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SUMMARY

Recent research in neuroimaging has focused on assessing associations between genetic variants that are
measured on a genomewide scale and brain imaging phenotypes. A large number of works in the area
apply massively univariate analyses on a genomewide basis to find single nucleotide polymorphisms that
influence brain structure. In this paper, we propose using various dimensionality reduction methods on
both brain structural MRI scans and genomic data, motivated by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study. We also consider a new multiple testing adjustment method and compare it with
two existing false discovery rate (FDR) adjustment methods. The simulation results suggest an increase in
power for the proposed method. The real-data analysis suggests that the proposed procedure is able to find
associations between genetic variants and brain volume differences that offer potentially new biological
insights.

Keywords: Distance covariance; Genomewide association studies; Local false discovery rate; Multivariate analysis;
Neuroimaging analysis; Positive false discovery rate.

1. INTRODUCTION

Advanced automated image processing techniques have allowed the assessment of the genetic associa-
tion with brain phenotypes for complex diseases, such as schizophrenia (Potkin and others, 2009), and
Alzheimer’s disease (AD) (Furney and others, 2010). In this work, we consider data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project (ADNI, 2003) consisting of genetic variants encoded
as single nucleotide polymorphisms (SNPs) across whole genome, and brain volume size measured by
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18 W.-Y. HUA AND OTHERS

tensor-based morphometry (TBM) based on structural magnetic resonance imaging (MRI) scans. Specif-
ically, TBM computes the volume of a local brain region in a given subjects’ MRI relative to an aver-
age template image based on healthy subjects. Since a signature of AD is the thinning of cortical gray
matter and an increase of cerebral spinal fluid volume (particularly in the ventricles), TBM is sensi-
tive to AD-related changes through decreases in volume of the cortex, and increases in volume of the
ventricles. Therefore, the goal of this work is to find the genetic variants that result in change of brain
volumes.

Stein and others (2010a) conducted a voxelwide and genomewide study using TBM maps from each
subject, where each voxel is evaluated with a regression at each SNP based on the SNP’s minor allele
count, and using demographic variables as features with quantitative trait as responses. In their exper-
iment, no significant loci were found after a false discovery rate (FDR) based on the multiple testing
adjustment procedure at level 0.05. In a later study, Stein and others (2010b) performed a genomewide
search on two brain phenotypes (temporal lobe and hippocampal volume) based on the prior results from
the literature. To investigate the associations, they collected an independent sample for each phenotype and
performed adjusted regression analysis on the baseline population. Overall, two significantly associated
SNPs were identified: rs10845840, located on chromosome 12 within an intron of the G RI N2B gene,
and rs2456930, which is in an intergenic region of chromosome 15. Both SNPs were significantly associ-
ated with bilateral temporal lobe volume, while no significant SNPs were found to have associations with
hippocampal phenotype.

For any univariate approach to analysis, multiple testing procedures should be employed as there are
many statistical tests being considered simultaneously. A recent error quantity called FDR was proposed
for the multiple comparisons problem by Benjamini and Hochberg (1995). Later, Storey (2002, 2003)
defined the positive false discovery rate (pFDR) that is the conditional expectation of false-positive find-
ings given at least one positive identifications has occurred, and also proposed a q-value algorithm to con-
trol the pFDR. Efron and others (2001b) defined a local false discovery rate (locfdr), a Bayesian version
of FDR. For its estimation, they fit a mixture model to a Gaussian transformation of the inverse cumula-
tive distribution of the p-values. To relate the frequentist and Bayesian versions of FDR, Efron and others
(2001b), Efron and others (2001a) and Storey (2002) proved that the FDR controlled by the Benjamini
and Hochberg procedure is equivalent to empirical Bayesian FDR given the rejection regions. Further-
more, Newton and others (2003) proposed a hierarchical mixture of Gammas for the multiple comparisons
problem and Muralidharan (2010) showed that the locfdr estimation controls FDR/pFDR over the entire
exponential distribution family.

The previously published ADNI analyses were able to find associated SNPs or genes that are likely to
be related to some specific voxels of the brain scans. However, neighboring structures of the brain were
not being considered, and this information could play an important role in associations with disease risk.
In this work, this issue is addressed by combining the neighboring voxels into 119 regions based on the
GSK CIC atlas (Tziortzi and others, 2011), and then the effects on the regions are simultaneously assessed
using the distance covariance statistic (Szekely and others, 2007), which allows for inference on the rela-
tionship between a 119-dimensional multivariate phenotype and a single SNP predictor across the entire
genome.

We make two contributions to the analysis of the ADNI neuroimaging genomewide study. First, we
utilize distance covariance for the analysis of genomewide association study. This framework is able to
establish the relationships between genomic variants and brain structural MRI where the entire brain is
a multivariate response. By considering a multivariate response variable, we reduce the number of tests
being done relative to an approach such as in Stein and others (2010a), which results in more power-
ful inference. Second, we propose a local fdr modeling algorithm to address the multiplicity which is
to fit a two-component mixture of Gammas on the distance covariance statistics. One probabilistic out-
put of this model is the local fdr. This leads to a decision-theoretic rule for selecting significant SNPs
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Multiple comparison procedures for neuroimaging genomewide association studies 19

that is related to the approach of Newton and others (2003). In the multiple testing step, we also evalu-
ate two existing methods for comparison. Based on our simulation studies and real data analysis using
ADNI, experiments show that the proposed method is able to control FDR at different α levels as well
as provide more powerful findings than Stein and others (2010a)’s work. In addition, we also present
the pathway analysis based on our significant findings in the supplementary material available at Bio-
statistics online, and show that the significant SNPs survived from our procedures provide signal enrich-
ment functions through pathway to AD from the database for annotation, visualization and integrated
discovery (DAVID).

2. MATERIALS

Data used in the preparation of this article were obtained from the ADNI study (ADNI, 2003). The SNP
data and the TBM data from the ADNI study are processed by Paul Thompson’s group, which are the same
as those used in the previous studies (Stein and others, 2010a). For the sake of completeness, we describe
the genetic and imaging data preprocessing in the following section.

2.1 ADNI study

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private phar-
maceutical companies and non-profit organizations, as a 60 million, 5-year public–private partnership. The
primary goal of ADNI has been to test whether serial MRI, positron emission tomography, other biological
markers and clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. The principal investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and University of California San Francisco. ADNI
is the result of efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the United States of America and
Canada. The initial goal of ADNI was to recruit 800 subjects, but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in
the research, consisting of cognitively normal older individuals, people with early or late MCI, and people
with early AD. The follow-up duration of each group is specified in the protocols for ADNI-1, ADNI-2
and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.

Of the 852 total subjects released by the ADNI dataset, the availabilities of both brain structural MRI
and genetics records were found in 741 subjects. The data for these subjects are used for our experiments,
where the volumetric brain differences are assessed in 206 normal older controls, 358 MCI subjects and
177 AD patients.

2.2 Genetic analysis

ADNI released 620901 SNPs using the Illumina 610 Quad array. SNPs that did not fulfil the following
quality control criteria were excluded: genotype call rate smaller than 95%, significant deviation from
the Hardy–Weinberg equilibrium where p-value <5.7 × 10−7, allele frequency smaller than 0.10, and a
quality control score of smaller than 0.15. After applying this list of quality criteria, we obtain a total of
448244 SNPs for the analysis. The number of SNPs measured on each chromosome is in Table 1 in our
supplementary material available at Biostatistics online.
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20 W.-Y. HUA AND OTHERS

Table 1. Summary of the possible outcomes for all m hypotheses

Accept null hypothesis Reject null hypothesis Total

Null true U V m0

Alternative true T S m1

W R m

2.3 Brain MRI scans

Three-dimensional T1-weighted baseline MRI scans were analyzed using TBM: a method for repre-
senting structural differences between local brain regions and a template brain into a deformation field
(Friston and others, 2004). The deformation field contains the information on relative positions of differ-
ent brain scans, while the local shapes (such as volumes, lengths and areas) are encoded in the Jacobian
matrix. Therefore, TBM can be used to recognize the local shape of brain differences. The MRI scans were
acquired at 58 different ADNI sites, all with 1.5T MRI scanners using a sagittal 3D MP-RAGE sequence
for across-site consistency (Jack and others, 2008). All images were calibrated with phantom-based geo-
metric corrections. The scans were linearly registered with nine parameters to the International Consor-
tium for Brain Image template (Mazziotta and others, 2001) to adjust for differences in brain position and
scaling. Each subject’s MRI scan was registered against a template scan which is the average of all the
healthy subjects (minimal deformation template), using a non-linear inverse-consistent elastic intensity-
based registration method (Leow and others, 2005). Furthermore, voxel size variation from registration is
represented as the voxel intensity, which is the volumetric difference between the subject and the refer-
ence template, calculated from taking the determinant of the Jacobian matrix of the deformation fields.
Finally, each brain scan volume is down-sampled to 1

4 of its original size (using trilinear interpolation to
4 × 4 × 4 mm3), which results into 31 622 total voxels per scan for faster experimental processing. Simi-
lar to Stein and others (2010a), we use the volumetric difference representation of MRI as the quantitative
measure of brain tissue volume difference for the genomewide association analysis.

We explore genomewide associations with brain volume difference in terms of voxels; we also perform
the same analysis based on groups of voxels, which is the focus of this work. This region of interests (ROIs)
approach is a type of dimensionality reduction method that allows for information on local neighborhoods
of voxels to be pooled, and reduces possible noise that associates with performing analysis using the entire
brain voxels, we denote this as the region-wide study. To conduct the experiment using 119 ROIs, we
extracted voxels from each brain region, and computed the average Jacobian scores (per region) that make
up the 119 different brain regions from the GSK CIC Atlas as shown in Figure 1, which is based on
the Harvard–Oxford atlas with a six-level hierarchy. To extract the corresponding voxels from each brain
region in the atlas, we used the FLIRT linear registration tool from FSL (Jenkinson and Smith, 2001;
Jenkinson and others, 2002; Smith and others, 2004; Woolrich and others, 2009) in order to register the
brain atlas to our template scan. This allows us to extract voxels of different brain regions from the subject’s
scan and the registered atlas by direct comparison. We then used the average per-region Jacobian scores
from each of the 119 ROIs as the response into genomewide association.

3. METHODS

3.1 Distance covariance

The work of distance covariance in Szekely and others (2007) and Szekely and Rizzo (2009) is discussed
here. Let φX and φY be the characteristic functions of X and Y , where X ∈ Rp and Y ∈ Rq are two random
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Multiple comparison procedures for neuroimaging genomewide association studies 21

Fig. 1. Plots showing from left to right: coronal, sagittal and axial views of GSK CIC Atlas, color coded by the 119
ROIs.

vectors from two arbitrary dimensions p and q, respectively. The distance covariance dCov2(X, Y ) between
random vectors X and Y is a non-negative value with finite first moments

dCov2(X, Y ) = ‖φX,Y (x, y) − φX (x)φY (y)‖2

=
∫

Rp+q

|φX,Y (x, y) − φX (x)φY (y)|2w(x, y) dx dy, (3.1)

where w(x, y) is a positive weight function for which the integral in (3.1) exists.
The sample distance covariance estimator from Szekely and others (2007) and Szekely and Rizzo

(2009) requires that there be no missing values among observations Xi ’s and Y j ’s for i, j = 1, . . . , n. To
relax this requirement, we propose a modified version by assuming the data is missing completely at ran-
dom (MCAR, Heitjan and Basu, 1996). Here, δ is defined as an indicator which indicates if a variable is
missing or present

δk =
{

1 if variable k is present,

0 if variable k is missing.
(3.2)

Adjusting the indicator δ for observations Xi ’s and Y j ’s puts larger weights on observations with no missing
values and zero weight on observations with missing values. For i, j = 1, . . . , n, Our modified preliminary
statistics according to Szekely and others (2007) as A′

i j = a′
i j − ā′

i. − ā′
. j + ā′

.., where

a′
i j = |Xi − X j |pδiδ j

P(δi = 1)P(δ j = 1)
(3.3)

and

ā′
i. = 1

n

n∑
j

a′
i j ā′

. j = 1

n

n∑
i

a′
i j ā′

.. = 1

n2

n∑
i, j

a′
i j .

Similarly, we define B ′
i j = b′

i j − b̄′
i. − b̄′

. j + b̄′
.. with its elements taking the same form as A′

i j .
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22 W.-Y. HUA AND OTHERS

The modified sample distance covariance d̃Cov
2

n(X, Y ) is then given by d̃Cov
2

n(X, Y ) =
n−2

∑n
i, j A′

i j B ′
i j . Having proposed a modified empirical distance covariance for situations where

missing values are present, we can study its asymptotic property under the independent assumption. The
expectation of a′

i j in (3.3) is

E(a′
i j ) = E

{ |Xi − X j |pδiδ j

p(δi = 1)p(δ j = 1)

}

= E(|Xi − X j |p) (3.4)

and similarly, E(b′
i j ) = E(|Yi − Y j |q). Arguing as in Szekely and others (2007), we have that if E |X |p <

∞ and E |Y |q < ∞, then d̃Covn →a.s dCov. Consequently, it can be shown that

T = n × d̃Cov
2

n/T ′
2 →D Q, (3.5)

where T ′
2 = n−2

∑n
i, j a′

i j n
−2

∑n
i, j b′

i j and Q is a positive semidefinite quadratic form of centered Gaussian
random variables with E(Q) = 1. Szekely and others (2007) proposed a permutation test for hypothesis
testing. However, the permutation scheme is extremely computationally expensive when dealing with large
scale data such as our genomewide association study. In terms of obtaining p-values, we apply a Gamma
approximation for inference on the distance covariance statistics (Gretton and others, 2008), which is dis-
cussed in Section 3.2.

For comparison purposes, we also investigate the case of missing at random (MAR) for imputing the
missing values using a publicly available software PLINK (PLINK, 2007). The results from the genotype
imputation are addressed in Section 5.

3.2 Multiple testing procedure

We now review the multiple testing problem and define FDR. Assume that there are m tests for the study,
the goal is to identify the significant SNPs at a certain α level. Table 1 shows the possible outcomes of
conducting m tests simultaneously, for which the null hypothesis is true in m0 of them. Of the m tests of
hypotheses, W hypotheses are failed to be rejected and R rejected the null hypothesis.

Benjamini and Hochberg (1995) introduced a new measure called FDR, defined as

FDR = E

[
V

R

∣∣∣∣ R > 0

]
P(R > 0). (3.6)

Storey (2002, 2003) proposed another measure, pFDR, which is the expected false-positive rate condi-
tioned on positive finding (P(R = 0) > 0). The pFDR takes the following form:

pFDR = E

[
V

R

∣∣∣∣ R > 0

]
. (3.7)

Our aim is to control pFDR, and we present three algorithms to achieve this goal for the remainder of this
section.

The first algorithm is the q-value algorithm, which was first presented by Storey (2002). q-value
requires that the prior knowledge of the null distribution of the test is known, such that the p-values can be
computed under the null density. In the case of distance covariance, Gretton and others (2008) proposed
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to fit a Gamma distribution as the null density, with the following parameters:

α = E2(T )

Var(T )
, β = Var(T )

E(T )
, (3.8)

where T is defined as (3.5). Hence, the parameters in (3.8) can be estimated by the distance covariance
statistics, and the p-values are able to be computed from the Gamma approximation for the q-value method.
The algorithm for the q-value method is as follows: first, for each Ti , we compute the p-value pi under
the Gamma approximation; we then compute q-values q1, . . . , qm for each test using the method of Storey
(2003); by defining q̃ = arg maxi {qi � α}, we reject all tests with qi � q̃ . Storey (2002, 2003) have showed
that the q-value algorithm controls FDR under the desired α level, which is referred to as Algorithm 1
hereafter. Note that step 2 of the above algorithm is computed using the publicly available R-package
qvalue.

The second algorithm uses local fdr ((5.1) in Efron and others (2001b)) to control pFDR. In
Efron and others (2001b)’s work, the null distribution is assumed either known or collected by permuta-
tion. Here, we chose to use a Gamma approximation with empirical estimations of (3.8) as the null density
candidate for distance covariance statistics, and the detailed derivations are presented in Section 2 of the
supplementary material available at Biostatistics online. The following is a summary of Efron and others
(2001b)’s work.

We now propose a new algorithm (denoted as local fdr modeling) for multiple testing adjustment. The
traditional multiple correction methods are based on p-values (e.g. Algorithms 1 and 2), while our proposed
method models the test statistics directly. The algorithm for the local fdr modeling is similar to Algorithm 2,
but skipping the second step. This rule is similar to the one proposed by Newton and others (2003) in a
different genomics setting, where more powerful inference can be obtained by not mapping the test statistics
from ti ’s to zi ’s.

Algorithm 2
Input: m hypotheses with statistics T1, . . . , Tm in (3.5).

1. For each Ti , compute the p-value pi under the Gamma approximation.
2. For each pi , zi = �−1(pi ), for all i .
3. Estimate the parameters using a Gaussian mixture model (GMM) to the zi ’s.
4. Compute local fdr as defined by (5.1) in Efron and others (2001b).
5. p̂FDR(z) is the conditional expectation of local fdr given z ∈ �.
6. Define z̃ = arg maxz{ p̂FDR(z) � α}, and reject all tests with zi in rejection region. In theory, this

gives an pFDR no greater than α.

Algorithm 3 (local fdr modeling)
Input: m hypotheses with statistics T1, . . . , Tm in (3.5).

1. Fit a two-component mixture of Gammas to T1, . . . , Tm .
2. Compute local fdr as defined by (5.1) in Efron and others (2001b).
3. Define t̃ = arg maxt { p̂FDR(t) � α}, and reject all tests with ti � t̃ . Where p̂FDR(t) is the conditional

expectation of local fdr given the rejection region.
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4. SIMULATION STUDY AND REAL-DATA ANALYSIS

We have implemented distance covariance in Matlab for our experiments. The R packages qvalue, mixfdr
and mixtools were used for the multiple testing procedures. All the analyses were accomplished by using
the university high performance computing cluster, which consists of 128 Intel Xeon E5450 nodes, each
with 8 cores and 32 GB of memory.

4.1 Simulation design

To evaluate the methods described in Section 3, we simulated the data to examine the FDRs and power
estimates by controlling α at desired levels, and the settings of the simulation study were to mimic the
structure of the genotypes and the phenotypes of the ADNI study. We considered two types of correla-
tions (i.e. the pure linear correlation, and the mixed linear and non-linear correlations) and the impact of
univariate and multivariate effects into three simulation settings. For each setting, the samples were gen-
erated from a null and an alternative population, and 1000 genotypes were generated for multiple testing.
Then, we examined the association one genotype at a time across the 1000 genotypes for the following
three settings. In this first case, we generated 50 paired samples: each pair included a single genotype
and a phenotype, and followed a bivariate Normal distribution, where the correlation coefficient ρ was
0.8 under the alternative or around zero under the null. For the second and the third case, the sample size
was 100, and the univariate genotype was generated from N (0, 1) while the dimensions of phenotype were
enlarged to 30. The 100 × 30 phenotype data formed the mixed association effects between phenotypes and
the genotypes under the alternative, where the mixed associations were linear, exponential and quadratic
transformations (i.e. 10 duplicated copies of 100 genotypes; 10 exponential transformations of 100 geno-
types and 10 quadratic forms of 100 genotypes). For the null population, the single genotype again was
generated from N (0, 1) and the 30-dimensional phenotypes followed a multivariate Normal with mean 0
and covariance matrix 	, where 	 was independent in the second simulation design and positive depen-
dent (diagonal terms are one and off diagonal terms are 0.5) on third case. The ratio between the null and
alternative population was 19:1, and a total of 1000 runs were repeated for each setting to assess the FDRs
and power performances.

4.2 Simulation results

Three FDR procedures were presented in Section 3.2, which we summarize again in the following:

Algorithm 1: p-values (from Gamma approximation) + q-value method (Storey, 2003).
Algorithm 2: p-values (from Gamma approximation) + local fdr method (Efron and others, 2001a).
Algorithm 3: local fdr modeling proposed in Section 3.2.

Before the discussion of the FDRs and power estimates of three algorithms, we performed size analysis
to evaluate whether a Gamma approximation (Gretton and others, 2008) is a proper null density for Algo-
rithms 1 and 2. We generated 1000 (genotypes vs phenotypes) samples for the size analysis, where the
associations were all from the null population for the three simulation settings; 50 runs were repeated to
calculate the size. Table 2 reports the size estimates according to nominal values from 0.1, 0.2, . . . , 1, and
the size estimates are very close to their corresponding nominal values for all three simulations. There-
fore, we concluded that the Gamma approximation is an appropriate null distribution for the distance
covariance statistic.

Table 3 shows the average FDRs, the average powers, and their standard errors at nominal α levels
0.05, 0.1, 0.15 and 0.2 for the three simulations. The results show that the average FDRs are all close or
lower to the desired α values. The powers of Algorithm 2 and 3 outperform Algorithm 1 for all α values;
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Table 2. The empirical size results from the three simulations for
the size analysis

Size Simulation 1 Simulation 2 Simulation 3

0.1 0.115 0.110 0.110
0.2 0.219 0.221 0.224
0.3 0.309 0.324 0.326
0.4 0.392 0.415 0.416
0.5 0.472 0.498 0.499
0.6 0.556 0.576 0.578
0.7 0.653 0.656 0.658
0.8 0.775 0.746 0.748
0.9 0.940 0.878 0.877
1.0 1.000 1.000 1.000

this implies the algorithms which utilize the local fdr method result in powerful inference. In addition, the
average estimated power of simulation 3 is smaller but close to the power of simulation 2 at each level.
This shows that the results of all multiple testing adjusted algorithms are slightly affected by the noise
of the dependent covariance structure, but the overall performances are robust. Furthermore, the results
of Algorithms 2 and 3 are similar in our simulation studies, and this suggests that Algorithm 3 controls
FDR well.

4.3 Application to ADNI data sets

We evaluated the three algorithms using the ADNI dataset. For each test, the independent variable is a single
SNP across the whole genome (448244 SNPs). The multivariate response is a 119 dimensional vector (i.e.
119 ROIs), with each value corresponding to the average voxel value for such brain region, based on the
GSK CIC Atlas. We also considered the entire brain imaging voxels (31 622 voxels) as another multivariate
response for ADNI study, and the results are shown in supplementary material available at Biostatistics
online. In addition to the three algorithms described in Section 3.2, we also implemented a modified version
of Stein and others (2010a)’s work, in which they originally considered simple linear regression (slr) as
the association test between a single SNP and brain a voxel, with our modification being a single SNP and
a brain region. For this method, we selected the brain region with the highest p-value at each SNP, then
use the local fdr method to perform multiple testing adjustment. This procedure is denoted as Algorithm 4
(slr + local fdr method).

Table 4 displays the number of significant SNPs controlled by the α values from each algorithm. Note
that there were 1180 significant SNPs with α at 0.5 in Algorithm 4 (Stein and others, 2010a), while Algo-
rithms 2 and 3 resulted in > 20 000 findings, with Algorithm 1 yielded slightly above 5000 SNPs at α

level 0.05. To compare the inference information of the significant SNPs in Table 4, the top 1180 SNPs
were selected from each of the algorithm as the input variables for disease status classification. Specifi-
cally, we performed binary disease status classification (206 normal patients against 177 ADs) due to the
fact that AD is the definitive form of the illness with much higher severity than MCI. We used LIBSVM
(Chang and Lin, 2011) for binary classification with leave-one-out to compute the prediction accuracy.
The majority count was 53.786%, and the prediction accuracy of top 1180 SNPs from Algorithm 1–3
were all 57.441%, as the top 1180 SNPs from the three algorithms were exactly the same. The prediction
accuracy of Algorithm 4 was the same as the majority count. In addition, Algorithms 1–3 at α level 0.05
found 5388, 27965 and 23128 significant SNPs (Table 4), and these SNPs yielded 57.964%, 62.141% and
62.402% prediction accuracies, respectively. We have also performed the functional annotation clustering
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Table 4. Number of significant SNPs found by the different algorithms with different α levels, under the
region-wide study. The ADNI study was used for this experiment

α Algorithm 1: Algorithm 2: Algorithm 4:
p values + q p values + local Algorithm 3: local slr + local

value fdr fdr modeling fdr

0.05 5388 27 965 23 128 0
0.10 8447 34 659 29 288 18
0.15 11 041 39 875 34 261 38
0.20 13 804 44 604 38 794 95
0.30 19 299 53 716 47 535 275
0.40 25 537 63 449 56 853 612
0.50 448 073 75 030 68 365 1180

Table 5. Enrichment scores for each cluster from DAVID database

Top 1180 SNPs from each algorithm in Table 4

Annotation cluster Algorithm 1a Algorithm 2b Algorithm 3c Algorithm 4d

1 3.167 3.167 3.167 1.479
2 1.680 1.680 1.680 1.332
3 1.198 1.198 1.198 1.040
4 1.157 1.157 1.157 0.775
5 1.014 1.014 1.014 0.508
6 0.947 0.947 0.947 0.261
7 0.572 0.572 0.572 0.175
8 0.523 0.523 0.523 0.169
Total 10.257 10.257 10.257 5.739

aTop 1180 SNPs were selected from 5388 SNPs in Algorithm 1 at level 0.05.
bTop 1180 SNPs were collected from 27965 SNPs in Algorithm 2 at level 0.05;
cTop 1180 SNPs were collected from 23128 SNPs in Algorithm 3 at level 0.05;
d1180 SNPs found at level 0.5 in Algorithm 4.

analysis using DAVID v6.7 (DAVID, 2003). Table 5 lists the top eight clusters enrichment scores and the
total enrichment scores. Since the top 1180 SNPs from algorithms 1, 2 and 3 were identical, the enrichment
scores from these three algorithms were also the same, with each having a total score of 10.257 which is
greater than the total enrichment score of 5.739 from Algorithm 4.

The above analyses imply that Algorithm 4 (Stein and others, 2010a) yields less significant findings
even with a higher nominal α level, and the 1180 SNPs contain less information in both disease status
classification and functional annotation clustering analysis. We further investigate the functional enrich-
ment terms of Algorithms 2 and 3 at α level 0.05 in the region-wide study, and the results are listed in
supplementary material available at Biostatistics online.

5. DISCUSSION AND CONCLUSION

In this work, we have performed neuroimaging genomewide association studies using the ADNI dataset.
The proposed method using distance covariance is able to identify the dependencies between the SNP
variants and the brain volume differences, and utilize brain region interaction effects at the same time.
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We also proposed a local fdr modeling strategy and compared the performances with two existing mul-
tiple testing adjustment methods. The simulation studies showed that p-values computed from Gamma
approximation with the local fdr method (Algorithm 2) and local fdr modeling (Algorithm 3) were able
to control FDR at the proper levels. In the real-data application, the significant SNPs found by dis-
tance covariance contained more information than slr (Stein and others, 2010a) in both disease status
classification, and function annotation clustering analysis. This is because slr only captures linear rela-
tionship between SNPs and brain MRI scans, while distance covariance is able to model non-linear
associations.

In addition to the distance covariance statistic in (3.3) that we have proposed for missing data, another
option to deal with the missing values is to impute the genotypes by assuming the missing values are MAR.
We used PLINK to impute the missing values in the ANDI study under the assumption of MAR, as it is
computationally efficient (Li and others, 2009). The PLINK algorithm uses the standard EM algorithm
and performs probabilistic estimation for each allele combination based on the relatively small regions
of genome for each individual (PLINK, 2007). Based on the results of our PLINK imputation, the non-
missing rate of the data increased from 99.61% to 99.67%. Therefore, we work with the original datasets
and assume MCAR. Exploring combinations of imputation algorithms with distance covariance measures
deserves further investigation, but is beyond the scope of the paper.

There remain many open questions that could lead to important further developments. We utilized
distance covariance to measure the relationship between genetic variants and differences in brain volumes
in the first stage. This representation can be applied to capture the non-linear dependencies between two
sets of vectors with arbitrary dimensions, but it might also suffer a possible bias when the number of
dimensionality is much greater than the sample size (Cope, 2009). Therefore, we placed more emphasis
of our results on the region-wide study in this work, and we plan to study regularization approaches to
the dependency measure to reduce this bias in future work. It would also be desirable to develop distance
covariance-type measures that explicitly incorporate the discrete nature of the SNP data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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