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The goal of this work was to assess statistical power to detect treatment effects in Alzheimer’s disease (AD)
clinical trials usingmagnetic resonance imaging (MRI)ederived brain biomarkers.We used unbiased tensor-
based morphometry (TBM) to analyze n ¼ 5,738 scans, from Alzheimer’s Disease Neuroimaging Initiative 2
participants scanned with both accelerated and nonaccelerated T1-weighted MRI at 3T. The study cohort
included 198 healthy controls, 111 participants with significant memory complaint, 182 with early mild
cognitive impairment (EMCI) and177 latemild cognitive impairment (LMCI), and155ADpatients, scannedat
screening and 3, 6, 12, and 24 months. The statistical power to track brain change in TBM-based imaging
biomarkers depends on the interscan interval, disease stage, and methods used to extract numerical sum-
maries. To achieve reasonable sample size estimates for potential clinical trials, theminimal scan intervalwas
6months forLMCIandADand12months forEMCI. TBM-based imagingbiomarkerswerenot sensitive toMRI
scan acceleration, which gave results comparable with nonaccelerated sequences. ApoE status and baseline
amyloid-beta positron emission tomography data improved statistical power. Among healthy, EMCI, and
LMCIparticipants, sample size requirementsweresignificantly lower in theamyloidþ/ApoE4þgroupthanfor
the amyloide/ApoE4e group. ApoE4 strongly predicted atrophy rates across brain regions most affected by
AD, but the remaining 9 of the top 10 AD risk genes offered no added predictive value in this cohort.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer’s disease (AD) now affects an estimated 5.2 million
people in the United States alone, and this number may double by
2030 and triple by 2050 (www.alz.org). In the past 3 decades,
medical researchers and the pharmaceutical industry have teamed
up to identify neuroimaging, clinical, or other measures of disease
progression that may be precise and reproducible enough to eval-
uate treatment response. No currently available treatments are able
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to slow the progression of AD, although some genetic and lifestyle
factors affect vascular disease, which contributes to age-related
cognitive decline. There is an urgent need to determine imaging
measures of brain degeneration that may be influenced by
treatments.

AD drug trials have a high failure rate (Cummings et al., 2014).
Imaging biomarkers play an essential role in evaluating potential
therapies and aim to identify those at risk before symptoms appear,
monitor disease progression, and evaluate treatments (Frisoni et al.,
2010; Frisoni and Weiner, 2010; Jack et al., 2003, 2005; Weiner
et al., 2010, 2012). A suite of candidate imaging biomarkers are
being developed to provide clinically relevant information on the
stages of AD pathophysiology (Jack et al., 2013), including amyloid
imaging using positron emission tomography (PET) (Hardy and
Selkoe, 2002; Jagust et al., 2010), tau imaging (Maruyama et al.,
2013; Villemagne et al., 2014), and brain atrophy measured with
structural magnetic resonance imaging (MRI) (Fox et al., 2000; Fox
and Freeborough, 1997; Jack et al., 1998, 2004). The European
Medicines Agency has recently approved hippocampal volumes as
an enrichment strategy for trials in mild cognitive impairment
(MCI) and prodromal AD (Hill et al., 2014). All these measures can
detect accelerated brain changes in the preclinical disease stages,
before symptoms appear.

High-resolution structural MRI is now commonly included in AD
drug trials to monitor potential side effects (e.g., microhemorrhage
and vasogenic edema) and to track brain atrophyda macroscopic
reflection of neuronal death, myelin reduction, and cellular atrophy
(Chertkow and Black, 2007; Dickerson and Sperling, 2005; Fleisher
et al., 2009; Jack et al., 2003; Salloway et al., 2014). Numerous MRI-
derived biomarkers have been developed and tested (Baron et al.,
2001; Carmichael et al., 2006; Chetelat et al., 2002; Chou et al.,
2009; Fox et al., 2001; Freeborough and Fox, 1997; Holland et al.,
2009; Hua et al., 2013; Jack et al., 1999; Morra et al., 2009; Reuter
et al., 2012; Schuff et al., 2009; Thompson et al., 2004). Over the
past decade, researchers have studied the issues of bias, improved
the robustness of analysis protocols (lower failure rates), and
boosted the power to detect clinically significant brain changes
through machine learning approaches (Christensen and Johnson,
2001; Fox et al., 2011; Gutman et al., 2013b; Hua et al., 2013;
Yushkevich et al., 2010). Structural imaging biomarkers generally
measure changes in regional brain volume, supplementing the in-
formation obtained from neuropsychological and cognitive tests.
Structural MRI may be especially helpful in evaluating drugs that
aim to restore or repair brain tissue, such as stem cell therapy or
growth factors. For trials targeting AD pathology by clearing amy-
loid plaques and tau tangles, brain volumetric measures serve as a
surrogate marker but might not always reflect clinical improve-
ment. Overall, structural MRI can facilitate drug trial enrichment,
and lower the cost of trials, or increase power to detect disease
progression and factors that affect it (Weiner et al., 2010, 2012,
2015).

Recently, we have been improving and validating an unbiased
3-dimensional (3D) brain mapping approach to accurately track
atrophy in the aging brain, using data from Alzheimer’s Disease
Neuroimaging Initiative 1 (ADNI-1) (Hua et al., 2013). We are now
expanding the analysis to ADNI-2, which differs from ADNI-1 in
focusing on people with earlier stages of MCI, scanned at 3T. A
single numerical summary of brain atrophy score is derived from
the 3D map to capture cumulative change in the temporal lobes
(e.g., average change inside the temporal region of interest
[temporal-ROI] or statistically defined ROI [stat-ROI]) (Hua et al.,
2013) or over the whole brain (e.g., weighted average using
linear discriminant analysis [LDA]) (Gutman et al., 2013b). We
aimed to address the following topics with the ADNI-2 data: (1)
the best approaches to extract numerical summaries from a 3D
map; (2) the minimal scan interval required to robustly detect
change with a reasonable sample size using MRI-based tensor-
based morphometry (TBM) analysis; (3) effects of MRI scan ac-
celeration on statistical power to track brain change (a follow-up
of an earlier pilot study, Ching et al., 2015); (4) drug trial enrich-
ment using additional information on ApoE4 status and baseline
amyloid PET imaging; (5) AD risk genes and their impact on brain
atrophy rates; and (6) the applicability of TBM to multiphase
studies with different scanner field strengths.

2. Materials and methods

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu). The ADNI was launched in
2003 by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies, and nonprofit
organizations, as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clini-
cians to develop new treatments and monitor their effectiveness
and also lessen the time and cost of clinical trials.

The principal investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from >50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800 subjects, but
ADNI has been followed by ADNI-GO and ADNI-2. To date, these 3
protocols have recruited >1,500 adults, aged 55e90 years, to
participate in the research, consisting of cognitively normal older
individuals, people with early mild cognitive impairment (EMCI) or
late mild cognitive impairment (LMCI), and people with early AD.
The follow-up duration of each group is specified in the protocols
for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited for
ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

2.1. The ADNI-2 dataset

Data from all ADNI-2 newly enrolled participants were down-
loaded from the ADNI Image Data Archive (IDA, https://ida.loni.
usc.edu/) on August 7, 2014. As ADNI-2 is ongoing and more
scans are being added, the current analysis reflects a snapshot of
the dataset available at the time of download. The initial dataset
included 2,937 nonaccelerated and 2,925 accelerated 3T sagittal
T1-weighted scans. We identified subjects with both an acceler-
ated and nonaccelerated scans acquired in the same scan session
and removed subjects/scans with a scanner change during serial
scanning (n ¼ 34), subjects without a clinical diagnosis (n ¼ 2), or
scans at the 3-year time point (n ¼ 4). The final dataset included a
total of n ¼ 5,738 scans (Table 1), with an equal number of non-
accelerated and accelerated scans, acquired at screening and 3, 6,
12, and 24 months from the following participants: 198 healthy
controls (CN) (age at screening visit: 73.4 � 6.4 years, 105 female
[F]/93 male [M]), 111 individuals with significant memory
complaint (SMC) (age: 72.3 � 5.5 years, 64 F/47 M), 182 individuals
with EMCI (age: 70.9 � 7.1 years, 83 F/99 M), 177 individuals with
LMCI (age: 72.2 � 7.8 years, 79 F/97 M/1 unknown sex, subject
with unknown sex only has a screening visit), and 155 probable AD
patients (age: 74.8 � 8.1 years, 65 F/90 M) (Table 2). Generally
fewer scans are available at later time points, partially because of
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Table 1
Scanning sessions in ADNI-2

Group Screening 3-month 6-month 12-month 24-month

CN 198 164 162 155 120
SMC 111 53 10 20 0
EMCI 182 163 145 143 83
LMCI 177 146 149 136 77
AD 155 111 96 89 24
Total 823 637 562 543 304

Both accelerated and nonaccelerated scans were acquired in the same session.
Key: AD, Alzheimer’s disease; ADNI-2, Alzheimer’s Disease Neuroimaging Initiative
2; CN, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; SMC, significant memory complaint.
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the attrition, disease progression, and limitation on the available
data. Very few scans are available for SMC participants at 6 months
and later, which limits the power of the analysis for the SMC
group. All participants in ADNI underwent clinical, neuropsycho-
logical, and cognitive evaluations at the time of scan acquisition.
Written informed consent was obtained from all participants
before experimental procedures were performed.

2.2. MRI scanning and image correction

Each subject received an accelerated T1-weighted scan imme-
diately after a nonaccelerated scandwithout leaving the scanner.
High-resolution structural brain MRI scans were acquired at 55
ADNI sites using 3T MRI scanners (GE Healthcare, Philips Medical
Systems, or Siemens). GE scanners use inversion recovery-fast
spoiled gradient recalled (IR-SPGR) sequences and Philips and
Siemens use magnetization-prepared rapid gradient echo (MP-
RAGE) sequences. Accelerated scan times (5:12 to 5:34 minutes) are
w4 minutes shorter (w43% faster) than nonaccelerated scan times
(9:06 to 9:26 minutes). Detailed MRI scanner protocols for accel-
erated and nonaccelerated T1-weighted sequences by vendor are
available online (http://adni.loni.usc.edu/methods/documents/mri-
protocols/). Scan quality was evaluated by the ADNI MRI quality
control center at the Mayo Clinic to exclude “failed” scans because
of motion, technical problems, or significant clinical abnormalities
(e.g., hemispheric infarction). Image corrections were applied using
a standard processing pipeline called “grinder,” which included 3D
gradient unwarping for GE and Siemens scans (Jovicich et al., 2006),
and “N3” bias field correction for all scans (Sled et al., 1998). The
final corrected image was identified by entering the search term
“mt*” in the field of MRI Series Description under Processed Image
Information (an example series description: MT1; GradWarp;
N3m).

2.3. Tensor-based morphometry

We employed TBM to analyze all available ADNI-2 scans at
screening and 3, 6, 12, and 24 months. The basic steps of TBM
Table 2
Demographics of participants at the screening visit

Group n F/M Age (SD)

CN 198 105/93 73.4 (6.4)
SMC 111 64/47 72.3 (5.5)
EMCI 182 83/99 70.9 (7.1)
LMCI 177 79/97/1 unknown sex 72.2 (7.8)
AD 155 65/90 74.8 (8.1)

Key: Age, mean age; AD, Alzheimer’s disease; CN, healthy controls; EMCI, early mild
cognitive impairment; F, female; LMCI, late mild cognitive impairment; M, male; n,
number of participants; SMC, significant memory complaint; SD, standard deviation.
involved linear registration, skull stripping, and nonlinear inverse
consistent elastic intensity-based registration (Ashburner and
Friston, 2003; Chung et al., 2001; Collins et al., 1994; Freeborough
and Fox, 1998; Hua et al., 2013; Iglesias et al., 2011; Leow et al.,
2005; Marsden and Hughes, 1994; Mazziotta et al., 2001; Riddle
et al., 2004; Thompson et al., 2000; Toga, 1999; Yushkevich et al.,
2010; for details, see Supplementary Material). We spatially
normalized these longitudinal maps of tissue change across
subjects by nonlinearly aligning all individual Jacobian maps to
a minimal deformation target (MDT) made for the ADNI-1 study
(Hua et al., 2013). This allows for regional comparisons and group
statistical analyses across ANDI-1 and ADNI-2 analyses.

In the current and all previous TBM analyses, we processed
100% of the data passing the standard image quality control by
Mayo Clinic and available for download from the ADNI IDA. No
scans were excluded during the image analysis. The numerical
summaries from the full initial dataset are available for download
from the IDA.

2.4. Group average maps

To illustrate the average amount of atrophy at each follow-up
time point relative to the screening visit, we computed the voxel-
wise mean Jacobian map across subjects within each diagnostic
group. These maps were color coded to show the average per-
centage of regional brain tissue loss and ventricular/cerebrospinal
fluid (CSF) expansion, relative to the screening scan.

ADNI-2 participants are scanned at screening, 3 months from
the screening MRI, and then within 2 weeks before or after the
6-month and subsequent annual visits. We used the expected scan
interval or nominal scan interval in all the analyses. In the previous
work, we found similar results in modeling the trend of brain at-
rophy using actual and expected scan intervals in the ADNI-1 study
(Hua et al., 2013).

2.5. Statistical whole-brain analysis

We carried out whole-brain statistical analysis to compare
accelerated versus nonaccelerated protocols and to test effects of
the top 10 AD risk genes on rate of brain atrophy, after controlling
for age, sex, and multiple comparisons. For details, see
Supplementary data SI2.

2.6. Numerical summaries and power analysis

Power analyses in clinical trials typically use a single numerical
summary from each participant at follow-up. There are different
methods to extract the numerical summaries. Here we tested 3
approaches: (1) an average within an anatomically defined ROI
(temporal-ROI), (2) an average within a statistically defined ROI
based on a small training sample (stat-ROI, based on voxels with
significant atrophic rates [p < 0.00001] within the temporal lobes,
in a training set of 20 AD patients from ADNI-1 scanned at baseline
and 12 months) (Hua et al., 2013), and (3) a weighted average using
the LDA approach based on a large training sample (144 AD and 337
MCI from ADNI-1 scanned at baseline and 12 months) (Gutman
et al., 2013b) (Fig. 1).

A power analysis was defined by the ADNI Biostatistics Core to
estimate the sample size required to detect a 25% reduction in the
mean annual rate of atrophy, using a 2-sided test and standard
significance level (a ¼ 0.05) for a hypothetical 2-arm study (treat-
ment vs. placebo). The estimated minimum sample size for each
arm is computed from the formula subsequently. Briefly, b denotes
the estimated change and sD refers to the standard deviation of the
rate of atrophy across subjects:

http://adni.loni.usc.edu/methods/documents/mri-protocols/
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Fig. 1. Approaches to compute numerical summaries. Numerical summaries are computed as an average inside the temporal lobes (temporal-ROI), inside the statistically defined
ROI (stat-ROI), and as a weighted average using the linear discriminant analysis (LDA). The LDA map shows the weighting parameters trained on a large sample from Alzheimer’s
Disease Neuroimaging Initiative 1. The concept of stat-ROI originated in fludeoxyglucose positron emission tomography analysis, advocated by Chen et al. (2010). Other methods
exist to compute whole-brain atrophy rates, such as using the iterative principal component analysis (Chen et al., 2004).
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n ¼
2bs2

D Z1�a=2 þ Zpower

� �2

0:25bb� �2 :

Here za is the value of the standard normal distribution for
which P[Z < za] ¼ a, and a is set to its conventional value of 0.05
(Rosner, 1990). The sample size required to achieve 80% power was
computed in this study, referred to as n80. As the observation time
ranged from 3 to 24 months, instead of converting the cumulative
change to an annual rate of atrophy, we computed the number of
subjects required to detect a 25% reduction in the overall atrophy
occurring over the interval. These sample size estimates define how
many patients would need to be recruited for clinical trials with
durations of 3, 6, 12, and 24 months, respectively. The 95% confi-
dence interval for the n80 statistic was computed based on 10,000
bootstrapped resampling, with a bias corrected and accelerated
percentile method (Davison and Hinkley, 1997; Efron and
Tibshirani, 1993), computed in R using the boot package.

Numerical summaries derived from accelerated and non-
accelerated scans were compared using a paired 2-sample Student t
test. The statistical threshold was corrected for multiple compari-
sons across 3 different methods to compute the numerical sum-
maries, using Bonferroni correction (corrected p threshold <0.017).

To demonstrate the possible effect sizes after adjusting for
healthy aging, we computed sample size estimates using the rela-
tive change (Supplementary Table 2). The power analysis was
conducted by calculating sample size estimates using the variance
parameters from the patient cohort, with the treatment effect
defined as 25% of the difference between the mean rates of change
in the patients and CN (Holland et al., 2012).
2.7. Drug trial enrichment using ApoE4 status and brain amyloid
PET imaging

We tested a clinical trial enrichment approach using the 12-
month stat-ROI numerical summaries derived from non-
accelerated scans. A total of 543 participants had MRI scans and
numerical summaries at 12 months (Table 1). We excluded the
following participants from the analysis: no ApoE information
(n ¼ 40), ApoE ε4/ε2 carriers (n ¼ 9, because of the opposing effect
of ε4 and ε2 alleles), no baseline amyloid PET (n¼ 5), and diagnosed
as SMC (n ¼ 20, the sample is too small to divide further). The final
dataset included 491 participants, including 150 CN, 137 EMCI, 128
LMCI, and 76 AD. ApoE status was defined as ApoE4þ (ε4/ε4, ε4/ε3)
versus ApoE4e (ε3/ε3, ε3/ε2, ε2/ε2). Brain amyloid summaries at
screening were downloaded from the IDA and classified into
amyloidþ (BL_SUVR_Summary � 1.11) versus amyloide
(BL_SUVR_Summary < 1.11).

Statistical comparisons were made based on bootstrapped n80
estimates (n ¼ 10,000 resampling). The null hypotheses were that
there are no differences in sample size estimates (n80s) when
stratifying the sample by ApoE4þ versus ApoE4e, amyloidþ versus
amyloide, or amyloidþ/ApoE4þ versus amyloide/ApoE4e. We
computed bootstrapped mean n80 comparisons between the pairs
of samples and provided a nonparametric estimate of the proba-
bility that the n80s are unequal (p values in Tables 5e7) (Gutman
et al., 2013a).
3. Results

3.1. 3D maps of longitudinal brain change at 3, 6, 12, and 24 months

Color maps show average levels of cumulative brain change in
CN, SMC, EMCI, LMCI, and AD groups, respectively, at each follow-
up (Figs. 2e5). Changes were detectable at the very short scan
intervals, for example, 3 months, showing prominent ventricular/
CSF expansion and emerging temporal lobe atrophy in LMCI and
AD (Fig. 2). The characteristic pattern of Alzheimer’s brain
degeneration, with concentrated temporal lobe atrophy accom-
panied by extensive CSF expansion in the lateral ventricles,
became more distinct at longer scan intervals at 6, 12, and 24
months (Figs. 3e5). Similarly, as the disease stage progressed from
EMCI, LMCI, and to AD, a greater amount of degeneration was
observed, and the pattern of AD became more distinct. CN showed
a mild and evenly distributed pattern of brain atrophy, with no
focal accumulation of tissue loss in the temporal lobes. The color
scales were adjusted at different time points to illustrate the
overall scale of change. There were no SMC participants at 24
months follow-up. Some of the most significant areas of volume
loss are in the thalami bilaterally. Supporting this, some studies
show strongly reduced volume in the thalamus in late-onset AD
(de Jong et al., 2008) and at the presymptomatic stage of familial
AD (Ryan et al., 2013).

Maps derived from accelerated scans were visually similar to
nonaccelerated scans and are not shown here. We performed a
whole-brain comparison between tissue changemaps derived from
accelerated versus nonaccelerated scans, using a voxel-wise paired
t test. Similar to the pilot study, we observed regional differences in
the thalamus and cerebellum at shorter scan intervals (3 months:
critical p value ¼ 0.0007; 6 months: critical p value ¼ 0.001) and no
difference at longer scan intervals (12 and 24 months).



Fig. 2. Three-dimensional maps show average brain change from screening to 3-month follow-up, in different diagnostic groups. Warmer (red) colors indicate ventricle/cere-
brospinal fluid expansion, and cooler (blue) colors signify tissue loss. The absolute (not annual) change at 3 months was about 0%e1% for temporal lobe tissue loss and 1%e3% for
ventricular expansion. Key: AD, Alzheimer’s disease; CN, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant memory
complaint. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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3.2. Numerical summaries and power analysis

From the 3D maps of longitudinal brain change (Figs. 2e5), we
extracted 3 types of numerical summaries based on temporal-ROI,
stat-ROI, and LDA weighting. Stat-ROI numerical summaries
demonstrated improved statistical power or smaller sample size
estimates compared with temporal-ROI but LDA-based weighting
performed best (Table 3).

The amount of cumulative atrophy and sample size estimates at
3, 6, 12, and 24 months were summarized in Table 3. At 3 months,
the variability of change (standard deviation) greatly exceeded the
mean atrophy, resulting in enormous sample size estimates. At 6
months, sample size estimates dropped to a more feasible level for
LMCI and AD patients. With longer scan intervals, the mean levels
of cumulative atrophy rise and the sample size estimates drop. For a
12-month trial, power analysis indicated that 241 CN, 314 EMCI, 162
LMCI, or 80 AD per arm were needed to power a hypothetical
clinical trial using stat-ROI summaries, to detect a 25% slowing of
rate of change, and only 127 CN, 141 EMCI, 72 LMCI, or 48 AD were
needed if using the LDA-weighted summaries. For a 24-month trial,
127 CN, 150 EMCI, 116 LMCI, or 82 AD were needed to power a
hypothetical clinical trials using stat-ROI summaries, and only 49
CN, 88 EMCI, 62 LMCI, or 37 AD were needed if using the LDA-
weighted summaries.

Numerical summaries derived from accelerated scans were
quantitatively similar (Supplementary Table 1). There was no dif-
ference between numerical summaries derived from accelerated
scans and those from nonaccelerated scans, using paired 2-sample t
tests (all p > 0.017, corrected for multiple comparisons, Table 4), in
Fig. 3. Three-dimensional maps show average brain change from screening to 6-month f
brospinal fluid expansion, and cooler (blue) colors signify tissue loss. The absolute (not annu
ventricular expansion. Key: AD, Alzheimer’s disease; CN, healthy controls; EMCI, early mild
complaint. (For interpretation of the references to color in this figure legend, the reader is
the current analysis. Although not statistically significant, the p
values of stat-ROI numerical summaries at 12 months and LDA
summaries at 24 months were close to the statistical threshold.

The sample size estimates after adjusting for healthy aging
were computed using the variance parameters from the patient
cohort and the treatment effect defined as 25% of the difference
between the mean rates of change in the patients and CN
(Supplementary Table S-2, also see Section 4). As expected, the
n80s based on relative change are considerably larger compared
with sample size estimates based on absolute change. Numerical
summaries derived from stat-ROI and LDA measures generally give
higher statistical power (lower sample size estimates) compared
with temporal-ROI estimates, with the exception of the EMCI
group. There were no reasonable sample size estimates for the
EMCI group or at very short scan intervals (3 and 6 months). The
aging-adjusted sample size estimates for the stat-ROI (n80s: 178
AD and 434 LMCI) and LDA (n80s: 155 AD and 478 LMCI) measures
are competitive compared with existing methods that have been
applied to the ADNI-1 sample, assuming a 24-month trial (Gutman
et al., 2013a; Holland et al., 2012). For machine learning ap-
proaches such as LDA, 2-class LDA classification was shown to
deliver higher statistical power compared with using a stat-ROI
and surpassed results based on the relative change (Gutman
et al., 2013a).

3.3. Drug trial enrichment using ApoE and brain amyloid imaging

We explored drug trial enrichment strategies using the
ApoE status, and brain amyloid load, using 12-month stat-ROI
ollow-up, in different diagnostic groups. Warmer (red) colors indicate ventricle/cere-
al) change at 6 months was about 0.5%e2% for temporal lobe tissue loss and 1%e3% in
cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant memory
referred to the Web version of this article.)



Fig. 4. Three-dimensional maps show average brain change from screening to 12-month follow-up, in different diagnostic groups. Warmer (red) colors indicate ventricle/cere-
brospinal fluid expansion, and cooler (blue) colors signify tissue loss. The absolute change at 12 months was about 1%e3% for temporal lobe tissue loss and 2%e5% or even more in
ventricular expansion. Key: AD, Alzheimer’s disease; CN, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant memory
complaint. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

X. Hua et al. / Neurobiology of Aging 37 (2016) 26e37 31
numerical summaries derived from nonaccelerated MRI scans.
Using the ApoE information alone, people who were ApoE4þ (ε4/
ε3, ε4/ε4) showed faster decline and gave significantly lower
sample size estimates compared with noncarriers, that is, ApoE4e
(ε3/ε3, ε3/ε2, ε2/ε2), in EMCI and LMCI participants (Table 5 and
Fig. 6A). Participants with ε4/ε2 were excluded because of the
opposing effect of ε4 (damaging) and ε2 (protective) genotypes.
Using the brain amyloid information only, sample size estimates
were significantly smaller in amyloidþ EMCI and LMCI partici-
pants, and borderline significant in AD patients, compared with
amyloide patients (Table 6 and Fig. 6B). When ApoE and brain
amyloid information was combined, the lowest sample size esti-
mates (highest statistical power) were achieved in amyloidþ/
ApoE4þ across all diagnostic groups. n80s were significantly
lower in amyloidþ/ApoE4þ compared with amyloide/ApoE4e in
healthy, EMCI, and LMCI participants. Only 98 CN, 128 EMCI, 83
LMCI, and 76 AD were need for a 1-year trail in amyloidþ/ApoE4þ
versus 232 CN, 476 EMCI, 274 LMCI, and 222 AD in amyloide/
ApoE4e (Table 7 and Fig. 6C). Enrichment strategies can aid in the
identification of high risk individuals in presymptomatic and early
phases of the disease, that is, EMCI and LMCI, or even a small
percentage of CN individuals. Participants who were classified
amyloidþ/ApoE4þ accounted for 12%, 31%, 50%, and 70% of the
total subject pool in CN, EMCI, LMCI, and AD groups, respectively.

Compared with the nonenriched sample, p values were 0.011,
0.003, 0.001, and 0.379 in normal, EMCI, LMCI, and AD groups,
respectively. These nonparametric p values estimate the evidence
Fig. 5. Three-dimensional maps show average brain change from screening to 24-month
brospinal fluid expansion, and cooler (blue) colors signify tissue loss. The absolute (not annu
more for ventricular expansion. Key: AD, Alzheimer’s disease; CN, healthy controls; EMCI, e
memory complaint. (For interpretation of the references to color in this figure legend, the
that the true 12-month n80 in the nonenriched group (everyone) is
equal to or greater than that of the enriched group (amyloidþ/
ApoE4þ). The enrichment effect is significant in normal, EMCI, and
LMCI groups but not in the AD group. Similar effects are observed
comparing subjects not qualified for enrichment criteria
(amyloidþ/ApoE4e, amyloide/ApoE4þ, amyloide/ApoE4e) and
the enrichment group (amyloidþ/ApoE4þ). The p values were
0.006, 0.0003, <0.00001, and 0.296 in normal, EMCI, LMCI, and AD
groups, respectively.

3.4. Genetic risk for brain atrophy

We tested effects on brain atrophy rates of the top 10 AD risk
genes in ADNI-1, ADNI-2, and the combined sample ADNI-1 and -2
at 12-month follow-up using nonaccelerated scans. Only ApoE4
showed a significant effect on brain atrophy rates, after controlling
for age, sex, scan interval, and multiple comparisons in ADNI-1
(critical p value ¼ 0.008), ADNI-2 (critical p value ¼ 0.008), and
ADNI-1 and -2 (critical p value ¼ 0.015). In the combined analysis
(ADNI-1 and -2), each copy of ε4 genotypewas associatedwithw1%
greater atrophy in the temporal lobes and 1%e2% CSF expansion in
the lateral ventricles (Fig. 7). As ApoE status is strongly linked to AD
risk, we carried out an additional analysis controlling for diagnosis
(coded as dummy variables for SMC, EMCI, LMCI, and AD). The
ApoE4 effect remained significant after controlling for diagnosis
and after correcting for multiple comparisons (critical p value ¼
0.005) in the combined sample.
follow-up, in different diagnostic groups. Warmer (red) colors indicate ventricle/cere-
al) change at 24 months was about 1%e7% for temporal lobe tissue loss and 5%e10% or
arly mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant
reader is referred to the Web version of this article.)



Table 3
Sample size estimates for nonaccelerated scans

Group n Temporal-ROI Stat-ROI LDA

Mean (SD) n80 (CI) Mean (SD) n80 (CI) Mean (SD) n80 (CI)

3-month
CN 164 0.14 (0.62) 4,807 (1,803, 43,335) 0.32 (0.70) 1,229 (649, 3,264) 0.09 (0.13) 571 (368, 996)
SMC 53 0.13 (0.54) 4,288 (953, 1,517,483) 0.27 (0.61) 1,279 (572, 6,609) 0.07 (0.11) 633 (296, 2,303)
EMCI 163 0.16 (0.64) 4,002 (1,449, 33,950) 0.41 (0.76) 865 (513, 1,770) 0.09 (0.12) 409 (272, 671)
LMCI 146 0.18 (0.58) 2,514 (1,070, 11,537) 0.39 (0.70) 793 (473, 1,816) 0.11 (0.13) 374 (255, 611)
AD 111 0.22 (0.57) 1,630 (760, 6,455) 0.52 (0.79) 582 (350, 1,140) 0.13 (0.13) 285 (194, 467)

6-month
CN 162 0.17 (0.70) 4,074 (1,531, 31,313) 0.49 (0.78) 643 (389, 1,306) 0.15 (0.12) 175 (121, 279)
SMC 10 0.28 (0.82) 2,185 (301, 6,742,127) 0.38 (0.77) 1,031 (217, 1,683,650) 0.12 (0.18) 535 (164, 446,749)
EMCI 145 0.12 (0.65) 7,852 (2,151, 355,793) 0.44 (0.81) 859 (525, 1,760) 0.14 (0.14) 244 (180, 344)
LMCI 149 0.32 (0.62) 964 (552, 2,254) 0.86 (0.90) 276 (190, 423) 0.20 (0.15) 137 (104, 184)
AD 96 0.55 (0.73) 438 (269, 851) 1.40 (1.02) 132 (91, 220) 0.26 (0.18) 118 (87, 171)

12-month
CN 155 0.33 (0.75) 1,323 (751, 2,940) 0.80 (0.79) 241 (171, 379) 0.22 (0.16) 127 (94, 188)
SMC 20 0.09 (0.60) 11,598 (1,252, 197,296,613) 0.60 (0.82) 469 (200, 2,561) 0.21 (0.16) 149 (72, 411)
EMCI 143 0.34 (0.75) 1,232 (631, 3,521) 0.92 (1.03) 314 (220, 538) 0.24 (0.18) 141 (108, 189)
LMCI 136 0.58 (0.80) 485 (299, 986) 1.54 (1.23) 162 (124, 221) 0.34 (0.18) 72 (55, 95)
AD 89 0.90 (0.79) 194 (132, 312) 2.30 (1.29) 80 (58, 114) 0.44 (0.19) 48 (34, 71)

24-month
CN 120 0.47 (0.72) 577 (368, 1,093) 1.33 (0.94) 127 (89, 195) 0.38 (0.17) 49 (36, 66)
SMC 0 N/A N/A N/A N/A N/A N/A
EMCI 83 0.58 (0.79) 463 (276, 953) 1.52 (1.17) 150 (110, 211) 0.41 (0.24) 88 (65, 127)
LMCI 77 1.04 (1.00) 232 (157, 375) 2.76 (1.87) 116 (86, 161) 0.59 (0.30) 62 (45, 89)
AD 24 1.79 (1.20) 113 (70, 196) 4.15 (2.37) 82 (42, 184) 0.74 (0.28) 37 (17, 75)

Mean percentage of tissue atrophy, SD, and n80 (95% CI) for numerical summaries derived in CN, SMC, EMCI, LMCI, and AD groups over 3, 6, 12, and 24 months. The change in
the stat-ROI is higher than detected in the temporal-ROI. LDA-based summaries have the smallest mean change and lowest variability. LDA computes a weighted average; so,
the mean change is not directly comparable with measures derived from temporal and stat-ROIs. n indicates the number of participants in the analysis. Gray shading indicates
that the upper limit of 95% CI of n80 estimate is�600 (that we operationally defined as a feasible sample size), and black shading indicates that the upper limit of 95% CI of n80
estimate is �200 (a highly feasible sample size).
Key: AD, Alzheimer’s disease; CI, confidence interval; CN, healthy controls; EMCI, early mild cognitive impairment; LDA, linear discrimination analysis; LMCI, late mild
cognitive impairment; N/A, not applicable; ROI, region of interest; SD, standard deviation; SMC, significant memory complaint; stat-ROI, statistically defined ROI.

Table 5
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4. Discussions

We applied longitudinal TBM to analyze the ADNI-2 dataset.
Together with the ADNI-1 TBM analysis, our analysis constitutes the
largest longitudinal brain imaging study of aging and dementia.
Building on our prior work, we tested which methods performed
best for tracking brain changes and identified factors that further
improved sample size requirements for drug trials. Overall, we
recommend a TBM-based approach to MRI analysis, using a statis-
tically defined region of interest or LDA weighting to define a target
atrophy pattern. By preselecting people with baseline brain amyloid
and ApoE4 genotypes, sample sizes for reasonably powered trials
were around 100, regardless of diagnosis. Other risk genes than ApoE
offered no detectable preselection benefit. Longer MRI scans (non-
accelerated scans) did not offer detectable advantages over acceler-
ated scans, at least for this method in 1- to 2-year scan interval.

We have shown that TBM performs well in multiphase studies
with different scanning protocols (1.5T in ADNI-1 vs. 3T in
Table 4
Effects of MRI scan acceleration on changes detected at 3-, 6-, 12-, and 24-momth
follow-up scan intervals, in the combined group

Scan interval Temporal-ROI Stat-ROI LDA

3-month 0.996 0.905 0.320
6-month 0.497 0.322 0.934
12-month 0.229 0.021 0.293
24-month 0.166 0.085 0.020

p Values from paired 2-sample t tests were used to compare numerical summaries
derived from accelerated and nonaccelerated scans. No difference was detected
between scan types in temporal-ROI, stat-ROI, or LDA weighting (all p > 0.017,
corrected for multiple comparisons).
Key: LDA, linear discriminant analysis; MRI, magnetic resonance imaging; ROI,
region of interest; stat-ROI, statistically defined ROI.
ADNI-2), as we tested it extensively in the ADNI-1 dataset, and
now successfully applied it to ADNI-2 dataset and combined the
analyses from ADNI-1 and -2. This simulates a scenario in real
clinical trials involving multiple study sites and phases. Both an-
alyses were aligned into the same minimal deformation target
(anatomic) space, which enabled direct comparison of the 2
studies and pooling the data through “mega-analysis” at the voxel
level. The 3D maps of longitudinal brain change and derived
numerical summaries were comparable between ADNI-1 and -2.
Both the stat-ROI and LDA weighting were trained using the
ADNI-1 sample. ADNI-2 serves as an independent testing sample
and shows comparable results. This suggests that the TBM
method is likely transferrable into real clinical trials compatible
with the ADNI design, without the need for additional training
samples.
Drug trial enrichment using ApoE status

Group ApoE4þ ApoE4e p

n Mean (SD) n80 (CI) n Mean (SD) n80 (CI)

CN 40 0.78 (0.72) 212 (125, 422) 110 0.81 (0.79) 237 (156, 440) 0.369
EMCI 60 1.18 (0.98) 172 (116, 267) 77 0.75 (0.96) 408 (249, 770) 0.007
LMCI 70 1.92 (1.22) 102 (71, 149) 58 1.04 (1.08) 272 (167, 508) 0.001
AD 54 2.39 (1.34) 80 (51, 133) 22 1.93 (1.14) 87 (51, 160) 0.442

Mean percentage of tissue atrophy (SD) and n80 (95% CI) for statistically defined
region of interest numerical summaries are derived in CN, EMCI, LMCI, and AD
groups over 12 months, ApoE4þ (ε4/ε3, ε4/ε4) and ApoE4e (ε3/ε3, ε3/ε2, ε2/ε2). n
indicates the number of participants in the analysis. p Values estimate the evidence
that the true 12-month n80 in ApoE4e group is equal to or greater than that of the
ApoE4þ group (p < 0.05 marked in bold font).
Key: AD, Alzheimer’s disease; CI, confidence interval; CN, healthy controls; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; SD, stan-
dard deviation.



Fig. 6. Sample size estimates (n80s) after trial enrichment (subject preselection) using ApoE status (A), brain amyloid load at the screening visit (B), and both combined (C).
Statistical significance is based on a nonparametric estimate of the probability that the n80s are unequal between the pairs. * p < 0.05 ,** p < 0.01. After both screening methods are
used, sample size requirements are around 100 subjects, regardless of diagnostic group.
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4.1. Finding the optimal trial duration

It is of great clinical interest to test the minimal scan interval
required to detect changes, as longer trials tend to cost more and
may suffer from high attrition rates. Although 3 months changes
were detectable with TBM, the levels of variability greatly exceed
the change, resulting in unreasonable (extremely large) sample size
estimates. Shorter scan intervals might be achieved in the future
with higher resolution imaging or with even better methods for
tracking brain change. With longer scan intervals, the mean change
grew faster than its standard deviation, resulting in a continuous
drop in n80s, or higher statistical power to detect change. The 6-
month interval was the minimal duration needed to detect reli-
able change, although 12 months offered the most robust results,
across stat-ROI and LDA-based numerical summaries, after
considering a trade-off between scan interval and effect size. Sta-
tistical effect is higher at longer scan interval (e.g., 24 months),
whereas shorter trials with sufficient power (e.g., 12 months) are
preferred because of concerns of cost and attrition.
4.2. Power of numerical summaries

Both stat-ROI and LDA are training-based approaches to define
a region of interest in a scan, and they both outperformed an
anatomically defined temporal-ROI. The stat-ROI was trained to
select regions with the highest and most consistently detectable
change in 20 AD patients, whereas the LDA weighting was trained
on the full ADNI-1 AD and MCI sample (including 144 AD and 337
Table 6
Drug trial enrichment using brain amyloid load at the screening visit

Group Amyloidþ Amyloide p

n Mean (SD) n80 (CI) n Mean (SD) n80 (CI)

CN 47 0.95 (0.80) 180 (103, 496) 103 0.74 (0.75) 257 (167, 473) 0.189
EMCI 67 1.26 (1.05) 174 (113, 288) 70 0.63 (0.81) 421 (240, 857) 0.012
LMCI 88 1.84 (1.24) 114 (81, 169) 40 0.82 (0.91) 309 (171, 701) 0.005
AD 68 2.37 (1.26) 71 (49, 111) 8 1.29 (1.27) 243 (117, 751) 0.061

Mean percentage of tissue atrophy (SD) and n80 (95% CI) for statistically defined
region of interest numerical summaries are derived in CN, EMCI, LMCI, and AD
groups over 12 months, amyloidþ [BL_SUVR_Summary � 1.11] and amyloide
[BL_SUVR_Summary< 1.11]. n indicates the number of participants in the analysis. p
Values estimate the evidence that the true 12-month n80 in amyloid- group is equal
to or greater than that of the amyloidþ group (p < 0.05 marked in bold font).
Key: AD, Alzheimer’s disease; CI, confidence interval; CN, healthy controls; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; SD, stan-
dard deviation.
MCI) and directly optimizes the n80 estimates using information
across the whole brain. Each method has pros and cons in terms of
training sample requirements (expensive for drug trials), statistical
power, and interpretability (Table 8). There is also a trade-off
between statistical power and interpretability. Temporal lobe at-
rophy is the most interpretable measure, and it would be intui-
tively well received if it could be shown that a new drug slowed
down temporal lobe atrophy. Even so, the sample size re-
quirements for this are enormous within a typical scan interval of
12 and 24 months. On the other hand, LDA weighting offers the
highest performance in statistical power, but it has more limited
interpretability for clinical trials. LDA defines a whole-brain
pattern of atrophy, which maximizes the effect size of the result-
ing atrophy measure. However, because of the highly correlated
nature of Jacobians in neighboring voxels, neither the LDA weight
maps nor the resulting numerical summary can be easily inter-
preted; please see (Haufe et al., 2014) on the interpretation of
weight vectors of linear models in multivariate neuroimaging. For
example, the mean LDA-based annual change is about 3e4 times
smaller than the stat-ROI summaries. Thus, a new drug may or
may not target LDA-derived atrophy patterns specifically. Stat-ROI
offers a reasonable middle ground offering good statistical power
while maintaining interpretability.

We have shown earlier that TBM-derived imaging biomarkers
are correlated with baseline and changes in cognitive measures
(Hua et al., 2010). Future studies should also compare the 3 types
of TBM numerical summaries for their associations with the
change of cognitive measures, in the combined sample of ADNI-1
and -2.
Table 7
Drug trial enrichment based on using ApoE and brain amyloid at the screening visit

Group Amyloidþ/ApoE4þ Amyloide/ApoE4e p

n Mean (SD) n80 (CI) n Mean (SD) n80 (CI)

CN 18 1.14 (0.71) 98 (53, 228) 81 0.80 (0.77) 232 (145, 499) 0.024
EMCI 42 1.39 (0.99) 128 (83, 209) 52 0.61 (0.84) 476 (245, 1,230) 0.002
LMCI 64 2.04 (1.17) 83 (59, 122) 34 0.86 (0.89) 274 (146, 642) 0.002
AD 53 2.42 (1.33) 76 (48, 127) 7 1.41 (1.32) 222 (105, 758) 0.101

Mean percentage of tissue atrophy (SD) and n80 (95% CI) for statistically defined
region of interest numerical summaries are derived in CN, SMC, EMCI, LMCI, and AD
groups over 12 months. n indicates the number of participants in the analysis.
p Values estimate the evidence that the true 12-month n80 in amyloid-/ApoE4e
group is equal to or greater than that of the amyloidþ/ApoE4þ group (p < 0.05
marked in bold font).
Key: AD, Alzheimer’s disease; CI, confidence interval; CN, healthy controls; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; SD,
standard deviation.



Fig. 7. Three-dimensional maps show areas where longitudinal changes in brain volumes were significantly associated with the number of ApoE ε4 alleles. The regression co-
efficients (unstandardized beta values or “slopes”) are shown at each voxel that passed multiple comparison corrections (critical p value ¼ 0.015), after controlling for age, sex, and
scan interval. In the combined analysis (Alzheimer’s Disease Neuroimaging Initiative 1 and 2), each copy of ε4 allele was associated with w1% greater atrophy in the temporal lobes
and 1%e2% cerebrospinal fluid expansion in the lateral ventricles.
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4.3. Scan acceleration

Consistent with our pilot study in a smaller sample (n ¼ 345 at
6 months and n ¼ 156 at 12 months) (Ching et al., 2015) and a
separate study using TBM-SyN measures (Vemuri et al., 2015), MRI
scan acceleration had minimal effects on TBM-derived atrophic
measures, as long as the scanning protocol is consistent
throughout the study duration. Small regional differences were
detected in the thalamus and cerebellar areas at short scan
intervals (3 and 6 months) but disappeared at longer intervals
(12 and 24 months). It is unknown why the effect is not detected
when changes are more prominent, but change is much less reli-
ably detected at very short scan intervals. Nevertheless, TBM
studies focusing on the thalamus and cerebellar structures should
conduct further analysis on the effects of scan acceleration or stick
to one scanning protocol. For a detailed analysis on the effect of
scan acceleration on TBM-derived brain atrophic measures,
including an analysis by scanner vendor, please refer to Ching et al.
(2015). There was no significant effect of scanner vendor, at least in
the TBM analysis, which predicted the difference in accelerated
and nonaccelerated numerical summaries.
Table 8
Pros and cons of numerical summaries of brain changes on MRI, derived from an
anatomic atlas (e.g., a temporal ROI), statistical ROI, or LDA-based weighting

Type of ROI Pros Cons

Anatomic ROI � No training sample
required

� Easy to interpret

� Low statistical power

Statistical ROI � Small training sample
required

� Good statistical power
� Good interpretability

� Restricted search region

LDA weighting � High statistical power by
incorporating information
across the whole brain
with optimized
weighting at each voxel

� Ability, in principle, to
incorporate multiple
biomarkers, not just MRI

� Large training sample
required

� Poorer interpretability

Key: LDA, linear discriminant analysis; MRI, magnetic resonance imaging; ROI,
region of interest.
4.4. Adjustment for healthy aging

We computed sample size estimates using the absolute change
(main text, Tables 3 and 5e7), following the definition by the ADNI
Biostatistics Core. There is some argument in favor of this, as it al-
lows for the possibility that a treatment could slow some of the
processes that contribute to normal aging, some of which overlap
mechanistically with the biological processes promoting atrophy in
the disease group. Even so, some researchers advocate the use of
the relative change, or rate of change adjusted for healthy aging, to
define the treatment effect (Holland et al., 2012); so, we present
these measures as Supplementary Table 2. After adjusting for
healthy aging, the sample size estimates were computed using the
variance parameters from the patient cohort, and the treatment
effect defined as 25% the difference between the mean rates of
change in patients and CN. One major advantage of this approach is
that it can partially cancel out any systematic methodological bias,
avoiding unduly optimistic power estimates. There are several ca-
veats related to applying this approach here. First, the standard
deviations in the rate of change and sample sizes differ substan-
tially between the available patient and control groups (e.g., at 24
months, the standard deviation of stat-ROI cumulative atrophy in
AD is 2.5 times that in CN, based on data from 24 AD patients vs. 120
CN). Second, many current MCI or AD trials do not enroll healthy
subjects as controls. Last, age is the biggest risk factor for AD and
many of the contributing biological processes are the same, for
example, vascular degeneration. Therefore in theory, atrophy and
cognitive decline in healthy aging may be treatable by some drugs
that resist AD, although currently no existing drug is designed to
specifically target normal aging. Nevertheless, a growing number of
prevention trials now enroll healthy subjects and treat them
(Eastman, 2012; Ross et al., 2012), in which case they would be
considered as a “treatment group.”

In real clinical trials, a treatment group is typically compared
with a placebo group to assess drug effects. Subtracting the placebo
group mean could help to isolate treatment effects while reducing
any sources of bias in power analyses. Of course, the best practice in
imaging biomarker development is to address any methodological
bias at the source, by improving algorithms or correcting steps that
lead to bias, instead of trying to cancel out the effect in the enrol-
ment design.
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4.5. Drug trial enrichment strategy for early-stage trials

Newer AD drugs are being tested on presymptomatic partici-
pants (EMCI and LMCI) aiming to halt or slow down the decline
before substantial damage has been done to the brain. MCI partic-
ipant are highly diverse; thus, efficient drug trial enrichment stra-
tegies are needed to pilot the trials on subjects with the most rapid
decline or highest risk of conversion to AD. Drug trial enrichment is
achieved by using ApoE4 status, the major risk allele for AD (Hua
et al., 2013; Roses, 1996; Roses and Saunders, 1994; Saunders
et al., 1993; Schuff et al., 2009). Brain amyloid load detected by
PET is another important indicator of early AD pathology, and it has
been used to predict patients with imminent decline (Jack et al.,
2010; Jagust et al., 2010). There has been evidence suggesting an
interaction between ApoE4 and brain amyloid level (Lim et al.,
2014; Mormino et al., 2014). We have shown that the combined
information could further enrich the drug trials for pilot studies
aimed to demonstrate drug efficacy in a targeted group and un-
derstand the mechanism of action.

4.6. AD risk genes and brain atrophy

In the search of risk genes affecting longitudinal brain change,
ApoE was the single significant factor in our analysis. Other top AD
risk genes may have an effect not detectable with the current
sample or limited by the statistical power from a relatively short
scan interval (1e2 years) because AD is a slow progressing disease.
Even so, exploratory analysis is important in AD research. Once
brain change in a large population has been mapped, we can carry
out various exploratory analysis to derive novel imaging bio-
markers with new approaches to capture disease-specific change
and identify new drug trial enrichment strategies. TBM offers a
robust platform for structural imaging biomarker analysis.
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