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Abstract
Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in
brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using
two different TBM designs (averaging individual differences versus aligning group average
templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's
disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive
impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased
geometrical average image template for each of the three groups, which were matched for sex and
age (mean age: 76.1 years+/−7.7 SD). We warped each individual brain image (N=120) to the control
group average template to create Jacobian maps, which show the local expansion or compression
factor at each point in the image, reflecting individual volumetric differences. Statistical maps of
group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser,
more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with
Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative

*Corresponding author. Fax: +1 310 206 5518.
E-mail address: thompson@loni.ucla.edu (P.M. Thompson).
Publisher's Disclaimer: This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal
non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2009 May 15.

Published in final edited form as:
Neuroimage. 2008 May 15; 41(1): 19–34. doi:10.1016/j.neuroimage.2008.02.010.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice
of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9-
versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors
that resist or accelerate the disease process, and (2) measure disease burden in treatment trials.

Introduction
Alzheimer's disease (AD) is the commonest form of dementia worldwide, afflicting over 5
million people in the United States alone. In early AD, memory is typically among the first
functions to be impaired, followed by a progressive decline in executive function, language,
affect, and other cognitive and behavioral domains. It would be beneficial to prevent AD
progression before widespread neurodegeneration has occurred, so recent therapeutic efforts
have also focused on individuals with mild cognitive impairment (MCI), a transitional state
between normal aging and dementia that carries a 4–6-fold increased risk, relative to the general
population, of future diagnosis of dementia (Petersen et al., 1999; Petersen, 2000; Petersen et
al., 2001). Early detection requires innovations in tracking disease burden in vivo (Fleisher et
al., 2007). Magnetic resonance imaging (MRI) and MRI-based image analysis methods have
the potential to track brain atrophy automatically at multiple time-points. MRI has revealed
fine-scale anatomical changes which are associated with cognitive decline and which occur in
a spreading pattern that mirrors the advance of pathology (Thompson and Apostolova, in
press). MRI-based maps of brain degeneration are beginning to reveal the distribution and
evolution of cerebral volume losses, how brain changes in AD and other dementias relate to
behavior, and which brain changes predict imminent decline (Scahill et al., 2003; Apostolova
et al., 2006; Apostolova and Thompson, 2007).

Tensor-based morphometry (TBM) is a relatively new image analysis technique that identifies
regional structural differences from the gradients of the deformation fields that align, or ‘warp’,
images to a common anatomical template (reviewed in (Ashburner and Friston, 2003)). Highly
automated methods such as TBM are being tested to examine their utility in large-scale clinical
trials, and in studies to identify factors that influence disease onset, progression (Leow et al.,
2005b; Cardenas et al., 2007), or normal development (Thompson et al., 2000a; Chung et al.,
2001; Hua et al., in press). In TBM, a nonlinear registration algorithm reshapes each 3D
structural image to match a target brain image – either based on an individual subject, or
specially constructed to reflect the mean anatomy of a population (Kochunov et al., 2001,
2002; Lepore et al., 2007). Color-coded Jacobian maps – which show the local expansion or
compression factor at each point in the image – indicate local volume loss or gain relative to
a reference image (Freeborough and Fox, 1998; Chung et al., 2001; Fox et al., 2001; Ashburner
and Friston, 2003; Riddle et al., 2004). TBM may also be used to map systematic anatomic
differences between different patient groups using cross-sectional data (Davatzikos et al.,
2003; Shen and Davatzikos, 2003; Studholme et al., 2004; Dubb et al., 2005; Brun et al.,
2007; Chiang et al., 2007a,b; Lee et al., 2007; Lepore et al., 2008).

The traditional TBM design (Ashburner, 2007; Chiang et al., 2007a,b) computes individual
Jacobian maps, i.e. “expansion factor maps”, from the non-linear registrations that align each
subject's MRI image to a reference brain. Distinguishing features of group morphometry
emerge after the maps of individual anatomical differences from the template are compared
statistically across groups, or correlated with relevant clinical measures. This scheme may be
called ‘averaging individual differences’ in the sense that the signal analyzed is based on maps
of anatomical differences computed for every individual separately (Rohlfing et al., 2005). We
use this term to distinguish it from an approach that directly aligns mean anatomical templates
representing each group (Rohlfing et al., 2005; Aljabar et al., 2008). By contrast, when a
Jacobian map is created for each subject – which is the standard TBM approach that we use to
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report findings in this paper – correlations may be assessed between the detected individual
differences and individual factors such as age, sex and clinical scores. We compare the standard
and direct approaches later in this paper.

3D maps that define the level of atrophy (relative to appropriate controls) at a certain disease
stage (Jack et al., 2005), may have value in staging the degenerative process, predicting
outcomes, and understanding atrophic patterns characteristic of different dementia subtypes or
stages, e.g. when individuals transition from MCI and AD. In this study, we examined the level
of atrophy in AD and MCI relative to controls; we studied how specific methodological choices
(e.g., sample size, initial linear registration) affected the statistical power to detect these
differences; and we also investigated, at a voxelwise level, how brain atrophy correlated with
clinical measures such as MMSE, and global Clinical Dementia Rating (CDR). Finally, we
compared our results using the traditional TBM design with ones from directly aligning group
average images – a relatively new concept in deformation-based group morphometry, which
has been advocated recently in the literature (Rohlfing et al., 2005; Aljabar et al., 2006,
2008).

Materials and methods
Subjects

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a,b) is a large
multi-site longitudinal MRI and FDG-PET (fluorodeoxyglucose positron emission
tomography) study of 800 adults, ages 55 to 90, including 200 elderly controls, 400 subjects
with mild cognitive impairment, and 200 patients with AD. The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression
of MCI and early AD. Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and University
of California – San Francisco.

At the time of writing this report, data collection for the ADNI project is in progress. Here we
performed an initial analysis of the screening MRI scans of 120 subjects, divided into 3 groups:
40 healthy elderly individuals, 40 individuals with amnestic MCI, and 40 individuals with
probable AD. Each group of 40 subjects was well matched in terms of gender and age: each
group included 21 males and 19 females; mean ages for the control, MCI and AD groups were,
respectively, 76.2 years (standard deviation (SD)=6.9 years), 75.9 years (SD=8.3), and 76.0
years (SD=8.5), with no significant age differences among the three groups (one-way ANOVA
p-value=0.98).

To test whether each type of TBM design correctly detects no differences when no true
differences are present, we selected an independent (second) group of normal subjects (N=40,
mean age=76.0 years, SD=4.5 years), age- and gender-matched to the first group of controls.
There was no overlap between this group and the initial normal group described above.

All subjects underwent thorough clinical/cognitive assessment at the time of scan acquisition.
As part of each subject's cognitive evaluation, the Mini-Mental State Examination (MMSE)
was administered to provide a global measure of mental status based on evaluation of five
cognitive domains (Folstein et al., 1975; Cockrell and Folstein, 1988); scores of 24 or less (out
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of a maximum of 30) are generally consistent with dementia. The Clinical Dementia Rating
(CDR) was also assessed as a measure of dementia severity (Hughes et al., 1982; Morris,
1993). A global CDR of 0, 0.5, 1, 2 and 3, respectively, indicate no dementia, very mild, mild,
moderate, and severe dementia. The elderly normal subjects had MMSE scores between 28
and 30 (inclusive), a global CDR of 0, and no symptoms of depression, MCI, or other forms
of dementia. The MCI subjects had MMSE scores in the range of 24 to 30, a global CDR of
0.5, and mild memory complaints, with memory impairment assessed via education-adjusted
scores on the Wechsler Memory Scale - Logical Memory II (Wechsler, 1987). All AD patients
met NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984) with an MMSE score
between 20 and 23. As such, these subjects would be considered as having mild to moderate,
but not severe, AD. Overall, ADNI included AD subjects with MMSE scores as high as 26,
and a lower limit of 20, but we focused here on the 20–23 range of MMSE scores to identify
a specific stage of AD at which a somewhat consistent level of atrophy might be identified. 16
AD patients had a CDR of 0.5, and the rest had a CDR of 1. Detailed exclusion criteria, e.g.,
regarding concurrent use of psychoactive medications, may be found in the ADNI protocol
(Mueller et al., 2005a,b). Briefly, subjects were excluded if they had any serious neurological
disease other than incipient AD, any history of brain lesions or head trauma, or psychoactive
medication use (including antidepressants, neuroleptics, chronic anxiolytics or sedative
hypnotics, etc.).

The study was conducted according to Good Clinical Practice, the Declaration of Helsinki and
U.S. 21 CFR Part 50-Protection of Human Subjects, and Part 56-Institutional Review Boards.
Written informed consent for the study was obtained from all participants before protocol-
specific procedures, including cognitive testing, were performed.

MRI acquisition and image correction
All subjects were scanned with a standardized MRI protocol, developed after a major effort
evaluating and comparing 3D T1-weighted sequences for morphometric analyses (Leow et al.,
2006; Jack et al., in press).

High-resolution structural brain MRI scans were acquired at multiple ADNI sites using 1.5
Tesla MRI scanners from General Electric Healthcare and Siemens Medical Solutions All scans
were collected according to the standard ADNI MRI protocol. For each subject, two T1-
weighted MRI scans were collected using a sagittal 3D MP-RAGE sequence. As described in
(Jack et al., in press) typical 1.5T acquisition parameters are repetition time (TR) of 2400 ms,
minimum full TE, inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field of view,
acquisition matrix was 192×192×166 in the x-, y-, and z- dimensions yielding a voxel size of
1.25×1.25×1.2 mm3. In plane, zero-filled reconstruction (i.e., sinc interpolation) yielded a
256×256 matrix for a reconstructed voxel size of 0.9375×0.9375×1.2 mm3. The images were
calibrated with phantom-based geometric corrections to ensure consistency among scans
acquired at different sites (Gunter et al., 2006).

Additional image corrections were also applied, using a processing pipeline at the Mayo Clinic,
consisting of: (1) a procedure termed GradWarp for correction of geometric distortion due to
gradient non-linearity (Jovicich et al., 2006), (2) a “B1-correction”, to adjust for image intensity
non-uniformity using B1 calibration scans (Jack et al., in press), (3) “N3” bias field correction,
for reducing intensity inhomogeneity caused by non-uniformities in the radio frequency (RF)
receiver coils (Sled et al., 1998), and (4) geometrical scaling, according to a phantom scan
acquired for each subject (Jack et al., in press), to adjust for scanner- and session-specific
calibration errors. In addition to the original uncorrected image files, images with all of these
corrections already applied (GradWarp, B1, phantom scaling, and N3) are available to the
general scientific community.
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Image pre-processing
To adjust for global differences in brain positioning and scale across individuals, all scans were
linearly registered to the stereotactic space defined by the International Consortium for Brain
Mapping (ICBM-53) (Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
translations, 3 rotations, 3 scales) using the Minctracc algorithm (Collins et al., 1994). The
Results section reports separate tests based on using 12-parameter affine registrations for the
initial (global) component of the registration (which also allows shearing along x, y, and z axes).
Globally aligned images were resampled in an isotropic space of 220 voxels along each axis
(x, y, and z) with a final voxel size of 1 mm3.

Unbiased group average template - Minimal Deformation Target (MDT)
A minimal deformation target (MDT) is an unbiased average template image created to
represent common anatomical features for a group of subjects, typically with a mathematically-
defined mean geometry for a population (Good et al., 2001; Kochunov et al., 2002; Joshi et
al., 2004; Studholme and Cardenas, 2004; Kovacevic et al., 2005; Christensen et al., 2006;
Lorenzen et al., 2006; Lepore et al., 2007).

The motivation for constructing a mean geometric template, or ‘customized template’, based
on subjects in the study is to make it easier to automatically register new scans to the template,
to reduce bias in the registrations (using a template that deviates least from the anatomy of the
subjects), and to improve statistical power, which has been shown to be slightly higher if a
customized template is used (Lepore et al., 2007). To construct an MDT for the normal subject
group, the 9-parameter globally aligned brain scans (N=40) were averaged voxel-by-voxel after
intensity normalization to create an initial affine average template. Next, the aligned individual
scans were non-linearly registered to the affine average template using a non-linear inverse
consistent elastic intensity-based registration algorithm (Leow et al., 2005a,b). Satisfactory
registration was achieved when a joint cost function was optimized, based on a linear
combination of the mutual information (MI) between the deforming image and the target (affine
average template) and the elastic energy of the deformation, which quantifies the irregularity
of the deformation field. The deformation field was computed using a spectral method to
implement the Cauchy-Navier elasticity operator (Marsden and Hughes, 1983; Thompson et
al., 2000b) using a Fast Fourier Transform (FFT) resolution of 32×32×32. This corresponds
to an effective voxel size of 6.875 mm in the x, y, and z dimensions (220 mm/32=6.875 mm).
The non-linear average image was then derived from the mean of the 40 individual scans that
were non-linearly registered to the affine average template. Finally, we created the MDT for
the normal group by applying inverse geometric centering of the displacement fields to the
non-linear average (Kochunov et al., 2002, 2005). With the same procedure, we constructed a
separate MDT for the MCI and AD groups. These MDTs are obtainable at:
http://www.loni.ucla.edu/~thompson/XUE/MDT/.

In addition to the MDTs created based on a sample of size N=40, and 9P linear registration,
we also investigated the effects of reducing the sample size on the statistical maps of group
differences (N=10, 20, 30 subjects per group) using either 9-parameter (9P) or 12-parameter
(12P) affine registration. For comparisons in reduced samples, the same MDT was still used
(based on 40 subjects) to make sure that the results were spatially registered with each other.

Three-dimensional Jacobian maps
To quantify 3D patterns of volumetric brain atrophy in MCI and AD based on the method of
“averaging individual differences” (Fig. 1a), all individual brains (N=120) were non-linearly
aligned to the MDT for the normal group (Leow et al., 2005a). Subsequently, a separate
Jacobian map was created for each subject to characterize the local volume differences between
that individual and the normal group anatomical mean template. The determinant (local
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expansion factor) of the local Jacobian matrix was derived from the forward deformation field
(see (Lepore et al., 2008), for a more complex approach analyzing the full tensor). Color-coded
Jacobian determinants were used to illustrate regions of volume expansion, i.e. those with det
J(r)>1, or contraction, i.e., J(r)<1 (Freeborough and Fox, 1998;Toga, 1999;Thompson et al.,
2000a;Chung et al., 2001;Ashburner and Friston, 2003;Riddle et al., 2004) relative to the
normal group template. Negative or zero-valued Jacobians are not obtained using this method,
as the inverse-consistent implementation regularizes the inverse deformation mapping and
causes the resulting Jacobian determinants to cluster quite tightly around zero after log
transformation, as well as removing the skew and bias from their distribution (see Leow et al.,
2005a,b,2007 for examination of the Jacobian distributions). As all images were registered to
the same template, these Jacobian maps share a common anatomical coordinate defined by the
normal template. Individual Jacobian maps within each group were averaged across subjects
and compared statistically at each voxel to assess the magnitude and significance of deficits in
MCI and AD versus the healthy controls.

We also examined group differences by directly aligning group average images (Fig. 1b), a
concept first introduced by Rohlfing (Rohlfing et al., 2005). In this approach, an unbiased
geometrical average template was created for each of the three groups, and each disease group
average template was directly aligned to the control group average template to create single
Jacobian maps from which to quantify inter-group local volume differences.

Subject-template alignment methods follow a similar pattern to MDT construction, and for
elastic registration we used a FFT resolution of 32×32×32; this corresponds to an effective size
of 6.875 mm (220 mm/32=6.875 mm) in each of the x-, y-, and z- dimensions; for template-
template registrations, we ran the deformations at a higher FFT resolution of 64, since the
MDTs share anatomical features with very similar resolution and contrast. The choice of FFT
grid size depends on the expected spatial coherence (autocorrelation) of features to be detected,
and could be modeled, in a more complex approach, by empirical estimation of the bivariate
Green's function or 6D Lambda-tensor ((Fillard et al., 2005); this approach will be tested once
these covariance functions are estimable from a very large image database of images).

Statistical tests
The first approach generated 120 Jacobian maps, which encode individual differences with
respect to the normal template. This enabled us to carry out voxel-wise statistical tests between
the individual Jacobian maps in each group within a common coordinate system. The Jacobian
maps in MCI and AD were compared to those from normal controls. At each voxel, we
evaluated the significance level of group differences using a two-sample t test with unequal
variance. The resulting p-values were displayed as maps to allow visualization of the patterns
of significant differences throughout the brain.

In addition, we used permutation testing to assess the overall significance of group differences,
corrected for multiple comparisons [see, e.g., Bullmore et al., 1999; Nichols and Holmes
2002; Thompson et al., 2003; Chiang et al., 2007a,b]. A null distribution for the group
differences in Jacobian at each voxel was constructed using 10,000 random permutations of
the data. For each test, the subjects' diagnosis was randomly permuted and voxel-wise t tests
were conducted to identify voxels more significant than p=0.05. The volume of voxels in the
brain more significant than p=0.05 was computed for the real experiment and for the random
assignments. Finally, a ratio, describing the fraction of the time the suprathreshold volume was
greater in the randomized maps than the real effect (the original labeling), was calculated to
give an overall P-value for the significance of the map (corrected for multiple comparisons by
permutation). The correction is for the number of tests, so it quantifies the level of surprise in
seeing the overall map. The number of permutations N was chosen to be 10,000, to control the
standard error SEp of the omnibus probability p, which follows a binomial distribution B(N,
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p) with known standard error (Edgington, 1995). When N=10,000, the approximate margin of
error (95% confidence interval) for p is around 5% of p.

CDF plots
Cumulative distribution function (CDF) plots were used to compare the power of detecting
significant effects when using the TBM design of averaging individual differences, with sample
sizes varying from 10 to 40 per group, and the two different linear registration schemes. These
CDF plots are commonly generated when using false discovery rate methods to assign overall
significance values to statistical maps (Benjamini and Hochberg, 1995; Genovese et al.,
2002; Storey, 2002); they may also be used to compare effect sizes of different methods, subject
to certain caveats (Lepore et al., 2007), as they show the proportion of supra-threshold voxels
in a statistical map, for a range of thresholds. A cumulative plot of p-values in a statistical map,
after the p-values have been sorted into numerical order, can compare the proportion of
suprathreshold statistics with null data, or between one method and another, to assess their
power to detect statistical differences that survive thresholding at both weak and strict
thresholds (in fact at any threshold in the range 0 to 1). In the examples shown here, the
cumulative distribution function of the p-values observed for the statistical comparison of
patients versus controls is plotted against the corresponding p-value that would be expected,
under the null hypothesis of no group difference. For null distributions (comparing two
independent normal groups), the cumulative distribution of p-values is expected to fall
approximately along the diagonal line y=x, because a proportion y of voxels in a null p-value
map will, on average, fall below the threshold y; large upswings of the CDF from that diagonal
line are associated with significant signal. Greater effect sizes are represented by larger
deviations in these CDF plots (and the theory of false discovery rates gives formulae for
thresholds that control false positives at a known rate).

Using the results of the above two-sample t-tests, Fig. 3 shows the cumulative histograms (CDF
plots) of the probability maps for voxel-wise differences in mean Jacobian between the MCI
and AD groups and normal controls. Within each CDF plot, the curves show increasing effect
sizes, in rank order from bottom to top, for detecting voxels with statistical differences between
groups.

Regions of interest (ROIs)
Regions of interest, including frontal, parietal, temporal, and occipital lobes, were defined by
manually labeling the normal group MDT. The MDT was traced by a trained anatomist to
generate binary masks for each lobe, which were subsequently used to summarize brain atrophy
at a regional level in each group. Within each lobe, tissue types were distinguished by creating
maps of gray and white matter, CSF, and non-brain tissues using the partial volume
classification (PVC) algorithm from the BrainSuite software package (Shattuck and Leahy,
2002). CSF was excluded from the masks as the trend for CSF differences is typically opposite
to cerebral differences in subjects with varying levels of brain atrophy, i.e., greater CSF space
expansions are typically associated with greater atrophy. While these CSF signals are
potentially of diagnostic interest (Carmichael et al., 2006, 2007), they were excluded to avoid
confounding the average values in regions where tissue atrophy was assessed.

The hippocampus was delineated on the control (N=40) average template by investigators at
the University College London (J.B.). The ROI tracing was performed using MIDAS (Medical
Image Display and Analysis System) software (Freeborough et al., 1997). This delineation
included the hippocampus proper, dentate gyrus, subiculum, and alveus (Fox et al., 1996;
Scahill et al., 2003).
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Correlations of structural brain differences (Jacobian Values) with clinical measurements
and genetic variants

At each voxel, correlations were assessed, using the general linear model, between the Jacobian
value and several clinical measures - the MMSE, and Clinical Dementia Rating summary scores
(Morris, 1993). The CDR assesses a patient's cognitive and functional performance in six areas
on a scale of 0 (no impairment) to 3 (impaired): memory, orientation, judgment & problem
solving, community affairs, home & hobbies, and personal care. As there is a significant range
restriction with global CDR scores, we also assessed correlations with the CDR ‘sum-of-boxes’
scores, which have a greater dynamic range (0-18), and arguably provides more useful
information than the CDR global score, especially in mild cases (Lynch et al., 2006). In the
Jacobian maps, CSF regions typically show ‘expansion’ as AD progresses (for example, due
to lateral ventricle enlargement), so we performed separate evaluations of the positive, negative
and two-sided associations between the Jacobian and diagnostic group. The results of voxel-
wise correlations were corrected for multiple comparisons by permutation testing. Clinical
scores were randomly assigned to each subject and the number of voxels with significant
correlations (p≤0.01) was recorded. After 10,000 permutations, a ratio was calculated
describing the fraction of the null simulations in which a statistical effect (defined here in
advance as the total supra-threshold volume) had occurred with similar or greater magnitude
than the real effects. The primary threshold of 0.01 has been used in our past studies and is
based on setting a moderately strong threshold at the voxel level (alternatively, FDR could be
used); the total supra-threshold volume is often used to assess the magnitude of an anatomically
distributed effect, giving in general higher statistical power but a lesser ability to spatially
localize the signal than tests based on cluster extent or peak height (Frackowiak et al., 2003).
This ratio served as an estimate of the overall significance of the correlations, corrected for
multiple comparisons, as performed in many prior studies (Nichols and Holmes, 2002).

Results
3D maps of brain atrophy in MCI and AD

We first examined the level of brain atrophy using the method of averaging individual
differences. The resulting statistical maps (Fig. 2) detected the known characteristic patterns
of atrophy in AD, revealing profound tissue loss in the temporal lobes bilaterally, the
hippocampus, thalamus, widening of the bodies of the lateral ventricles and expansion of the
circular sulcus of the insula.

Permutation tests were conducted to assess the overall significance of the maps, corrected for
multiple comparisons. The permutation tests confirmed that there were significant tissue
changes in the MCI (two tailed: P=0.04; negative one tail: P=0.02, ROI: left temporal lobe)
and AD (two tailed: P=0.002, ROI: whole brain) when compared to the normal group
respectively, corrected for multiple comparisons.

Power to detect brain atrophy in MCI and AD
The cumulative distribution function (CDF) curves (Fig. 3) illustrate the power to detect
significant brain atrophy in MCI and AD using the method of averaging individual differences.
Eight different experiments are shown, comparing various sample sizes (N=10, 20, 30, or 40
per group) and different linear registration schemes (9P vs. 12P). The null distribution is
confirmed to be correct based on aligning the second group of normal individuals to the initial
control template. In other words, although FDR methods assume that a null effect would have
a CDF that is a diagonal line (see Fig. 3), we also confirmed that this is indeed the case using
empirical data from two groups of controls. The blackline in Fig. 3 falls almost exactly on the
diagonal, confirming that this TBM design controls for false positives at the appropriate rate
for all thresholds (it is not exactly diagonal). If CDFs from many independent samples were
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averaged, the population mean CDF should tend towards a diagonal line. As expected,
regardless of the method used, there are more significant voxels (at any given threshold such
as p<0.01) detected in the AD versus Control comparison, relative to the MCI versus Control
comparison. More interestingly, however, the cumulative p-value plots obtained when 9P
linear registration is used (solid lines) are mostly situated above the ones from 12P linear
registration (dotted lines), suggesting that the 9P registration scheme may have superior power
for detecting atrophy in MCI and AD and differentiating these groups from normal subjects.
As might be expected, sample size greatly influences the power to detect brain atrophy in MCI
and AD, with effect sizes increasing monotonically with sample size.

Correlations with clinical measurements
Any quantitative measure of brain atrophy has greater value if it can be shown to correlate with
established measures of cognitive or clinical decline, or with future outcome measures, such
as imminent conversion to AD. We found strong correlations between the Jacobian values
derived from the standard method (N=120) and the clinical measures (MMSE, CDR summary
and sum-of-boxes scores; Table 1). This table reports corrected p-values for the correlations
with voxel-level TBM values, rather than with a global summary value from TBM. To avoid
reductions in power due to restricting the range to the AD or MCI groups separately, these
correlations are reported for the entire sample of 120. As such, the normal subjects, who tend
to score in the normal range on all the clinical measures, drive these associations to some extent.

Within the whole brain, the P values represent the overall significance level of correlations
between the Jacobian maps and the clinical measures (corrected for multiple comparisons).
The significance level is based on the number of suprathreshold voxels in the ROI, rather than
their average or maximum. This method is sometimes known as set-level inference, which
generally has greatest power (relative to other tests such as peak height or cluster size) for
detecting a spatially distributed effect. Since there are two types of signals in the Jacobian
maps: regional expansion (e.g., in the ventricles) and regional atrophy (e.g., in gray and white
matter), positive and negative correlations are tested separately. Two-tailed tests detect any
consistent structural differences without an emphasis on the sign of the changes (gain or loss).

Average brain changes within each regions of interest (ROI)
In voxel-based studies, such as TBM, there is interest in reducing detailed 3D maps to simpler
numeric summaries that may be more convenient to use as outcome measures in a clinical trial,
especially when a small number of outcome measures must be agreed in advance. To
summarize group differences or other statistical effects detected by TBM in a
lobe, ;hemisphere, or in a region of interest computed from an independent experiment, several
different numeric summaries are possible, such as the number of suprathreshold voxels in an
ROI, the maximum statistic within an ROI, or some weighted average of the Jacobian values
within the ROI. For simplicity, we summarize the Jacobian values by averaging them within
several ROIs traced on the control MDT. While not necessarily the optimal summary in terms
of power, these results may at least be compared with the results of automated volumetric
parcellation methods. This equivalence occurs because the average Jacobian in a region would
be proportional to the overall volume of that region if it were labeled automatically by
transferring atlas labels onto the individual using the deformation field.

We computed the spatial mean of the Jacobian within each ROI for every subject from the
individual Jacobian maps (N=120; Fig. 4). In the white matter, and in frontal, parietal, and
temporal gray matter, there is a consistent trend for tissue reduction: AD < MCI < Normal.
The result from a T test (two-tailed, unequal variance) detects significant atrophy only in AD
and only in the temporal lobe (marked with a * in Fig. 4). The occipital lobe, which is typically
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one of the last areas to be affected by AD (Delacourte et al., 1999;Thompson et al., 2003),
shows no tissue loss.

As a post hoc test, we investigated whether the use of a hippocampal region of interest would
detect group differences better than using the whole temporal lobe (Fig. 5). This type of test is
exploratory only, with the goal of finding the best region for averaging the Jacobian values, if
a single numerical score is derived from TBM. The hippocampal ROI was delineated on the
Control N=40 average template by investigators at the University College London (J.B.). In
the AD group, atrophy was detected only in the left hippocampal ROI (p=0.04). There is a
visually apparent trend for a left versus right asymmetry in the degree of atrophy, but it is not
significant in either MCI or AD samples.

The outcome of these analyses suggests that using a hippocampal or temporal lobe ROI to
summarize the effects in TBM maps may be inferior to using pFDR to quantify suprathreshold
statistics within the same ROI. This is because the effects within each ROI are spatially
heterogeneous, and numerical averages across spatial regions necessarily deplete the power of
local tests by averaging all voxels equally. By contrast, pFDR can measure the quantity of non-
null statistical events in an ROI, which may detect effects that are focused on a relatively small
region of an ROI, or only partially overlapping with it.

Comparison with the method of directly aligning mean anatomical templates
Fig. 6 shows the mean level of volumetric atrophy, in AD and MCI, relative to controls, as a
percentage, using the method of directly aligning group templates, which was advocated in
(Rohlfing et al., 2005;Aljabar et al., 2006,2008). This method suggests that there is widespread
atrophy in AD, in agreement with both the standard method and with visual inspection of the
MDT templates. Atrophy of 20–30% was detected throughout the temporal lobe in AD, with
moderate atrophy (10-20%) in the superior and middle frontal gyri, superior frontal sulcus, and
corona radiata. The MCI pattern suggests atrophy of around 5% throughout the white matter,
with deficits reaching 10–15% in the temporal lobes and hippocampus. A mean Jacobian was
calculated within each ROI to show the computed overall volume differences for each lobe
(Table 2). When compared to the normal group, the AD group shows the greatest volumetric
deficit loss in the white matter, a reduction of 6.62%, and in temporal lobe gray matter, a volume
deficit of 5.79%. In line with the literature, frontal and parietal gray matter show smaller
proportional deficits, and tissue loss is not detected in the occipital lobes.

However, the direct alignment method has a serious limitation. When computing a group
difference based on aligning group average images, there is no convenient way to conduct
voxel-wise statistical tests to establish the significance of the observed differences (as noted
in (Rohlfing et al., 2005)) since only one Jacobian map is derived to identify differences
between the two group templates. In principle, a null distribution for the group-to-group
deformation may be computed by permuting the assignment of subjects to groups, constructing
mean anatomical templates for each permutation, and assessing the statistical distribution of
deformation maps that would arise between these templates. As thousands of independent
MDTs would be required to assemble this reference distribution, and each would require two
rounds of nonlinear registration in groups of 40 subjects, this is computationally prohibitive
(requiring around 80,000 CPU hours). If an omnibus probability (i.e., corrected for multiple
comparisons) is determined by comparing the number of suprathreshold voxels in the true
labeling to the permutation distribution, the number of permutations N must be chosen to
control the standard error SEp of omnibus probability p, which follows a binomial distribution
B(N, p) with  (Edgington, 1995). To adequately control the standard error
of the resulting p-values derived from the permutation distribution, N=8,000 randomizations
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are required to ensure that approximate margin of error (95% confidence interval) for p is
around 5% of p, when 0.05 is chosen as the significance level.

As an approximation, we conducted voxel-wise two-sample t tests using the variance term
obtained from the first approach as an estimate of the group variance between MCI/AD and
control, subject to checking (below) that this did not inflate Type I error when truly null groups
were compared. Using the estimated variance from the individual Jacobian maps, this
alternative TBM design appeared to detect substantial atrophy in regions degenerating both
early and late in AD. However, when applied to compare two different groups of normal
subjects, the direct method did not control for false positives at the conventional rate, showing
widespread “differences” even after multiple comparisons correction (Fig. 7; FDR q-
value=0.0001). This problem occurs because the variance in the template-to-template
registration is not simply related to the variance in the individual-to-template case; it depends
on the geometry of the registration algorithm's cost function landscape with respect to the
transformation parameters. One might expect the averaging of individual differences to be a
slightly conservative approach as the variance in individual-to-template registrations is
typically much higher than the variance in template-to-template registrations, as the cost
function landscape is much smoother with respect to the alignment parameters when aligning
two template images of very similar contrast and geometry. The registration error in individual
registrations may be greater than that observed in template-to-template registrations, and this
source of variance works against finding systematic group differences in volume, and may
therefore underestimate the true reduction in volume in AD and MCI. This seems to be
supported by the finding that the estimated volume differences for each tissue type in each lobe
are around 50% greater for the TBM method based on directly aligning group averages, than
for the TBM method based on averaging individual differences. A similar pattern was observed
in a recent study (Chou et al., in press), in which anatomical labeling of the ventricles based
on a single registration was more error-prone than combining multiple images to derive a
segmentation, which led to better effect sizes in discriminating AD from controls (see (Twining
et al., 2005), for related work). Even so, the lack of a computable null distribution for the direct
method means that differences it detects cannot be regarded as statistically established. Using
the variance of the individual mappings is not appropriate, as it leads to false positives.

A second argument may also be made that the direct method is inherently more prone to
registration error and than the averaging of results from many registrations. Regardless of the
algorithm used, both linear and nonlinear registration are imperfect and registration errors are
not simply Gaussian at each voxel. When each subject is registered individually to a template,
these errors are not likely to be compounded, as each subject has slightly different error maps
that are likely to cancel out to some degree. However, when the non-linear averages are directly
registered to each other, the registration errors will be compounded (as the same registration
error is found in all subjects of the group after they have been aligned to the group template).
This is likely to induce “spatial shifts” that may appear as (false) group differences.

Global differences
Finally some comment is necessary regarding the discounting of global anatomical differences
in TBM. The maps reported here assessed residual anatomical differences after an initial 9-
parameter global scaling of all AD, MCI, and control subjects to match an anatomical template.
This scaling was performed in the automated registration step, and, in our cohort, the degrees
of scaling (mean global expansion factors) for groups of controls, MCI and AD patients were
1.35 (SD = 0.14), 1.35 (0.14) and 1.32 (0.15) respectively, and there was no significant
difference among the three groups (single factor ANOVA p-value = 0.62). As such, we did not
adjust for group differences in overall brain scaling in our analyses, as no such differences
were detected.

Hua et al. Page 11

Neuroimage. Author manuscript; available in PMC 2009 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Single-subject analysis
Some comment is warranted regarding the possible value of TBM to assess of atrophy in
individual subjects, which is closer to the problem faced in a clinical setting when evaluating
disease burden. While we do not attempt a comprehensive analysis of this question here, Fig.
8 shows a map comparing brain structure in a single subject against a group mean. Relative to
the mean template from the control subjects, this individual has 30% lower regional volumes
throughout much of the white matter (blue colors), clear CSF space expansion in the Sylvian
fissures (red colors) and in cortical regions, where sulcal spaces are enlarged. By comparing
this with the standard deviation of the normal group, the significance map shows widespread
regions with abnormally low tissue volumes (in the white matter) or abnormal expansions (in
the perisylvian CSF). These effects are not focused in the cortex, suggesting that elastic
registration has higher power to resolve white matter atrophy, perhaps because (1) registration
is typically more accurate in the deep white matter than in the cortical gray matter, and (2)
normal structural variation in subcortical regions is less than at the cortex, so abnormalities are
easier to detect.

Discussion
This study had four main findings. First, a TBM method based on directly aligning group
averaged images was found to be problematic, as it did not correctly control for false positives.
This problem was solved by aligning each subject to a single template, and analyzing individual
maps. Second, we showed a CDF-based method that can help to decide which methodological
choices affect power in TBM; linear (9 parameter) initial registration and larger samples were
found to give higher effect sizes, and the dependency on sample size was explored. Third,
analysis of voxels in large regions such as the temporal lobe was more powerful than using
small regions such as the hippocampus, confirming that TBM is better for resolving distributed
atrophy rather than very small-scale changes, at least when used in a cross-sectional design.
Fourthly, clinical measures of deterioration in brain function (MMSE, CDR scores) were
tightly linked with both atrophy and ventricular expansion, but the atrophy measures gave
higher effect sizes. The best TBM-based marker of neurodegeneration was temporal lobe
atrophy, as this distinguished AD from controls better than other measures.

In our comparison of two types of TBM design, we first used the traditional method, which
creates individual Jacobian maps for each subject by non-linearly aligning their MRIs to the
normal MDT template. All the Jacobian maps share a common coordinate system defined by
the normal MDT, so an average map of the group (normal, MCI or AD) was created by taking
the arithmetic mean at each voxel (other possible approaches include using the geometric mean,
matrix logarithm mean, Frechét mean, or geodesic metrics on the deformation velocity (Woods,
2003; Avants and Gee, 2004; Leow et al., 2006; Aljabar et al., 2008; Lepore et al., 2008).
Statistical parametric maps may then be computed to associate regional atrophy with predictors
measured in each individual (diagnosis, clinical scores, etc.). By contrast, the direct method
uses geometric centering to construct an average template that conforms to the group mean
geometry, and then a single non-rigid transformation quantifies group differences. The two
methods both detect tissue loss in temporal lobes, hippocampus, the thalamus and widespread
widening of sulcal and ventricular CSF spaces, congruent with prior studies (Baron et al.,
2001; Callen et al., 2001; Frisoni et al., 2002; Busatto et al., 2003; Gee et al., 2003; Thompson
et al., 2003; Karas et al., 2004; Testa et al., 2004; Teipel et al., 2007; Whitwell et al., 2007).

The direct method has several limitations. First, it is difficult to covary for other variables
measured at the individual level, such as age or sex, although this could be circumvented to
some degree by matching samples for these variables. Second, it is computationally prohibitive
to compute an empirical null distribution for deformations between group average templates,
unless tens of thousands of templates are generated from permuted datasets. Null distributions
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for Jacobian maps based on individual registrations are faster to compute, but do not adequately
control for false positives when null experiments are performed (such as aligning two control
MDTs with no true difference). Further study is necessary to clarify how registration errors
compare when registering individuals and templates to other templates. In a recent study,
Aljabar et al. (2008) computed maps of brain growth in 25 infants scanned one year apart, at
one and two years of age, based on creating a mean template for baseline scans and directly
aligning it to a mean template from follow-up scans. While they were not able to provide
significance measures for the mapped changes, the overall growth factors for gray and white
matter, computed from this direct registration, agreed with measures from independent
segmentations, and the results were visually reasonable and in line with the
neurodevelopmental literature. This suggests that the change rates observed with the direct
method may be accurate, at least in a longitudinal study, but their significance is difficult to
assess. If the direct method is used in a longitudinal study, it may be more robust than in a
cross-sectional study, as the cohorts at each time point are by definition matched on all
demographic variables other than time. In a cross-sectional study, any confounds in
demographic matching of the groups may enter the maps of group differences, without a
statistical means to adjust for them or estimate their effects.

Any TBM study is limited by the accuracy with which deformable registration can match
anatomical boundaries between individual brains and corresponding regions on the template.
Our mean deformation template (MDT) was created after rigorous nonlinear registration, and
geometric centering. Several studies have suggested that registration bias can be reduced, and
effect sizes increased, by using an unbiased group-average template of this kind (Kovacevic
et al., 2005; Kochunov et al., 2002; Good et al., 2001; Lepore et al., 2007). Most anatomical
features and boundaries are well-preserved in the MDT, and the hippocampus is sufficiently
discernible to be labeled by hand on the MDT. Even so, it may not be possible to achieve
accurate regional measurements of atrophy, especially in small regions such as the
hippocampus, since that would assume a locally highly accurate registration. TBM is best for
assessing differences with at a scale greater than 3–4 mm (the resolution of the FFT used to
compute the deformation field). For smaller-scale effects, direct modeling of the structure, e.g.
using surface-based geometrical methods, may offer additional statistical power to detect
subregional differences (e.g., Morra et al., submitted for publication).

As the ADNI initiative is a study of 200 AD, 400 MCI, and 200 controls, this study focused
not just on AD but also on MCI. The focus in the AD field has shifted to MCI in recent years,
in the hope of tracking disease progression and ultimately resisting it, before individuals
progress to AD. It is useful to know what factors affect detection power or link with cognition
in MCI versus AD, as factors that can enhance power in MCI may not be so relevant in a study
of AD, and regions in which atrophy correlates with cognition in MCI may not be so relevant
to cognition in AD, or in healthy aging. In this study, we therefore included power estimates
and measures of effect sizes for TBM studies of both MCI and AD, revealing that sample
requirements differ greatly for different effects of interest.

In this study, we did not (beyond multiple pair-wise comparisons) attempt to gain any insight
into the shift in morphological changes from normal controls to MCI to AD. A strength of a
TBM analysis would be to map all subjects to a common template, and then track the
distribution of atrophy it spreads anatomically over time (e.g. Thompson et al., 2001) or with
clinical progression (Janke et al., 2001). As ADNI is a longitudinal study, we plan to fit
longitudinal models to detect the shift in the location of greatest atrophy as the longitudinal
data (e.g., 1 year follow-up scans) become available. This will require repeated-measures
methods, which have not yet been validated for TBM, and specialized methods for creating
longitudinal mean templates, which are emerging in the literature (see Lorenzen et al., 2004,
2006).
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The ROI-based analyses (Figs. 4 and 5) revealed patterns of atrophy in MCI and AD, but with
relatively low significance levels. In future, we will see if statistical power can be improved
by adjusting for the effects of the CSF signals on the overall estimates of atrophy, as the effects
of CSF expansion partially oppose the contraction signal. Due to potential biases, we avoided
analyzing effects from the contracting voxels only (i.e., voxels with Jacobian less than one),
such as taking the average Jacobian in the contracting regions, or counting the numbers of
contracting voxels. Such an approach could be biased, in that a group with greater variance in
the Jacobian could have more contracting voxels while having the same mean level of atrophy.
Also, an analysis of contracting voxels could be biased towards a group with a very small
region of very high atrophy, which could occur, at least in principle.

Use of CDF plots
In neuroscientific studies using TBM, it is vital to optimize statistical power for detecting
anatomical differences, especially when evaluating the power of treatment to counteract
degeneration, as in a drug trial, or in an epidemiological study to identify neuroprotective
factors (Lopez et al., 2007). Comparison of power across image analysis methods is of great
interest, but some caveats are necessary regarding the use of CDF-based approaches, in which
the ordered p-values are plotted and compared to the expected 45-degree line under the null
hypothesis of “no effect”. In highly sensitive methods, the departure of the early part of the
curve from a 45-degree line will be large (showing a positive upswing). This assumption is
supported by our plots (Fig. 3), in which successively larger sample sizes boost the effect size
in statistical maps identifying group differences, for both MCI and AD. As shown in the CDF
plots (Fig. 3), for all significance thresholds (values on the x axis), the proportion of significant
voxels, detecting group differences, increases dramatically as the group size is enlarged from
N=10 to 40. In prior work (Lepore et al., 2008), we used this same CDF approach to note that
the deviation of the statistics from the null distribution generally increases with the number of
parameters included in the statistics, with multivariate TBM statistics on the full tensor
typically outperforming scalar summaries of the deformation based on the eigenvalues, trace,
or the Jacobian determinant. With this approach, we also found that effect sizes in TBM may
be boosted, at least in some contexts, by using mean anatomical templates based on Lie group
averaging (Lepore et al., 2007) or by using deformation models based on information-theoretic
Kullback-Leibler distances (Leow et al., 2007), or using Riemannian fluid models, which
regularize the deformation in a log-Euclidean manifold (Brun et al., 2007).

Even so, we do not have ground truth regarding the extent and degree of atrophy or
neurodegeneration in AD or MCI. So, although an approach that finds greater disease effect
sizes is likely to be more accurate than one that fails to detect disease, it would be better to
compare these models in a predictive design where ground truth regarding the dependent
measure is known (i.e., morphometry predicting cognitive scores or future atrophic change;
see e.g., (Grundman et al., 2002)). We are collecting this data at present, and any increase in
power for a predictive model may allow a stronger statement regarding the relative power of
different models in TBM, or the relative power of one image analysis method versus another
for tracking brain disease.

A second caveat is that just because a CDF curve is higher for one method than another in one
experiment, it may not be true of all experiments. Without confirmation on multiple samples,
it may not reflect a reproducible difference between methods. FDR and its variants (Storey,
2002; Langers et al., 2007) declare that a CDF shows evidence of a signal if it rises greater
than 20 times more sharply than a null distribution, so a related criterion could be developed
to compare two empirical mean CDFs after multiple experiments. As simple numeric
summaries sacrifice much of the power of maps, and provide a rather limited view of the

Hua et al. Page 14

Neuroimage. Author manuscript; available in PMC 2009 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



differences in sensitivity among voxel-based methods, additional work on CDF-based
comparisons of methods seems warranted.

Correlations with clinical measures
The corrected P values signify the overall significance levels of the correlations between
atrophy and clinical scores within the whole brain. For MMSE, both the positive and two-tailed
tests are significant, suggesting a correlation between the regions of volume reduction and
lower MMSE scores. For global CDR and sum-of-boxes, we obtain robust results in both
negative and two-tailed correlations. As higher CDR scores denote greater impairment, the
negative correlation links lower brain volume with greater CDR scores. Based on Table 1,
atrophy of brain tissue (gray and white matter) detected by TBM links better with cognition
than volume expansion (e.g., of the ventricles), although each is significantly associated with
both MMSE and CDR. Strictly speaking, the CSF expansion signal may offer less signal to
noise than the atrophic signal as we are using statistical tests that depend on the total volume
of regions that reach a certain threshold (supra-threshold volume and corrected q-values from
FDR). It may be that, if the statistical tests had been formulated differently, e.g., as strict voxel-
level comparisons (e.g., maximal t-statistics), they would detect CSF differences with greater
effect sizes than atrophic effects.

Analysis of group size
It may seem odd to assess effect size in groups as small as 10 to 40 subjects per group when
imaging studies such as ADNI now assess 200 or 400 subjects per group. Here a sample as
low as 10 is merely included to show how power completely breaks down when the sample is
minimal and not sufficiently powered to detect an effect with reasonable confidence. Although
morphometric studies of 10–20 subjects per group were more common in studies five to ten
years ago (e.g. Thompson et al., 2001), most current MRI studies are designed to contrast
patients in several categories (treatment versus placebo, MCI converters versus non-converters,
ApoE4 carriers versus non-carriers), so it is common to have groups containing as few as 10
subjects for some statistical contrasts (given the low annual rate of conversion from MCI to
AD, and the low incidence of certain risk genotypes). As seen with our CDF approach, for
contrasts that are underpowered, it may have merit to plot the CDFs based on pilot samples,
and assess the rate at which the CDFs are increasing (or not) with successive increments in the
sample size. Although there is no widely accepted power analysis for morphometric studies
using statistical maps as outcome measures, the CDF based methods, such as those advocated
here, offer a means to study whether incrementing a small sample could yield sufficient power
to reject a null hypothesis.

Single-subject analysis
Although these maps (Fig. 8) are clearly of interest, several caveats are needed in interpreting
them. First, in this case all of the variance used to assess abnormality comes from a statistic
comparing the single subject with the normal group, so some covariation for age, sex, and
possibly other factors, ideally based on multiple regression in a large sample, would be more
appropriate to calibrate the level of age-adjusted atrophy. Second, lower tissue volumes in an
individual are not always a sign of disease, so plotting regional volumes as a percentile relative
to a normative population (which is essentially what the significance map is) may reflect a
combination of disease-related atrophy, and some natural variation in brain volumes. These
factors could be easier to disentangle in a longitudinal evaluation of the same patient over time.
Finally, as noted by Salmond et al. (2002), if a Gaussian distribution is assumed for the Jacobian
statistics at each voxel, a significant number of false positives may still arise purely due to non-
Gaussianity when comparing a single subject to a group. To ensure that the data are smooth
enough for the residuals to be regarded as normally distributed, Salmond et al. suggested that
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the data be first heavily smoothed (using a 12mm FWHM kernel); alternatively, a large control
population could be used to establish a non-parametric reference distribution at each voxel,
which is essentially the permutation approach taken here.

Anatomical maps and prior work
The main contribution of this paper, relative to prior work using voxel-based morphometry
(VBM) and tensor-based morphometry in AD or MCI, is to study the effects of different
analysis choices within the framework of TBM, and how they affect the sensitivity for detecting
disease effects. Our anatomical findings are largely in line with prior work using automated
techniques to map patterns of brain atrophy at voxel-level. Initial formulations of VBM derived
maps of structural differences by comparing the local composition of brain tissue types after
global position and volumetric differences had been removed through spatial normalization
(Ishii et al., 2005; Shiino et al., 2006; Davatzikos et al., 2008; Fan et al., 2008; Karas et al.,
2007; Smith et al., 2007; Vemuri et al., 2008). In contrast, TBM is a method based on high-
dimensional image registration, which derives information on regional volumetric differences
from the deformation field that aligns the images. Recent reformulations of VBM, termed
‘optimized VBM’ (Davatzikos et al., 2001; Good et al., 2001) modulate the voxel intensity of
the spatially normalized gray matter maps by the local expansion factor of a 3D deformation
field that aligns each brain to a standard brain template. As a result, the final modulated voxel
contains the same amount of gray matter as in the native pre-registered gray matter map.
Chetelat et al. (2002) and Karas et al. (2004) used VBM to analyze patterns of gray matter loss
in MCI and AD. Relative to normal subjects, Chetelat et al., (2002) found that MCI subjects
showed significant atrophy in the hippocampus, temporal cortices, and cingulate gyri. Gray
matter density in the posterior association cortex was significantly higher in MCI than AD.
Karas et al. (2004) found similar patterns of parietal atrophy in AD and MCI, but found active
hippocampal atrophy in the transitional stage from MCI to AD. The author suggested this
discrepancy could be due to borderline significance or difference in disease severity of MCI
populations. A very recent study by Teipel et al. (Teipel et al., 2007) used the TBM method to
study brain degeneration in MCI and AD. They used principal component analysis to extract
spatially distributed anatomical features associated with the diagnosis of AD, and they focused
on identifying features that may be useful in predicting the transition from MCI to AD. Future
longitudinal TBM studies with the ADNI data are likely to reveal which aspects of atrophy are
most predictive of future conversion to AD, and which voxel-based methods are optimal for
detecting progression or correlations with cognition. As the sample size increases, it may be
possible to detect and model effects of the MRI platform, field strength, or acquisition site, to
determine whether the multi-site and dual MRI platform acquisition of the data contributed to
reduced effect sizes, especially for the MCI group. Comparisons distinguishing MCI from
controls my be more sensitive to these effects, whereas the AD versus control group comparison
has an effect size so great that it overwhelms any increased variability due to multicenter
acquisition. This potential source of variability, that is perhaps not typical of studies in general,
will be evaluated in future.
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Fig. 1.
Two Alternative TBM Designs. Inter-group differences in brain structure may be assessed with
TBM, using two alternative designs, which differ in terms of which images are registered to
each other. The first approach, termed “Averaging Individual Differences”, (a), a mean
template is created for the control subjects. Then, every image in the study is nonlinearly
aligned to the control average template and the set of individual differences between each
subject and the template is analyzed statistically. In panel a, the mean template was built from
controls only; arguably, it could instead be re-built each time based on all subjects relevant to
a specific hypothesis (e.g., Controls and MCI only, for an MCI-control comparison), but this
would mean that the results of different contrasts would not be spatially registered with each
other. The second approach, termed “Aligning Group Averages”, reflects a relatively new
concept in TBM design (Rohlfing et al., 2005; Aljabar et al., 2006, 2008), (b), and creates
minimal deformation targets (MDTs) for each diagnostic group separately using nonlinear
registrations of subjects within the group (A1, A2, …; N1, N2, …; etc.) to create a template
reflecting the group's mean geometry. Systematic anatomical differences between groups may
then be assessed using direct alignment of these group-specific templates. In panel b, JAD and
JMCI denote the Jacobians of these mappings, which contain information on the level of atrophy
in the MCI and AD groups versus controls. We compare these two methods at the end of the
Results section; for all statistical tests, the standard method of “averaging individual
differences” is used.
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Fig. 2.
3D Maps of Brain Atrophy (based on the method of averaging individual differences). The top
rows of panel a and b show the level of atrophy in 40 AD patients and 40 MCI subjects as a
percentage reduction in volume relative to controls, respectively. The bottom rows show the
significance of these reductions, revealing highly significant atrophy in AD but a more
anatomically restricted pattern of atrophy in MCI. The high Jacobian values immediately
adjacent to the ventricle result from the limited spatial resolution of the deformation fields,
which are computed via a Fourier transform on a 323 grid. The ventricles expand presumably
due to cell or myelin loss in broad areas overlying the ventricular surface; not in the narrow
band of tissue immediately adjacent to the ventricular surface, in which voxels are partial
volumed with voxels where expansion is detected. This is also the case with PET and fMRI
imaging, where imaging signals ‘bleed’ into the CSF space where the signal differs (and
typically there is no CSF signal). As with those modalities, sharp boundaries are not found in
group averaged deformation maps, so the image resolution should be interpreted with this in
mind. Higher resolution morphometry is possible in longitudinal studies, where it is feasible
(and makes sense) to perform image registration at a finer spatial scale.
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Fig. 3.
Comparing Effect Sizes with CDF Plots: Influences of Sample Size and Registration Model
(9 vs. 12 parameter linear registration) on the Statistical Effect size in Discriminating MCI and
AD from Normal Subjects, using the TBM design of averaging individual differences. With
some caveats (see Discussion), higher CDF curves denote greater effect sizes, i.e., a large
number of significant voxels detected within the temporal lobes. Three aspects are notable: (1)
Atrophy is detected with a greater effect size in the AD group compared to the MCI group,
regardless of the method; (2) in AD, effect sizes are greater when larger samples are used (e.g.,
40 per group versus 30, 20 or 10); (3) Using 9-parameter versus 12-parameter initial registration
may provide slight gains in power, but these are no greater than the improvements gained by
adding 10 subjects to the sample. The omnibus (corrected) significance for each experiment is
the q-value obtained from the positive FDR method. 40 subjects per group are needed to detect
atrophy significantly in AD and at trend level in MCI, using the entire temporal lobe as an ROI.
Atrophy is detected in MCI with 40 subjects per group, but only in the left temporal lobe.
Perhaps surprisingly, the jump in effect size as one goes from a sample size of 30 to 40 is much
greater for normal vs AD than normal vs MCI. This may be because the true effect size in AD
is greater, but it may also be because CDFs rely on thresholdings of the statistical maps, leading
to many voxels reaching significance within a small range of sample sizes.
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Fig. 4.
Mean Jacobian of Normal, MCI and AD in each lobar ROI (N=40 for each group, 9P linear
registration). This plot shows TBM-based volume estimates (relative to the normal subjects)
for each tissue type in each lobe. To ease comparison of volumes across lobes, values are
expressed as a proportion of the control average volume. The * indicates that there is significant
atrophy relative to normal subjects.
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Fig. 5.
Mean Jacobian Values within the Hippocampus, for Normal, MCI and AD Groups, using a
Manually-Defined Traces of the Hippocampal Formation Delineated on the Control Average
Template (N=40 for each group, 9P linear registration). This plot shows TBM-based volume
estimates (relative to the normal subjects) for each tissue type in ROIs of the left and right
hippocampi. The * indicates that there is significant atrophy relative to normal subjects.
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Fig. 6.
3D maps of brain atrophy (based on aligning group averages). These maps show the level of
volumetric atrophy in AD and MCI relative to controls. In the top left panel, AD patients show
prominent atrophy of up to 30% regionally in the temporal lobes, widespread reductions in the
white matter, and notable expansion of the interhemispheric fissure (coded in red colors). MCI
subjects show atrophy in the same regions but to a lesser degree. These maps are computed
after spatial normalization of all brains to the same global scale, so regions with apparent excess
tissue indicate regions with either absolute volumetric gains, or relatively greater tissue in
proportion to overall brain scale. The bottom row shows the significance of these changes,
computed using the variance of the individual deformation mappings, and color-coded
according to the scale at the bottom.
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Fig. 7.
CDF Plots of Group Differences based on Aligning Group Average Images (N=40; 9P linear
registration). Voxel-wise two-sample t tests were conducted using the Jacobians derived from
direct alignment of group average templates and the variance term obtained from the method
of averaging individual differences. The green curve (MCI vs. Normal) overlaps with the black
curve which represents the empirically confirmed null distribution of statistics (registering one
normal group template to the other). These lines are far from diagonal, and the method of
aligning group averages, when used with a variance term from individual registrations, does
not control false positives properly (FDR q-value for controls: 0.0001).
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Fig. 8.
Single-subject analysis. Here regional brain volumes in a single subject with AD are locally
20–30% lower than the control group average (top panel, blue colors) and 20–30% larger in
some of the CSF spaces (red colors). Using the variance in the control group to assess the
percentile, for regional volumes, at which this subject would fall relative to normal controls,
most regions are well outside the confidence limits for normal volumes (lower panel, red
colors). For caveats regarding the significance and interpretation of single-subject TBM maps,
see the main text.
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Table 1
Correlations with clinical measures of dementia severity

MMSE Score Global CDR Sum-of-Boxes

Negative correlations (−1) 0.079 0.006 0.002
Two-tailed correlations (0) 0.001 0.007 0.001
Positive correlations (+1) 0.001 0.048 0.011

P values (corrected for multiple comparisons by permutation testing) for correlations between Jacobian maps and clinical measures. If negative correlations
are significant, there are regions of the image (e.g., the ventricles) where greater expansion is correlated with lower MMSE scores. If positive correlations
are significant, there are regions of the image (e.g., in gray and white matter) where volume reductions are correlated with lower MMSE scores. If two-
tailed correlations are significant, there is evidence that structural differences in the group, whether they are contractions or expansions, are linked with
cognition. For MMSE, the positive or two-tailed correlations – which are sensitive to atrophy – are more robust. Higher global CDR and sum-of-boxes
scores denote greater impairment; in that case, the negative or two-tailed correlations are more reliable. Put simply, the atrophy (volume contraction)
detected by TBM links better with cognition than volume expansions do (in the CSF spaces), although each is significantly associated with both MMSE
and CDR. Strictly speaking, it may be that the CSF expansion signal has less signal to noise than the atrophic signal as we are using a statistical tests that
depend on the total volume of regions that reach a certain threshold (supra-threshold volume and corrected q-values from FDR). It may be that, if the
statistical tests had been formulated differently, e.g., as strict voxel-level comparisons (e.g. maximal t-statistics), they would detect CSF differences with
greater effect sizes than atrophic effects.
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