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Abstract
We present a novel 3-D deformable model-based approach for accurate, robust, and automated
tissue segmentation of brain MRI data of single as well as multiple magnetic resonance sequences.
The main contribution of this study is that we employ an edge-based geodesic active contour for
the segmentation task by integrating both image edge geometry and voxel statistical homogeneity
into a novel hybrid geometric–statistical feature to regularize contour convergence and extract
complex anatomical structures. We validate the accuracy of the segmentation results on simulated
brain MRI scans of both single T1-weighted and multiple T1/T2/PD-weighted sequences. We also
demonstrate the robustness of the proposed method when applied to clinical brain MRI scans.
When compared to a current state-of-the-art region-based level-set segmentation formulation, our
white matter and gray matter segmentation resulted in significantly higher accuracy levels with a
mean improvement in Dice similarity indexes of 8.55% (p < 0.0001) and 10.18% (p < 0.0001),
respectively.

Index Terms
3-D image segmentation; brain segmentation; deformable models; geodesic active contour

I. Introduction
Magnetic resonance (MR) has become the main modality for brain imagingthat facilitates
safe, noninvasive assessment and monitoring of patients with neurodegenerative diseases
such as Parkinson’s disease, Alzheimer’s disease (AD), epilepsy, schizophrenia, and
multiple sclerosis (MS) [1]–[6]. The ability to diagnose and characterize these diseases in
vivo using MR image data promises exciting developments both toward understanding the
underlying pathologies, as well as conducting clinical trials of drug treatments. One
important biomarker that is often used to assess patients with neurodegenerative disease is
brain tissue volume. The typical rate of global brain atrophy in MS patients has been shown
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to be 0.6%–0.8% annually, which is two to three times the normal atrophy rate [7]. Evidence
has shown that white matter (WM) and gray matter (GM) atrophy at different rates, and each
correlates differently to disability [8]–[10]; thus, accurate measurement of the WM and GM
brain tissues can provide valuable quantitative indicators of disease progression and,
potentially, treatment outcomes [7], [11]. Thus, the main goal of this paper is to introduce an
automatic algorithm for robust WM, GM, and cerebrospinal fluid (CSF) segmentation to
facilitate accurate measurement of brain tissues.

Previously, to measure various tissue volumes in MRI head scans, manual WM and GM
segmentations were often performed by skilled experts. Manual segmentation, however, is
extremely time-consuming, mostly limited to 2-D slice-based segmentation, and prone to
significant intra- and interrater variability [12]. In particular, manual segmentation cannot be
practically and efficiently performed in situations where precise measurements on a large
number of scans are required, such as in clinical trials. Therefore, a fully automatic, highly
accurate, and robust tissue segmentation technique that provides systematic quantitative
analysis of tissue volumes in brain MRI is an invaluable tool in many studies of
neurodegenerative diseases. A wide variety of methods have been proposed for automating
the segmentation process over the past decade that provided either semi- or fully automated
frameworks for the segmentation of brain tissues. A review of some of these methods can be
found in [13] and [14].

One popular family of brain tissue segmentation methods is based on normalizing the brain
scans by registering (or aligning) them to a predefined atlas of brain tissues. One example is
the popular statistical parametric mapping (SPM) technique, which relies on voxel-based
morphometry (VBM) [15]. A number of extensions to the original SPM technique have been
proposed. For example, SPM is utilized to initialize an expectation–maximization (EM)
segmentation framework [16], which has been extended to nonrigid registration [17].
Although such atlas-based methods are typically robust to artifacts such as acquisition noise
and distortions, concerns and discussion [18]–[20] have ensued regarding the use of
templates from one population when analyzing data from another population. For example,
morphing patient scans with pathologically enlarged ventricles to match a normal template
could potentially distort the surrounding tissues in an unpredictable manner. Such structural
differences might lead to systematic biases and misregistration errors that are difficult to
quantify [19]. Such concerns introduce yet another level of complications arising from
image registration and atlas generation procedures that add to the already nontrivial
segmentation problem, especially in the presence of anomalies such as tumors, lesions, and
tissue atrophy.

A second family of brain tissue segmentation methods assigns a label for each tissue based
on image statistics either by clustering [21] or by modeling the brain tissue intensity
distributions as a finite mixture of distributions such as EM [22], maximum a posteriori
(MAP) [23], simulated annealing [24], and Gaussian mixture modeling (GMM) [25]. Other
approaches incorporate additional regional information, which is lacking from these
statistical methods, into their segmentation framework. Such methods extend clustering or
EM by integrating with fuzzy connectedness [26], topological constraints [27], Gibbs
random field (GRF) [28], and hidden Markov random field (HMRF) [29] in the
segmentation task. A common difficulty with many of these methods, particularly the
random field approaches, is the requirement for proper parameter settings in a supervised
setting.

A third family of brain tissue segmentation methods is based on utilizing geometric
information such as deformable models or active contours [30] that delineates region
boundaries using a minimization of an energy functional [31], [32]. Deformable models
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employing level sets [33] provide an effective implicit representation rather than explicit
parameterization of the evolving contour. However, a common problem of directly applying
the active contour approach in segmenting brain MR images is leakage through weak or
noisy edges that are ubiquitous, especially for edge-based deformable models, e.g., geodesic
active contour [34], which describe the evolution of propagating curve as a function of
image gradient features. Some researchers incorporated image statistics into their
deformable models in various segmentation applications by utilizing coupled surface
principle [35], [36] and fuzzy logic [37], [38] to achieve better stability. Others employed a
region-based model [39] by utilizing regional homogeneity in a curve evolution perspective
and a hierarchical implementation on brain pathology images [40]. More recently, tissue
segmentation was performed and quantitatively evaluated [41]–[43] by using the multiphase
3-D level set segmentation (M3DLS) algorithm [41]. M3DLS utilizes a multiphase
extension [44] of the region-based deformable model [39] based on the Mumford–Shah
functional [45] by iteratively deforming two closed curves separating four regions. This
minimal partitioning approach assumes piecewise constant or piecewise smooth data and
optimizes a sum of terms, including the lengths and areas for the two closed curves, and the
sums of square intensity differences from the means for all four separated regions. This
minimization is also performed in a level set framework [33] implicitly. Further extending
this model to N -phase allows separation of 2N regions but the number of classes to be
segmented is limited to two to the power of the number of closed curves defined. Moreover,
complexity increases as more level sets are required and the rate of convergence is typically
slow [46].

In this paper, we propose a MR brain tissue segmentation approach that integrates both
geometric and statistical image features into an edge-based deformable model formulation to
achieve accurate segmentation results. By utilizing this novel hybrid image feature, we
present one solution to the challenging problem of stabilizing the active contour. Similar
existing work used a topology preservation principle enforced at non-simple points in a
geometric deformable model [47], or a curve shortening prior for smoothness in a level set
framework to minimize leakage [40], [48]. Here, we do not explicitly apply any smoothness
and topological constraints (e.g., topology preservation at nonsimple points) to the
geometric deformable models but rather rely on the proposed hybrid feature to regularize the
level sets. Other approaches used prior knowledge such as a distance penalizing term in the
level set function between two boundary classes [35], a fuzzy decision system on contour
distance to an anatomical target or atlas [37], or a dissimilarity measure between the contour
and a shape model in the energy term [49]. Here, we demonstrate our proposed approach in
segmenting complex anatomical structures such as WM, GM, and CSF without a priori
knowledge. Hence, the proposed approach is truly automated and data-driven in both
statistical and geometric sense. Furthermore, we compare the segmentation performance of
our proposed edge-based level set method to the region-based M3DLS approach [41] on real
clinical MRI scans. We demonstrate the improved WM, GM, and CSF segmentation
accuracy and robustness when using the proposed method.

The paper is organized as follows: In Section II, we introduce our novel hybrid geometric–
statistical feature implemented on the edge-based geodesic active contour formulation. Our
modified deformable model is then used to design a new automated 3-D brain tissue
segmentation algorithm for both single and multiple MR sequence data. In Section III, we
present quantitative and qualitative results and analysis obtained on simulated and real
clinical MRI images, as well as comparisons to results reported by using M3DLS. We then
conclude in Section IV.
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II. Methods
In this section, we present our 3-D brain segmentation method that integrates both geometric
and statistical features in an edge-based geodesic active contour framework. We describe the
proposed model in its general form. We then present a segmentation framework for brain
MRI for both single and multiple MR sequence data.

A. Edge-Based Deformable Model
In this study, we utilize the geodesic active contour model [34] rather than the region-based
formulation [39] due to its computation soundness and extendibility. The geodesic model
delineates region boundaries by describing the evolution of a curve or surface C from an
initial position C0 as finding the minima of the Riemannian curve distance

(1)

where g is a general feature function, |∇I| is the gradient norm of intensity I, and q is the
parameterization of the curve C. The right side of the equation describes the parameterized
curve C(q) such that the Euclidean length of C can be represented as L(C) = ∮|C′ε;(q)|dq =
∮ds, where ds = |C′(q)|dq is the Euclidean arc length or the Euclidean metric. Note that this
geodesic formulation of the active contour relies on g, the speed and halting feature for the
evolving surface in 3-D applications derived based on the geometric gradient feature of an
image. Generally, g is chosen as a positive-valued function of the intensity gradient as in (2),
where Î is a smoothed version of I and ρ = 1 or 2 [34]. Other similar monotonically
decreasing functions, such as the sigmoid function (3) with parameters α (width of intensity
window) and β (center of intensity window) are also often utilized [50].

(2)

(3)

The value of this feature function determines the propagation of the surface by searching for
the minimal Riemannian distance. An ideal edge would ultimately have a feature value of
zero at all the pixel points along this boundary. However, propagation relying solely on edge
feature is typically sensitive to noisy and weak edges that are frequently observed in medical
images. In particular, with the presence of complex anatomical structures, it is often
impossible to automatically and accurately derive the desired geometric edge term to
prevent contour leakage into the surrounding regions. Consequently, achieving accurate
segmentation results with edge-based geodesic active contour requires either user
intervention or careful adjustment of parameters such that the ideal boundary is minimal.
This process is subjective and ideal parameters are often difficult to derive for a fully
automated segmentation framework.

B. Proposed Hybrid Geometric–Statistical Feature
We propose to transform the feature function g in the traditional geodesic active contour
formulation into a hybrid feature function by incorporating geometric image features with

Huang et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



voxel statistics to help automate and regularize the evolving contours. The minimization of
the active contour is thus represented by (4)

(4)

where for gray-scale intensity MR images, P (I|Φ) represents the probability distribution
function of a mixture model (5) from which voxel statistics are drawn, assuming that all
voxels are identically and independently distributed and the image is to be described with K
class labels.

(5)

where P (k) represents the prior probability of the class label k and P (I|Φk) is the conditional
density function of the kth class given Φ, the parameter set of the distribution. We employ
Gaussian distributions as

(6)

which require a parameter set Φ = {μ, σ}, where μ and σ are the mean and standard
deviation. This parameter estimation problem for GMM is solved by applying the EM
algorithm [51] to the image intensity histogram.

The design of g in (4) utilizes both a geometric term and a statistical term. Geometrically,
the presence of strong image gradients indicates significant structural content. As a result,
the contour propagation speed slows to a halt. On the other hand, a lack of edge features
often indicates the presence of a homogeneous region. Statistically, high voxel probability
indicates a high likelihood of the voxel belonging to the class of interest, warranting a fast
contour propagation. If the voxel likelihood is reduced, the contour propagation is slowed
down accordingly. The contribution of voxel likelihood to the contour propagation exhibits
an inverse behavior to that of image gradients. Since both geometric and statistical features
are essential to the contour stability, they can be combined into a single hybrid feature
function by modeling the aforementioned behavior as

(7)

where the first term is the traditional geometric feature as in (3) and the second term models
the inverse behavior of voxel likelihood to image gradients using an inverse sigmoid
function with magnitudes between −1 and 1. Complementarily, these two components in the
new hybrid feature help regularize the evolving contour in both the geometric and statistical
sense. The minimization of (4) is then achieved by computing the Euler–Lagrange equation
[34]
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(8)

where κ is the Euclidean curvature, N⃗ is the inward unit normal, and C0 is the initial curve or
surface, and performing steepest gradient search (9), to deform C toward a minima

(9)

where {ψ, c, ε} are the free parameters introduced to govern curvature, propagation, and
advection strengths, respectively. With the designed hybrid feature, the algorithm uses only
the propagation term. Other terms are shown here for completeness. This curve evolution
equation is then embedded in a level set function u and solved for the steady state solution:

(10)

The numerical implementation is based on the curve evolution algorithm via level sets [33],
which utilizes an upwind piecewise continuous approximation scheme to provide a
numerically stable solution in the presence of singularities.

As summarized in Table I, the rationale behind using this new hybrid feature is to enable
handling of situations where the image gradient is high (small sigmoid(|∇I|) value) and the
posterior probability of voxel is low, in which the voxel is considered to be a significant
feature but lies outside of the desired region. We, therefore, aim to steer the contour slowly
away from this voxel by assigning a small negative feature value. On the other hand, if the
posterior probability is high, this indicates a significant feature within the desired region;
therefore, a small positive feature value is assigned. In contrast, if the image gradient is low
(large sigmoid(|∇I|) value) and the posterior probability is low, the voxel is considered to be
a weak gradient feature that lies outside of the desired region, warranting a large negative
feature value such that contour can be quickly steered away from that region. If the posterior
probability is high, a homogeneous area in the desired region is indicated, and is rewarded
with a large positive feature value for fast contour expansion. In summary, the proposed
hybrid feature provides an adaptive active contour propagation based on local information
reflecting both geometry and statistical homogeneity.

C. Segmentation of Brain MRI
Based on the proposed active contour model, we develop a fully automated 3-D brain tissue
segmentation algorithm for MR images. The segmentation procedures (Fig. 1) are a
generalization and extension of earlier work [52]. We first present the proposed algorithm
for T1-weighted (T1w) MRI scans, which are most often used for brain tissue segmentation
due to the generally high WM and GM contrast and the reduced effects of WM lesions in
patients with neurodegenerative diseases. We later extend the proposed method to
simultaneously incorporate additional MR sequence data, such as T2-weighted (T2w) and
PD-weighted (PDw) images, in addition to T1w.

To segment the brain tissues, we first estimate the GMM parameters such that each mixture
distribution represents one single class. Based on these estimated distributions, the
normalized posterior probability of each voxel is calculated. We derive the hybrid
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geometric–statistical feature as described above by combining both the voxel statistics and
the image gradient information. To initialize the active contour, we first introduce a voxel
threshold ts on the posterior probability to further regularize this contour initialization by
effectively removing voxels outside of the desired region boundaries due to noise or partial
volume artifacts. Based on the thresholded masks, we form the skeleton representation using
standard 2-D morphological sequential thinning (3 × 3 kernel) and sequential pruning (3 × 3
kernel) [53] iteratively until no further changes occur. This is done slice-by-slice in 2-D as
morphological operations are performed on discrete numbers of voxels, and to do this in 3-D
on anisotropic scans would require resampling of the acquired data, which would potentially
introduce additional artifacts. The hybrid feature and the contour initialization are
determined individually for each tissue to be segmented, and each contour is then
propagated independently. After the contours converge, minor overlaps and gaps occurred
between the individually evolving contour boundaries are re-assigned to a single label by
comparing the individual z-scores, the difference between voxel intensity to the sample
mean normalized by the sample standard deviation, of all tissue classes. A brief description
of the algorithm is described as follows:

Step 1: Given raw MRI scan U.

Step 2: Preprocess with intensity inhomogeneity correction, noise filtering, and brain
extraction to obtain V.

Step 3: Calculate gradient norm |∇I| of pixel intensity I in V.

Step 4: For k = 1 to K, tissue class labels:

1. determine the GMM distribution parameter set by using EM: Φk = {μk, σk};

2. for each I, calculate normalized probability P (I|Φk).

Step 5: For k = 1 to K, tissue class labels:

1. derive hybrid geometric–statistical feature: gk (I) = g(|∇I|, P (I|Φk));

2. derive initial contour C0,k by thresholding P (I|Φk) at tS = 0.1 and
skeletonizing;

3. propagate curve Ck from C0,k on gk (I) until convergence to obtain class label
image Lk (I).

Step 6: For each I, if Lk (I) = 1 for more than one k or Lk (I) = null for all k, assign Lk (I)
= 1 for k with the highest z-score.

In step 5, the performance gain by setting ts > 0 is demonstrated in Table II, and we show
that for 0.1 ≤ ts ≤ 0.6, the final segmentation accuracy in a simulated brain volume is shown
not to be sensitive to the parameter value tested but is necessary for removing extreme
outliers before skeletonizing is performed. The parameter is set to ts = 0.1 for all subsequent
experiments, both simulated and clinical.

D. Extension to Multiple MR Sequence Data
To further demonstrate the flexibility of the proposed segmentation approach, we extend our
method so that information from multiple MR sequences with different contrast properties
can be incorporated when the data is available. Assuming registered images, we first replace
the geometric feature component in the proposed hybrid active contour feature (7) with the
multidimensional vector gradient norm derived from all available data sequences. To derive
the statistical active contour feature term, the GMM parameters and the voxel statistics are
individually estimated for each contrast modality m given M input modalities. Since our
main goal is to improve the ability to differentiate between various tissue labels, we derive
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an pairwise intensity contrast term  as a ratio of absolute intensity difference between the
EM estimated means μ of labels i and j over the observed intensity range of [IMax …IMin]
(11) and then normalize (12).

(11)

(12)

This intensity contrast factor is used as an optimized weighting factor to linearly combine
individual posterior probability,  as in (13), for label k in modality m to form a new
posterior probability. This is done by using all relevant pairwise contrast terms, defined
between label k and all others. This ensures that the MR sequence with greater contrast
receives a greater weight with respect to other lower contrast MR modalities used. Equation
(13) shows how the final posterior probability is computed as a function of the means and
variances of each tissue and modality. In the case where tissues at different modalities
exhibit equal variances, more emphasis is placed on the scan that possesses the greater
difference between the expected values of the tissues of interests, thereby facilitating
separation. In the other case where the differences in the sample means are equal, the
differences in variance are taken into account inherently in the individual posterior
probability terms. The resulting probability replaces the posterior probability derived from
single contrast input in the segmentation procedure.

(13)

E. Data Preprocessing
We employed the nonparametric nonuniform intensity normalization (N3) algorithm [54] for
intensity inhomogeneity correction using default parameter settings (width of deconvolution
kernel = 0.15, number of iterations = 50, sampling factor = 4, characteristic distance = 200
mm, stopping criteria = 0.001). All scans were then noise filtered using an edge-preserving
Perona–Malik anisotropic diffusion filter [55] (number of iterations = 4, conductance = 3.0)
to further enhance the image signal-to-noise ratio. Brain masks were generated using the
provided ground truths consistent with other published methods to facilitate direct
comparisons, or alternatively, many methods are also available for this brain extraction task
[56]–[58]. For the clinical datasets where the ground truths are not available, the brain
masks were generated with the brain extraction tool (BET) [56] using default parameter
settings.

III. Results and Discussion
We applied our proposed segmentation to both simulated and real clinical MRI scans, and
demonstrated in the following sections: 1) the accuracy of the proposed segmentation
method on simulated T1w brain MRIs; 2) the segmentation improvement on multiple MRI
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sequences; 3) the accuracy of the proposed method on real clinical MRI scans of normal
adults; and 4) the qualitative performance of the proposed methods on clinical MRI scans of
MS and AD patients.

We first validated our proposed method on 18 simulated T1w BrainWeb [59] MRI images
(with 0%/1%/3%/5%/7%/9% noise, 0%/20%/40% inhomogeneity, 181 × 217 × 181
dimension, 1 × 1 × 1 mm3 spacing). We also performed multisequence segmentation based
on six T1w/T2w/PDw MRI triplets (with 0%/1%/3%/5%/7%/9% noise, 0% inhomogeneity).
Second, 18 real high-resolution clinical T1w MRI scans from the Internet Brain
Segmentation Repository (IBSR) [60] (coronally acquired, 256 × 128 × 256 dimension,
0.837 × 0.837 mm2 to 1 × 1 mm2 in-plane spacing, 1.5 mm slice thickness) were also
segmented. For both datasets, the “ground truth” is known for comparisons. For the
BrainWeb dataset, the ground truth is the phantom atlas used to generate the simulated
scans, whereas for the IBSR dataset, the ground truth is the provided expert-guided manual
segmentation label for each of the clinical scans. Lastly, from the MS MRI Research Group
(MS/MRI), real clinical 1.5 T spoiled gradient (SPGR) MRI scans (axially acquired, 256 ×
256 × 120–160 dimension, 0.937 × 0.937 × 1.50 mm3 spacing) were taken at multiple sites.
Real clinical 1.5 T magnetization prepared rapid gradient echo (MP-RAGE) MRI scans
(sagittally acquired, 256 × 256 × 166 dimension, 0.937 × 0.937 × 1.20 mm3 spacing) were
also obtained from the AD Neuroimaging Initiative (ADNI) of the LONI image data archive
(IDA) [61] initiated by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit organizations. These clinical scans
were segmented and qualitatively evaluated. For all experiments, the parameters for the
level set evolutions are set at {ψ = 0.0, c = 1.0, ε = 0.0} to reinforce propagation and
effectively remove boundary attraction and smoothness regularizations. The convergence
criteria for the gradient descent optimization is defined as either less than 0.5% root-mean-
square change in the level set function or, if not achieved, a maximum of 100 iterations
reached.

The average surface distance between the ground truth and the computed segmentation was
computed for each test scan by approximate nearest neighbor searching [62]. In addition, the
Dice similarity index [63] was also chosen for the quantitative evaluation of the 3-D brain
segmentation results to facilitate direct comparisons to other published results

(14)

We denote the true positives, true negatives, false positives, and false negatives as T+, T−,
F+, and F−, respectively, between the known ground truth and the segmentation results. We
compared our segmentation results with those of the M3DLS method [41].

A. Segmentation Validation Using Simulated Brain MRI
We first validated a three-class (WM, GM, and CSF) segmentation using the proposed
method on the simulated T1w brain MRI data. Segmentation was performed using the
traditional geometric feature only, the statistical feature only, and the proposed hybrid
feature on all 18 datasets with varying noise and intensity inhomogeneity levels. For the
edge-only level set evolution, the parameter set {ψ = 2.0, c = 1.0, ε = 4.5} was used to
enforce a stronger smoothness constrain; otherwise, contours leaking through weak edges
were often observed. For the statistical feature term only, the parameter set {ψ = 0.0, c = 1.0,
ε = 0.0} was used, same as the hybrid approach. Qualitative results in Fig. 2 demonstrated
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very good resemblance between the provided phantom label and the segmentation results
based on the hybrid feature. Table III shows that, on average, over all noise and
inhomogeneity levels, the proposed method achieved consistently accurate segmentation
results for both WM and GM with similarity indexes of 93.71% (σ = 2.11%, average
distance = 0.27mm) and 92.59% (σ = 2.40%, average distance = 0.30mm). Segmentation of
structures such as CSF by using the proposed approach also achieved considerable (>70%)
similarity of 77.75% (σ = 6.15%, average distance = 2.24 mm). The CSF results were not as
stable as WM and GM mainly due to the much smaller structural volume, leading to
increased sensitivity to estimation errors in the active contour initialization and feature
derivation. Nonetheless, the overall segmentation results were on par if not better than other
previously published results [16], [27], [64].

To statistically evaluate the differences of segmentation results between the proposed hybrid
approach, and the contours based on geometric-only and statistical-only features, we
calculated the p-values (p < 0.05 indicates a statistically significant difference in the group
means). Compare to results from using only the traditional geometric feature, the proposed
hybrid approach achieved significantly higher similarity indexes and reduced surface
distance across all scans. On average, the proposed method achieved increased similarity
indexes of 5.36% (p = 0.0002) in WM, 7.23% (p < 0.0001) in GM, and 9.30% (p < 0.0001)
in CSF segmentation results with reduced surface distance of 3.99 mm (p < 0.0001) in WM,
0.27 mm (p < 0.0001) in GM, and 4.86 mm (p < 0.0001) in CSF. Compare to results from
using only the statistical feature, the proposed hybrid approach only achieved slightly better
similarity indexes. However, we observed that, on average, the proposed method was able to
significantly reduce the average surface distance by 4.44 mm (p < 0.0001) in WM and 3.79
mm (p < 0.0001) in CSF. These results showed that using the geometric term alone was
highly sensitive to image artifacts and require contour regularization, and using the
statistical term alone caused the contours to deviate from the true edges. Only when
incorporating both features we can evolve the contour in the appropriate statistical space
while maintaining high geometric relevance at the same time. Processing a single BrainWeb
volume takes approximately 55 min (dual 3.20 GHz Xeon PC with 3.25 GB memory) to 75
min (3.60 GHz Pentium4 PC with 2 GB memory), comparable to the processing time
required by other conventional techniques.

B. Segmentation Improvement Using Multiple MR Sequences
We next performed a three-class (WM, GM, and CSF) segmentation using the proposed
method on the simulated T1w/T2w/PDw brain MRI data. Segmentation was performed on
six datasets with varying noise levels and 0% intensity inhomogeneity. Qualitative results in
Fig. 3 illustrated very good resemblance between the provided phantom label and the
segmentation results. Table IV demonstrates the quantitative segmentation accuracies. On
average, over all noise levels, the proposed method achieved consistently accurate
segmentation results for WM, GM, and CSF with similarity indexes of 96.24% (σ = 1.13%,
average distance = 0.15 mm), 94.14% (σ = 1.24%, average distance = 0.24 mm) and 81.57%
(σ = 2.82%, average distance = 1.56 mm), respectively. When compared to the experiment
on single simulated T1w brain images, segmentation using multiple MR sequence data
provided an average improvement in similarity indexes of 1.29% (p = 0.0479), 0.44% (p =
0.4627), and 3.55% (p = 0.1403) for WM, GM, and CSF, respectively. The segmentation
improvements are not statistically significant, which is not surprising given that the synthetic
T1w brain images by themselves already have the strong image contrast required to
distinguish between the majority of WM and GM tissues. Additional MR sequences such as
T2w and PDw in this case, helped improve the overall robustness by achieving a much
better balance between the WM, GM, and CSF estimation as observed by the T+ and T−
performance. Table III (column 1) shows that with only T1w scans as inputs, the differences
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between the T+ and T− were 7.77%, 8.67%, and 24.09%, respectively, for WM, GM, and
CSF, whereas with T1w, T2w, and PDw inputs (Table IV), these differences were much
reduced to 2.84%, 0.24%, and 6.95%.

C. Segmentation Comparisons Using Clinical MR Scans of Normal Adults
We applied the proposed method to segment 18 clinical IBSR brain images. The images
were segmented using a three-class (WM, GM, and CSF) segmentation. The qualitative
results are shown in Fig. 4. The tissue labels were then postprocessed due to a known
limitation of the provided manual segmentation labels. It has been reported previously [41]
that the expert-guided manual segmentation label contains much of the cortical CSF being
mislabeled as GM. We have confirmed this with our own observations. As observed from
Fig. 4, we note that the original segmentation results matched closely with what can be
visually observed from the raw images. However, this observation did not correspond well
to the provided expert-guided manual segmentation label due to the existing limitation. If
quantitative evaluation was to be performed on this result, both GM and CSF would produce
much lower accuracies than what were actually present.

To enable a valid comparison by retaining only the ventricular CSF for comparison, we
employed the following postprocessing scheme:

Step 1: Re-assign segmented CSF labels close to (≤5 mm) any background labels as
GM.

Step 2: Define a rectangular region of interest (30% of the mask width in the superior–
inferior orientation and 50% for both left–right and anterior–posterior) around the brain
mask centroid. Apply 2-D morphological thinning (3 × 3 kernel) [65] on CSF pixels
outside the region of interest in coronal slices, and singly links are removed.

Step 3: Identify the largest 3-D connected component as the desired ventricular CSF.
Apply 3-D morphological dilation (3 × 3 × 3 kernel) to this final mask, and re-assign all
original CSF labels outside as GM.

This postprocessing scheme allowed us to generate results comparable to the provided
manual label. We show in Table V that the results obtained by using the proposed method
achieved similarity indexes of 87.55% (σ = 2.92%, average distance = 0.54 mm), 93.18 (σ =
0.92%, average distance = 0.38 mm), and 77.39% (σ = 11.15%, average distance = 3.12
mm) for WM, GM, and CSF, respectively, averaged across the 18 images tested. To
statistically compare the segmentation performance of our hybrid active contour approach
against the region-based active contour M3DLS algorithm, a one-sample t-test was
performed to calculate the p-values (standard deviations were not reported by M3DLS [41]).
Both methods are automatic and based on 3-D level set implementation with the key
difference in the active contour formulation and the optimization functional. The proposed
method achieved significantly higher accuracies with an average improvement of 8.55% (p
< 0.0001) in WM and 10.18% (p < 0.0001) in GM segmentation similarities. CSF results
were not reported with the M3DLS method; however, our proposed approach achieved
considerable (>70%) similarity. Furthermore, the segmentation results achieved by M3DLS
were conservative with low true positives. This can be mainly attributed to the fact that the
optimization functional in M3DLS modeled each class as piecewise constant by taking only
the intensity square differences from the means. However, variations within each segmented
class are not considered, such that if, intrinsically, WM contains significantly larger intensity
variance than GM, voxels belonging to WM would potentially be mislabeled as GM if the
voxel intensities are closer to the estimated GM mean. This lead to undersegmentation in
WM (undersegmentation in GM is attributed to the known limitation in the manual labels),
and M3DLS is required to postprocess the segmentation results by incorporating an
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additional morphological dilation step [42]. On the other hand, by integrating both
geometric and statistical features into an edge-based deformable model, the proposed hybrid
approach captures both the image edge geometry and the voxel statistical homogeneity, and
achieved higher segmentation accuracies with less additional computation complexity.

D. Segmentation Performance Using Clinical MR Scans of MS and AD Patients
Lastly, we applied the proposed method to segment clinical MRI brain scans of MS and AD
patients. The images were segmented using a three-class (normal appearing WM, GM
grouped with diseased WM, and CSF) segmentation. The qualitative results are shown in
Fig. 5, demonstrating that the proposed approach appears stable on clinical scans. Fig. 5(a)
shows a typical clinical MRI scan of a MS patient, whereas Fig. 5(b) illustrates an example
scan of a MS patient with enlarged lateral ventricles. Both scans were segmented without
any gross misclassifications. In addition, we demonstrated segmentation results from an
MRI scan where the brain extraction step inaccurately included part of the eyes in the brain
mask in Fig. 5(c). This error in the brain mask did not seem to cause visible problems for the
algorithm in the adjacent brain tissue. Furthermore, Fig. 5(d) and (e) shows segmentation
results of scans from an AD patient one year apart. We again noticed visibly consistent
segmentation in the tissue labels in the presence of tissue atrophy/ventricle enlargement over
time. In our T1w test scans, the intensity difference between GM and diseased WM is
subtle, and separating these two class types is likely not possible without additional MRI
sequences that are more sensitive to WM pathology, such as PDw or T2w, or relying on
prior probability maps such as those derived from a training set. We have left these
experiments for future work. In its current form, the proposed method can potentially be
used for the assessment of disease severity by providing stable and consistent segmentations
of CSF and normal appearing WM.

IV. Conclusion
We proposed a 3-D brain MR segmentation method based on deformable models and
demonstrated accurate and stable brain tissue segmentation on single as well as multiple MR
sequence scans. The main contribution of our work is that we employed a geodesic active
contour formulation by integrating both image geometry and voxel statistics into a hybrid
geometric–statistical feature, which acts as a stabilizing regularizing function for the
extraction of complex anatomical features such as WM, GM, and CSF. We validated our
technique first by using both single and multiple simulated brain MRI sequence data.
Improved segmentation accuracy and robustness were shown in results from the proposed
hybrid approach against those using individual geometric or statistical features only.
Furthermore, on real clinical MRI datasets, we also demonstrated improved accuracy over a
state-of-the-art approach, the region-based M3DLS. We also demonstrated consistent and
robust results when segmenting MRI scans of both MS and AD patients.

Issues identified for possible future work include enhancing the statistical distribution
estimation process by using complex intensity distribution estimation methods such as
nonparametric and partial volume models, and extending additional segmentation classes,
hierarchy or feature cues for segmentation of anomalies such as WM lesions or tumors.
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Fig. 1.
Block diagram of the proposed MRI brain segmentation algorithm. Asterisk (*) denotes the
proposed novel hybrid geometric–statistical image feature described in Section II-B.
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Fig. 2.
Qualitative segmentation performance of two simulated T1w brain images showing the
provided phantom label, raw images and the segmentation results obtained by using the
proposed hybrid feature. We show three slices for both the best case (0% noise, 0%
inhomogeneity) and worst-case (9% noise, 40% inhomogeneity) scenarios. White, light
gray, and dark gray colors represent, respectively, the WM, GM, and CSF classes in the
tissue and phantom labels. We note the results from the hybrid approach resemble the
phantom for both the best and worst input scenarios.
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Fig. 3.
Qualitative segmentation performance of a multiple simulated MR sequence (T1w, T2w,
PDw) brain images showing the provided phantom label, raw images (0% noise, 0%
inhomogeneity), and the segmentation results obtained by using the proposed approach.
White, light gray, and dark gray colors represent, respectively, the WM, GM, and CSF
classes in the tissue and phantom labels. We show three slices for the test case and note
improved segmentation results on multiple MR sequence.
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Fig. 4.
Qualitative segmentation performance of a real clinical T1w brain images (IBSR #08)
showing the raw images, the expert-guided manual segmentation label, and the segmentation
results obtained by using the traditional edge feature and the proposed hybrid approach. We
show three slices for the three-class segmentation case and the postprocessed case. White,
light gray, and dark gray colors represent, respectively, the WM, GM, and CSF classes in
the segmentation labels. We note the good resemblance between the segmentation results
and the raw image, and between the postprocessed results and the expert-guided manual
segmentation labels.
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Fig. 5.
Qualitative segmentation performance of real clinical T1w brain images (UBC MS/MRI and
LONI IDA) showing the raw images and the segmentation results obtained by using the
proposed approach. We show two slices each for the three-class segmentation. White, light
gray, and dark gray colors represent, respectively, the normal appearing WM, GM grouped
with diseased WM, and CSF classes in the segmentation labels. We note the approach is
stable on (a) a typical MS patient scan (TE/TR = 3.176/7.655 ms, TI = 450 ms, Flip Angle =
0°), (b) an MS patient scan with enlarged ventricles (TE/TR = 4.000/11.000 ms, TI = 0 ms,
Flip Angle = 0°), and (c) an MS patient scan with an inaccurate brain mask (TE/TR =
3.917/8.110 ms, TI = 0 ms, Flip Angle = 0°). AD patient scans at (d) year one (TE/TR =
3.95/9.124 ms, TI = 1000 ms, Flip Angle = 8°) and (e) year two (TE/TR = 3.98/9.124 ms, TI
= 1000 ms, Flip Angle = 8°).
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TABLE I

Effects of Regularizing Contour Propagation Using Geometric and Statistical Features

Statistical Feature (probability)

Low High

Geometric Feature (gradient magnitude)
High ↓ Speed Deflation ↓ Speed Inflation

Low ↑ Speed Deflation ↑ Speed Inflation
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TABLE II

Parameter Sensitivity of a Simulated Brain Volume (9% Noise, 40% Inhomogeneity)

Tissue
Dice Segmentation Accuracy Given Parameter Value

ts=0.0 ts=0.1 ts=0.3 ts=0.6

WM 88.99 88.89 88.68 88.88

GM 55.51 81.34 82.74 82.76
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