect which subjects will convert to AD. This
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may be a result of the ADNI selection criteria for MCI subjects—that is,
MCI subjects are chosen so as to have very homogeneous cognitive
characteristics at baseline, and so we expect that NPSEs will not be able
to differentiate between progressing and stable MCI subjects very well.
While theMMDMbased on all combined imagingmodalities does have
a better AUC at baseline than theNPSEs, the improvement shown by the
MMDM based on longitudinal imaging modalities suggests that a
significant portion of the neurodegeneration responsible for the
subjects' conversion to AD takes place after MCI diagnosis. In addition,
between baseline and 24 months, the imaging-based MMDM outper-
forms the NPSE-based MMDM by an even wider margin, as shown by
the AUCs and p-values in Tables 6 and 7. This leads us to believe that
while NPSEs can be a better marker for subjects who already are
showing AD-related cognitive decline, the imaging modalities have
slightly better predictive value for future decline.

We expect that further progress can be made in adapting multi-
kernel methods to work specifically with imaging data, allowing
greater accuracy in identifying future patterns. Finally, we find it
interesting that combining all imaging markers into a single MMDM
offers a slight improvement over the best single imaging modality,
which tends to be FDG-PET. This improvement is relatively stable over
time, between baseline and 24 months.

Conclusion

In this paper we have presented a new application of recent
developments from the machine learning literature to early detection
of AD-related pathology. Using this measure of AD pathology, we
constructed a predictive marker for MCI progression to AD. This
method is fully multi-modal—that is, it incorporates all available
sources of input relating to subjects, yielding a unified Multi-Modal
DiseaseMarker (MMDM). Our results on the ADNI population indicate
that this method has the potential to detect subtle changes in MCI
subjects which may provide clues as to whether a subject will convert
to AD, or remain stable. In particular, we have shown that imaging
modalities have better ability to predict such outcomes than baseline
neuropsychological scores, which is consistent with the view that
neurological changes detected in neuroimages can precede clinically
detectable declines in cognitive status. Our ongoing work focuses on
further developing this method—which will permit even higher
accuracy and sensitivity, and allow predictions at the level of
individual subjects to be made with high confidence.
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