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Abstract
We sought to identify new susceptibility loci for Alzheimer’s disease (AD) through a staged
association study (GERAD+) and by testing suggestive loci reported by the Alzheimer’s Disease
Genetic Consortium (ADGC). First, we undertook a combined analysis of four genome-wide
association datasets (Stage 1) and identified 10 novel variants with P≤1×10−5. These were tested
for association in an independent sample (Stage 2). Three SNPs at two loci replicated and showed
evidence for association in a further sample (Stage 3). Meta-analyses of all data provide
compelling evidence that ABCA7 (meta-P 4.5×10−17; including ADGC meta-P=5.0×10−21) and
the MS4A gene cluster (rs610932, meta-P=1.8×10−14; including ADGC meta-P=1.2×10−16;
rs670139, meta-P=1.4×10−9; including ADGC meta-P=1.1×10−10) are novel susceptibility loci for
AD. Second, we observed independent evidence for association for three suggestive loci reported
by the ADGC GWAS, which when combined shows genome-wide significance: CD2AP (GERAD
+ P=8.0×10−4; including ADGC meta-P=8.6×10−9), CD33 (GERAD+ P=2.2×10−4; including
ADGC meta-P=1.6×10−9) and EPHA1 (GERAD+ P=3.4×10−4; including ADGC meta-
P=6.0×10−10). These findings support five novel susceptibility genes for AD.
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Alzheimer’s disease (AD) is the most common form of dementia, with both environmental
and genetic factors contributing to risk. AD is genetically complex and shows heritability up
to 79%1. Rare variants in three genes (APP, PSEN1 & PSEN2)1 cause disease in a minority
of cases, but until recently the Apolipoprotein E gene (APOE), was the only gene known to
increase disease risk for the common form of AD with late-onset2. In 2009 we published a
genome-wide association study (GWAS) of AD in a sample designated GERAD1 (Genetic
and Environmental Risk in AD Consortium 1), which identified two new genome-wide
significant susceptibility loci: clusterin (CLU: P=8.5×10−10) and phosphatidylinositol-
binding clathrin assembly protein gene (PICALM: P=1.3×10−9). We also observed more
variants with P-values<1×10−5 than were expected by chance (P=7.5×10−6)3. These
included variants in the complement receptor 1 (CR1) gene, the bridging integrator 1 (BIN1)
gene and the membrane-spanning 4A gene cluster (MS4A gene cluster). A second
independent AD GWAS by Lambert and colleagues4 using the EADI1 sample (European
Alzheimer’s Disease Initiative 1) showed genome-wide significant evidence for association
with CLU (P=7.5×10−9) and CR1 (P=3.7×10−9), and support for PICALM (P=3×10−3).
Combined analysis of the GERAD1 and EADI1 data yield highly significant support for all
three loci (CLU meta-P=6.7×10−16, PICALM meta-P=6.3×10−9, CR1 meta-P=3.2×10−12).
The associations in CLU, PICALM and CRI have since been replicated in several
independent datasets5-8, shown trends in another9 and relationships with neurodegenerative
processes underlying disease10. In addition, members of this consortium have since reported
genome-wide significant association for BIN1 (P=1.6×10−11) and support for ephrin
receptor A1 (EPHA1; P=1.7×10−6)11..

This study sought to identify new common susceptibility variants for AD by first
undertaking a three-stage association study based upon predominantly European samples
(GERAD+, see Figure 1) and second, by testing these samples for loci showing suggestive
evidence for association in the American Alzheimer’s Disease Genetics Consortium
(ADGC) GWAS12.

The first stage of this study comprised a meta-analysis of four AD GWAS datasets (6688
cases, 13685 controls), including: GERAD13, EADI14, Translational Genomics Research
Institute (TGEN1)13 and Alzheimer’s Disease Neuroimaging Initiative (ADNI)14. Single
nucleotide polymorphisms (SNPs) which remained significant at P≤1×10−5 were then tested
for replication in the second stage of this study, comprising 4896 cases and 4903 controls
including genotyping of the GERAD2 sample and in silico replication in the deCODE and
German Alzheimer’s disease Integrated Genome Research Network (AD-IG) GWAS
datasets. In Stage 3, novel SNPs showing significant evidence of replication in Stage 2 were
then tested for association in a sample comprising 8286 cases and 21258 controls, which
included new genotyping in the EADI24 and Mayo2 samples, and in silico replication in the
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) sample11.
Sample descriptions and characteristics can be found in the Supplementary Note and
Supplementary Table 1.

In Stage 1 we identified 61 SNPs associated with AD at P≤1×10−5 following meta-analysis
of 496763 SNPs in the GERAD1, TGEN1, ADNI and EADI1 (see Supplementary Table 2
and the Supplementary Note). Ten SNPs at novel loci and two at previously identified
susceptibility loci that surpassed the P≤1×10−5 threshold, were selected for further analysis
(see below). One SNP, rs610932 (Stage 1 P=1.8×10−8) at the MS4A (membrane spanning
4A) gene cluster, surpassed the threshold (P<5.0×10−8)15 for genome-wide significance. We
also observed strong evidence for association at ABCA7 (ATP-binding cassette, sub-family
A, member 7; rs3764650; Stage 1 P=2.6×10−7).
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When selecting SNPs for testing in Stage 2, we excluded known susceptibility loci that had
previously been tested in GERAD2 and limited analysis of BIN1 and CR1, which had not
been tested in GERAD2, to the most significant SNPs at each locus (See Supplementary
Table 2). Following pruning for linkage disequilibrium, twelve SNPs were taken forward for
replication in Stage 2 (10 excluding BIN1 and CR1).

Five of the twelve SNPs tested in Stage 2 showed significant evidence for replication using a
Bonferroni adjusted threshold for significance of P=4.2×10−3 (see Table 1 and
Supplementary Table 3). In addition to SNPs at BIN1 and CR1, one SNP within ABCA7
(rs3764650, Stage 2 P=1.9×10−5) and two SNPS at the MS4A gene cluster (rs610932, stage
2 P=1.6×10−3; rs670139 Stage 2 P=1.1×10−3) showed evidence of replication in Stage 2.
The three SNPs implicating novel risk loci were tested for association in the Stage 3 sample
and showed further evidence of replication (rs3764650, Stage 3 P=2.9×10−7; rs610932,
Stage 3 P=2.1×10−5; rs670139, Stage 3 P=3.2×10−3; see Table 1 and Supplementary Table
3).

We conducted an inverse variance weighted meta-analysis of data from Stages 1, 2 and 3
(See Table 1 and Supplementary Table 3). This provided strong evidence for association
with rs3764650 at ABCA7 (meta-P=4.5×10−17) and two SNPs at the MS4A gene cluster:
rs610932 (meta-P=1.8×10−14) and rs670139 (meta-P=1.4×10−9). When combining GERAD
+ and ADGC results (after removing overlapping samples) ABCA7 has a P-value of
5.0×10−21 (OR=1.22). The two SNPs at the MS4A gene cluster, rs610932 and rs670139,
showed P-values of 1.2×10−16 (OR=0.91) and 1.1×10−10 (OR=1.08), respectively, in the
combined analysis of GERAD+ and ADGC results. It is noteworthy that the most significant
ADGC SNP at the MS4A locus is in LD with our top SNP (rs4938933 with rs610932
r2=0.62, D’=0.86), thus both datasets may be detecting the same underlying signal.

This study also provides additional independent support for association with CR1 (Stage 2
P=1.4×10−3) and BIN1 (Stage 2 P=3.8×10−5; see Table 1 for meta-analysis.) We did not
observe interaction between APOE and the novel variants identified in this study, indeed we
did not find evidence of epistasis between any of the genome-wide significant variants
identified to date (ABCA7, MS4A, BIN1, CR1, PICALM, CLU or APOE) (see
Supplementary Table 4a). Likewise, adjusting for the presence of at least one APOE ε4
allele had little effect on the results of analysis of the three novel variants (see
Supplementary Table 4b). We also found no evidence for association between these loci and
age at onset of AD (rs3764650: P=0.17; rs670139: P=0.38; rs610932: P=0.95; rs744373:
P=0.87; rs3818361: P=0.58).

This study therefore shows strong statistical support for two novel AD risk loci, which
replicate over a number of independent case-control samples. The first of these is the ATP-
binding cassette, sub-family A, member 7 (ABCA7) locus (Figure 2A). The associated
marker is rs3764650, which is located in intron 13. This SNP was the only variant in the
gene that passed our Stage 1 criterion, which is not unexpected given the low levels of
linkage disequilibrium (LD) between this SNP and others included in the GWAS. However,
in a preliminary attempt to identify an associated functional variant at the ABCA7 locus, we
genotyped the GERAD2 sample for rs3752246, a non-synonymous SNP in exon 32 of the
gene, which showed the highest LD with rs3764650 out of all HapMap ABCA7 coding
variants based on r2 (r2=0.36, D’=0.89). This variant (which was not genotyped in Stage 1)
was also associated with AD (GERAD2 P=1×10−3, OR=1.17). Rs3752246 encodes a
glycine to alanine substitution at position 1527 of the protein (accession number
NP_061985.2) which is predicted to be a benign change16, and is unlikely to be the relevant
functional variant. We used data from two published expression quantitative trait loci
(eQTL) datasets (derived from lymphoblastoid cell lines17 and brain18) to determine if
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rs3764650 is associated with the expression of ABCA7. However, no association was
observed (see Supplementary Table 5). Further work will be required to identify the causal
variant(s) at this locus.

Second, we implicate the membrane-spanning 4A (MS4A) gene cluster (Figure 2B). The
association spans an LD block of 293 kb (chr11: 59,814,28760,107,105) and includes 6 of
16 known genes comprising the membrane-spanning 4-domains, subfamily A (MS4A).
These are MS4A2, MS4A3, MS4A4A, MS4A4E, MS4A6A and MS4A6E. The associated
SNPs are found in the 3′ UTR of MS4A6A (rs610932) and the intergenic region between
MS4A4E and MS4A6A (rs670139). rs610932 shows nominally significant association with
expression levels of MS4A6A in cerebellum and temporal cortex (0.01<P<0.05; see
Supplementary Table 5), but not in frontal cortex, pons, or lymphoblastoid cell lines. The
non-synonymous SNP that is most strongly associated with the genome-wide significant
variants is rs2304933. This SNP was analyzed in Stage 1 but showed weaker evidence for
association (P=0.006) than the genome-wide significant variant at this locus in the same
sample.

We also sought to follow up four additional loci showing suggestive evidence for
association with AD (1×10−6>=P>5×10−8) from the ADGC GWAS12. These loci included
CD33, EPHA1, CD2AP and ARID5B. It should be noted that evidence for suggestive
association with EPHA1 and CD33 has been reported previously. Members of this
collaboration were the first to report EPHA1 as showing suggestive evidence of association
with AD (rs11771145, P=1.7×10−6; LD with ADGC SNP rs11767557: r2 = 0.28,
D’=0.75)11, which included GERAD1 and EADI1 samples reported on here. Similarly,
Bertram and colleagues were the first to show suggestive evidence for CD33 (rs3826656,
P=4.0×10−6; LD with ADGC SNP rs3865444: r2 = 0.13, D’=1.0)19.

We combined data from the GERAD+ dataset comprising GERAD1, EADI1, deCODE and
AD-IG GWAS datasets (up to 6992 cases and 13472 controls) using inverse variance meta-
analysis. The TGEN1, ADNI and Mayo1 datasets were included in the ADGC discovery set
and were thus excluded from these particular analyses. We observed support for association
with CD2AP (rs9349407, P=8.0×10−4, OR=1.11), CD33 (rs3865444, P=2.2×10−4,
OR=0.89) and EPHA1 (rs11767557, P=3.4×10−4, OR=0.90).

When these data were combined with ADGC we observed genome-wide evidence for
association with AD (rs9349407, GERAD+ & ADGC meta-P=8.6×10−9, OR=1.11;
rs3865444, GERAD+ & ADGC meta-P=1.6×10−9, OR=0.91; rs11767557, GERAD+ &
ADGC meta-P=6.0×10−10, OR=0.90). We observed nominally significant evidence of
association with ARID5B (rs2588969, P=3.3×10−2, OR=1.06), however the direction of
effect was opposite to that reported by ADGC12, and was not significant overall (GERAD+
& ADGC meta-P=3.6×10−1, OR=0.99). See Table 2 for results and Supplementary Table 6
for results of additional SNPs at these loci.

Taken together, these results show compelling evidence for an additional five novel AD
susceptibility loci. ABCA7 encodes an ATP-binding cassette (ABC) transporter. The ABC
transporter superfamily has roles in transporting a wide range of substrates across cell
membranes20 ABCA7 is highly expressed in brain, particularly in hippocampal CA1
neurons21 and in microglia22. ABCA7 is involved in the efflux of lipids from cells to
lipoprotein particles. Notably, the main lipoproteins in brain are APOE followed by CLU.
Although no evidence for epistasitic interactions between the three genetic loci was
observed (see Supplementary Table 4a), however, this is not a prerequisite for biological
interaction between these molecules. In addition, ABCA7 has been shown to regulate APP
processing and inhibit β-amyloid secretion in cultured cells overexpressing APP23. ABCA7
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also modulates phagocytosis of apoptotic cells by macrophages mediated through the C1q
complement receptor protein on the apoptotic cell surface23. ABCA7 is an orthologue of C.
elegans ced-7, the product of which is known to clear apoptotic cells and the high levels of
expression of ABCA7 in microglia are consistent with such a role.

The genes in the MS4A cluster on chromosome 11 have a common genomic structure with
all other members of the family, including transmembrane domains indicating that they are
likely to be part of a family of cell surface proteins24. MS4A2 encodes the beta subunit of
high affinity IgE receptors25. The remaining genes in the LD block have no known specific
functions. CD33 is a member of the sialic-acid-binding immunoglobulin-like lectins (Siglec)
family which are thought to promote cell-cell interactions and regulate functions of cells in
the innate and adaptive immune systems26. Most members of the Siglec family, including
CD33, act as endocytic receptors, mediating endocytosis through a mechanism independent
of clathrin27. CD2AP (CD2-associated protein) is a scaffold/adaptor protein28 which
associates with cortactin, a protein also involved in the regulation of receptor mediated
endocytosis29. It is striking that these two new susceptibility genes for AD, and the recently
established susceptibility genes PICALM and BIN1 are all implicated in cell-cell
communication and transduction of molecules across the membrane. EPHA1 is a member of
the ephrin receptor subfamily. Ephrins and Eph receptors are membrane bound proteins
which play roles in cell and axon guidance30 and in synaptic development and plasticity31.
However EphA1 is expressed mainly in epithelial tissues32 where it regulates cell
morphology and motility33. Additional roles in apoptosis34 and inflammation35 have also
been proposed.

Our study has generated strong statistical evidence that variants at ABCA7 and the MS4A
gene cluster confer susceptibility to AD, which replicates over a number of independent case
control samples. We also provide independent support for three loci showing suggestive
evidence in a companion paper12, CD33, CD2AP and EPHA1,which when the data are
combined show genome-wide levels of significance. Finally, we provide further evidence
for BIN1 and CR1 loci as susceptibility loci. What is striking about our findings is the
emerging consistency in putative function of the genes identified. Five of the recently
identified AD susceptibility loci CLU, CR1, ABCA7, CD33 and EPHA1 have putative
functions in the immune system; PICALM, BIN1, CD33, CD2AP are involved in processes
at the cell membrane, including endocytosis and APOE, CLU and ABCA7 in lipid
processing. It is conceivable that these processes would play strong roles in
neurodegeneration and Aβ clearance from the brain. These findings therefore provide new
impetus for focused studies aimed at understanding the pathogenesis of AD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
GERAD+ study design.
* Data for rs744373 and rs3818361 in the CHARGE consortium have been presented
elsewhere15, as has data for rs381861 in the EADI2 samples4, as such these SNPs were not
included in Stage 3.
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Figure 2.
Schematic of the associated variants reported in reference to (A) the ABCA7 gene and (B)
chromosomal region chr11:59.81Mb-60.1Mb harboring members of the MS4A gene cluster.
Chromosome positions are shown at the top of the schematics (UCSC Feb 2009). Gene
schematic: horizontal arrows indicate directions of transcription, black boxes indicate gene
exons/UTR. The −Log10(P) of the SNPs analyzed in Stage 1 are shown in chart graph. The
GERAD+ Stage 1, 2 and 3meta-analysis P-values for SNPs rs3764650 (ABCA7), rs610932
(MS4A6A) and rs670139 (MS4A4E) are indicated by the red lines. The D’ LD block
structure of the ABCA7 gene plus surrounding region, and chr11:59.81Mb-60.1Mb
according to the CEPH HapMap data, are provided at the bottom of each schematic with
lines indicating where each SNP genotyped on the Illumina 610-quad chip is represented.
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Figure 3.
Forest plots showing association in the different datasets for SNPs at the ABCA7
(rs3764650) and MS4A (rs610932 & rs670139) loci.
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