
Q1

Q10

Q2

Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring - (2015) 1-10

1
2

3
4
5
6

7
8
9

10
11
12

13
14
15

16
17
18
19

20
21
22

23
24
25

26
27
28
29

30
31
32

33
34
35

36
37
38

39
40
41
42

43
44
45

46
47
48

49
50
51

52
53
54
55
56

57
58
59

60
61
Prediction of Alzheimer’s disease pathophysiology based on cortical
thickness patterns
62

63

64
65
66

67
68
69

70
71
Jihye Hwanga, Chan Mi Kima,b, Seun Jeonc, Jong Min Leec, Yun Jeong Honga, Jee Hoon Roha,d,*,
Jae-Hong Leea, Duk L. Nae,f, and Alzheimer’s Disease Neuroimaging Initiative1

aDepartment of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
bDepartment of Medical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

cDepartment of Biomedical Engineering, Hanyang University, Seoul, Korea
dDepartment of Anatomy and Cell Biology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Korea

eDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University
fNeuroscience Center, Samsung Medical Center
72

73
74
Abstract Introduction: Recent studies have shown that pathologically defined subtypes of Alzheimer’s dis-
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ease (AD) represent distinctive atrophy patterns and clinical characteristics. We investigated whether
a cortical thickness–based clustering method can reflect such findings.
Methods: Atotal of 77ADsubjects from theAlzheimer’sDiseaseNeuroimaging Initiative 2data setwho
underwent 3-T magnetic resonance imaging, [18F]-fluorodeoxyglucose-positron emission tomography
(PET), [18F]-Florbetapir PET, and cerebrospinal fluid (CSF) tests were enrolled. After clustering based
on cortical thickness, diverse imaging and biofluid biomarkers were compared between these groups.
Results: Three cortical thinning patterns were noted: medial temporal (MT; 19.5%), diffuse (55.8%),
and parietal dominant (P; 24.7%) atrophy subtypes. The P subtype was the youngest and represented
more glucose hypometabolism in the parietal and occipital cortices and marked amyloid-beta accu-
mulation in most brain regions. The MT subtype revealed more glucose hypometabolism in the left
hippocampus and bilateral frontal cortices and less performance in memory tests. CSF test results did
not differ between the groups.
Discussion: Cortical thickness patterns can reflect pathophysiological and clinical changes in AD.
� 2015 The Alzheimer’s Association. Published by Elsevier Inc. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Background

Aggregations of amyloid-beta (Ab) and tau protein are the
two main pathologic hallmarks of Alzheimer’s disease (AD).
Although the aggregation of Ab is known to precede the tau
ithin the ADNI contributed to the design and imple-

d/or provided data but did not participate in analysis
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pathology in AD, the earlier role of tau aggregation in the
pathogenesis of AD and aging has been reemphasized [1,2].
The accumulation of tau has been noted in the
transentorhinal cortices with normal aging and such tau
aggregation is known to accelerate the spread of Ab
pathology in the AD brain [1–3]. Moreover, the
accumulation of tau proteins correlates very closely with
cognitive decline and brain atrophy including hippocampal
atrophy [4,5]. Hence, defining AD based on the tau
pathology in the brain would enable a better understanding
of the clinical implications of tau accumulation in this disease.

Recently, neuropathologically defined subtypes of AD
have represented distinctive clinical characteristics and
brain structural changes such as (1) typical generalized
his is an open access article under the CC BY-NC-ND license (http://
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atrophy involving medial temporal (MT) lobes; (2) limbic
predominant atrophy; (3) and hippocampus-sparing atrophy
[6,7]. Because pathologic assessment cannot be easily
applied to most of AD subjects in vivo, our group recently
investigated whether clustering of AD subjects based on
magnetic resonance imaging (MRI) cortical thickness
patterns can replicate autopsy-based findings. Interestingly,
the MRI cortical thickness pattern–based clustering was
comparable with the autopsy-based classification of AD in
an earlier report [8]. However, there was no assessment in
that previous study as to whether the new clustering method
based on cortical thickness patterns can also reflect patho-
physiological changes in AD. If so, this would potentially
provide additional clinical information on structural brain
magnetic resonance (MR) images and, thus, further knowl-
edge of the underlying pathogenesis as well as prognosis
of the disease.

We investigated whether the new cortical thickness–
based clustering methodology could be replicated in a multi-
center, international data set. We also sought to determine
whether this clustering method reflected the pathophysiolog-
ical status of AD as assessed by [18F]-fluorodeoxyglucose
(FDG)-positron emission tomography (PET), [18F]-Florbe-
tapir PET, and cerebrospinal fluid (CSF) Ab and tau protein
tests.
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2. Methods

2.1. Participants

Data used for the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI is
described in Supplemental Methods. We selected 89 AD
subjects from the ADNI-2 study who had high-resolution
3-T T1-weighted MRI, baseline FDG-PET, baseline
Florbetapir-PET, and available baseline CSF results. Among
these 89 subjects, 12 cases were excluded because of seg-
mentation errors in MRI cortical thickness analysis and a to-
tal of 77 subjects were included for analyses. For
comparison and to obtain representative MR images of
each group, we also used data from 42 subjects with normal
cognition in the ADNI-2 who underwent the baseline imag-
ing and CSF studies and remained normal at 2-year follow-
up assessments.
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2.2. Image analysis
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2.2.1. MRI analysis

2.2.1.1. MRI acquisition
We followed ADNI procedure in our current analysis.

Briefly, we used screening 3-T T1-weighted MRI sequence
with rapid gradient echo (MPRAGE) images with a 1.2-
mm-slice thickness. Subjects who underwent 1.5 T MRI or
MRI sequence with enhanced spoiled gradient were not
FLA 5.4.0 DTD � DADM75_proof �
included because of greater signal-to-noise ratio or less
compatibility between sequences. All data were downloaded
from LONI (as of October 2014). Additional details
regarding data acquisition are available elsewhere (http://
www.adni-info.org).

2.2.1.2. Measurements of cortical thickness
The cortical thickness of the initial cohort of 89 AD sub-

jects was measured as described previously [9]. Three-Tesla
T1-weighted MRI images were processed using a standard
Montreal Neurological Institute (MNI) anatomic pipeline
(version 1.1.9; http://wiki.bic.mni.mcgill.ca/index.php/
CIVET). We registered all native volumetric T1 images
into a standardized stereotaxic space using a linear transfor-
mation [10]. An N3 algorithm was used to correct for inten-
sity non-uniformities using inhomogeneities in the magnetic
field [11]. The corrected volumetric images were then clas-
sified into white matter, gray matter (GM), CSF, and back-
ground using an Intensity-Normalized Stereotaxic
Environment for Classification of Tissues algorithm [12].
The surfaces of the inner and outer cortices were automati-
cally extracted using a Constrained Laplacian-Based Auto-
mated Segmentation with Proximities algorithm [13].
Finally, the Euclidean distances between linked vertices on
the inner and the outer surface were calculated for the
cortical thickness measurement [14].

2.2.1.3. Cluster analyses
Weperformed hierarchical agglomerative cluster analysis

using Statistics andMachine Learning Toolbox implemented
in MATLAB version 8.2.0.29 R2013b (MathWorks, Natick,
MA, USA) in which each patient begins in his or her own
cluster and at each step the two most “similar” clusters are
combined until the last two clusters are combined into a sin-
gle cluster with all patients.We used thewhole-brain cortical
thickness for the clustering: a total of 78,570 vertex points
(without noncortical regions) for each of the 77 AD subjects.
To cluster patients according to the thinning patterns of each
cortical region, rather than a global atrophy, the variations in
global atrophy between patients were compensated for by
normalizing the cortical thickness values from vertices to a
mean cortical thickness [15]. The Ward’s clustering linkage
method [15,16] was used to combine pairs of clusters. The
clustering begins with each patient in his or her own cluster
(n 5 77, size 1 each). At each step, the Ward’s method
chooses which pair of clusters to be combined next by
merging the pair of clusters while minimizing the sum of
square errors (the two most similar clusters) from the
cluster mean. For instance, n-1 clusters are formed in the
first step (one cluster of size 2). Then, n-2 clusters are
formed in the second step (two clusters of size 2 or one
cluster of size 3 including the cluster formed in step 1). The
algorithm continues until all patients are merged into a
single large cluster (size n). Finally, each of the 77 AD
patients was placed in their own cluster and then
progressively clustered with others. The cluster analysis
results are shown as a dendrogram (Fig. 1).
28 December 2015 � 11:16 am � ce
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2.2.2. PET analyses

2.2.2.1. PET acquisition
We followed the ADNI procedure, and data were down-

loaded (as of October 2014) from LONI in the processed
format (series description in LONI Advanced Search:
AV45 co-registered and averaged; and FDG co-registered
and averaged). The details of the acquisition are available
at http://www.adni-info.org.

2.2.2.2. PET analyses
To analyze the Florbetapir- and FDG-PET images, the

skull was stripped and the brainwas extracted using a FMRIB
software library. We then automatically co-registered the
PET image for each subject to the corresponding skull-
stripped MR image using a rigid-body registration method.
These co-registered images were spatially normalized to a
MNI atlas space. The partial volume correction was per-
formed using results with more than 25% of the maximal
regional intensity [17]. The mean standard uptake value ratio
(SUVr) in the cerebellum GM was used as a reference. The
cortex-to-cerebellum regional SUVr for 78 regions of inter-
est of automated anatomical labeling template were finally
calculated for comparison between groups.
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2.3. CSF analyses

CSF acquisition and biomarker measurements using the
ADNI cohort were performed as previously described and
as per the ADNI procedure [18].
Fig. 1. Dendrogram and representative figures for the three AD subtypes. (A) A r

compared with 42 subjects with normal cognition. The scale bar indicates the T-va

AD patients compared with normal subjects. Gray areas indicate brain regions sho

control groups. (B) Dendrogram created by cluster analysis based on cortical thick

AD. (C) Representative images of the cortical thinning patterns in the three subty

AD, Alzheimer’s disease.
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2.4. Statistical analyses

Group analyses were performed using SPSS software
(version 22.0; SPSS Inc, Chicago, IL, USA) and R
(version 3.2.2). We used a one-way analysis of variance
test to compare age, education, and intracranial volume
(ICV) and a c2 test to compare sex. We used the analysis
of covariance (ANCOVA) test to compare the other demo-
graphic characteristics and neuropsychological test results,
with age, sex, education, and ICV serving as covariates.
Between-group comparisons of the continuous variables
were performed using ANCOVA and logistic regression
for categorical variables (e.g., APOE Qand clinical demen-
tia rating [CDR]). We used the Kruskal-Wallis test for var-
iables not fulfilling a normal distribution. Cortical
thickness analyses were performed using a linear
modeling method for the thickness maps after controlling
for the mean cortical thickness. To avoid false positives,
resulting statistical maps satisfying a false discovery rate
(FDR) correction at a 0.05 significance level were deter-
mined [19]. For direct comparison of the SUVr of each
cortical region of interest of FDG-PET and Florbetapir-
PET, we performed ANCOVA test with age, sex, educa-
tion, and ICV serving as covariates. Multiple comparisons
among three groups at FDR corrected P , .05 were
considered statistically significant. For comparison of
CSF results, ANCOVA was performed with age, sex, edu-
cation, and ICV serving as covariates. Phosphorylated-tau
(p-tau) and p-tau/Ab data were log transformed before the
analysis [18].
epresentative figure of cortical thickness patterns of all 77 subjects with AD

lue from24.0 to 4.0 with bluish color representing more cortical thinning in

wing no statistical significance in cortical thickness compared with normal

ness patterns used to obtain three representative cortical thinning subtypes in

pes of AD compared with 42 subjects with normal cognition. Abbreviation:
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3. Results

All 77 AD study subjects were clustered into three sub-
types, and the cortical thinning patterns in each of the three
AD subtypes were shown in comparison with 42 cognitively
normal controls (Fig. 1). The three subtypes include (1) MT
subtype (n 5 15, 19.5%), in which the bilateral MT lobes
were predominantly involved with the additional involve-
ment of the bilateral frontal lobes; (2) D subtype (n 5 43,
55.8%), in which nearly all association cortical areas such
as the bilateral dorsolateral frontal lobes, lateral temporal,
and lateral parietal lobes were affected; and (3) parietal
dominant subtype (P subtype, n 5 19, 24.7%), in which
the bilateral lateral parietal lobes, and some bilateral occip-
ital lobes were affected with little involvement of MT lobes
(Fig. 1A).

The demographics and clinical characteristics of each
subtype were found to differ (Table 1). Patients in the P sub-
type (mean years [6standard deviation {SD}], 67.53
[67.35]) were younger than the other two subtypes (MT
subtype, 74.8 [67.88]; D subtype, 76.05 [66.56];
P 5 .0002). The P subtype was suggestive of early-onset
Alzheimer’s disease (EOAD) with younger age at symptom
onset than the other two subtypes (MT subtype, mean [6SD]
age at onset 5 69.87 years [68.19]; D subtype, 70.95 years
[67.12]; P subtype, 63.47 years [67.78]; P 5 .002). There
were no statistically significant differences in sex, education
level, ICV, APOE status, and global cognitive function
measured by mini-mental state examination (MMSE) score,
CDR, clinical dementia rating scale-sum of boxes
(CDR-SB), Alzheimer’s disease assessment scale-cognitive
Table 1

Demographics and clinical characteristics

Characteristics MT subtype (n 5 15) D subtype

Age, y (mean 6 SD) 74.8 6 7.88 76.05 6 6.

Women, n (%) 7 (46.67) 18 (41.86)

Education, y (mean 6 SD) 15.67 6 3.06 16.16 6 2.

Age at onset, y (mean 6 SD) 69.87 6 8.19 70.95 6 7.

ICV, cm3 (mean 6 SD) 1.31 6 0.18 1.32 6 0.

Mean cortical thickness 3.00 6 0.13 3.07 6 0.

ApoE4 allele, n (%) 10 (66.67) 31 (72.09)

MMSE, (mean 6 SD) 22.60 6 1.99 23.51 6 1.

CDR, n (%)

0.5 7 (46.67) 21 (48.84)

�1 8 (53.33) 22 (51.16)

CDR-SB, (mean 6 SD) 4.43 6 1.84 4.55 6 1.

ADAS-Cog 11, (mean 6 SD) 21.93 6 7.50 19.38 6 6.

ADAS-Cog 13, (mean 6 SD) 31.87 6 8.95 28.19 6 9.

MoCA (mean 6 SD) 16.80 6 4.80 17.35 6 4.

GDepS, (mean 6 SD) 1.20 6 0.94 1.49 6 1.

Abbreviations: MT subtype, medial temporal subtype; D subtype, diffuse atrop

ICV, intracranial volume; APOE, apolipoprotein E; MMSE, mini-mental state exa

rating scale-sum of boxes; ADAS-Cog 11, Alzheimer’s disease assessment scale-c

cognitive subscale 13; MoCA, Montreal cognitive assessment; GDepS, geriatric d

NOTE. For each variable, the mean and standard deviation were shown. Age, ge

MMSE, GDepS, ADAS-Cog 13, CDR, and CDR-SB.

*P , .05 between MT subtype and P subtype.
yP , .05 between D subtype and P subtype.

FLA 5.4.0 DTD � DADM75_proof �
subscale (ADAS-Cog) 11, ADAS-Cog 13, Montreal cogni-
tive assessment (MoCA), and geriatric depression scale
(GDepS).

In FDG-PETanalysis, all groups showed a significant dif-
ference in glucose hypometabolism in the different regions,
corresponding to cortical thinning patterns (Table 2 and
Fig. 2B). Patients in the P subtype showed glucose hypome-
tabolism in the right superior, left inferior parietal, and left
middle occipital cortices. Patients in theMT subtype showed
glucose hypometabolism in the left hippocampus, left infe-
rior orbital frontal, right superior medial frontal, and both
caudate areas. Differences in the Florbetapir-PET results
were most prominent in the P subtype patients (Table 3,
Fig. 3) who showed marked Ab accumulation in the supe-
rior, middle, and inferior frontal cortex, superior and inferior
parietal cortex, and precuneus compared with that in the MT
and D subtypes. Patients in the MT subtype had more Ab
accumulation in the left precuneus and right mesial frontal
cortex compared with that in the D subtype (Fig. 3). In neu-
ropsychological battery analysis (Table 4), MT subtype
showed a lower ADNI-MEM score than the D subtype
(MT subtype 5 20.80 [60.41]; D subtype 20.44
[60.44], P5 .0237). P subtype showed a longer trail making
test-A time (MT subtype, mean [6SD] age 5 55.07
[628.39]; D subtype, 58.95 [634.22]; P subtype, 80.67
[639.46]; P5 .0412) and a lower performance in interlock-
ing pentagon task than the other two subtypes (MT subtype,
86.7%; D subtype, 88.4%; P subtype, 21.1%; P , .0001).
The CSF results showed no statistically significant differ-
ences between the subtypes (Supplemental Table 1).
Q7

(n 5 43) P subtype (n 5 19) P Adjusted P

56 67.53 6 7.35 .0002*y

9 (47.37) .9004

35 15.53 6 2.50 .6085

12 63.47 6 7.78 .002*y

16 1.28 6 0.15 .7129

14 3.01 6 0.18 .189 .137

13 (68.42) .9767 .94

99 22.74 6 2.28 .2151 .275

.6785 .577

7 (36.84)

12 (63.16)

65 4.16 6 1.38 .6885 .6421

41 22.95 6 8.06 .1542 .5288

91 34.00 6 9.24 .0762 .4903

37 16.67 6 5.63 .8513 .9812

44 1.53 6 0.84 .6949 .7456

hy subtype; P subtype, parietal-dominant subtype; SD, standard deviation;

mination; CDR, clinical dementia rating scale; CDR-SB, clinical dementia

ognitive subscale 11; ADAS-Cog 13, Alzheimer’s disease assessment scale-

epression scale.

nder, education, and ICV were treated as covariates in the analysis of APOE,

28 December 2015 � 11:16 am � ce

448
449
450

451
452
453

454
455
456
457

458
459
460

461
462
463

464
465
466

467
468
469
470

471
472
473

474
475



Table 2

Glucose metabolism of each region of interest of FDG-PET

Region of interest

MT subtype (n 5 15) D subtype (n 5 43) P subtype (n 5 19)

Adjusted PMean 6 SD Mean 6 SD Mean 6 SD

Inferior orbital frontal, Lt 0.81 6 0.05 0.86 6 0.08 0.89 6 0.06 .0113*y

Superior medial frontal, Rt 0.85 6 0.04 0.89 6 0.08 0.93 6 0.07 .0293*y

Hippocampus, Lt 0.71 6 0.06 0.76 6 0.06 0.76 6 0.06 .0144*

Middle occipital, Lt 1.05 6 0.07 1.03 6 0.11 0.97 6 0.12 .0223yz

Superior parietal, Rt 0.93 6 0.07 0.90 6 0.09 0.81 6 0.12 .0091yz

Inferior parietal, Lt 0.94 6 0.08 0.96 6 0.10 0.86 6 0.13 .0158yz

Caudate, Lt 0.83 6 0.08 0.91 6 0.13 0.93 6 0.10 .0176*

Caudate, Rt 0.80 6 0.10 0.89 6 0.13 0.91 6 0.10 .0106*

Abbreviations: FDG, fluorodeoxyglucose; PET, positron emission tomography;MT subtype, medial temporal subtype; D subtype, diffuse atrophy subtype; P

subtype, parietal-dominant subtype; SD, standard deviation; ICV, intracranial volume; FDR, false discovery rate; Lt, left; Rt, right.

NOTE. For each variable, the mean and standard deviation, as well as the P value of between-group comparisons, are shown. Age, gender, education, and ICV

were treated as covariates.

*FDR corrected P , .05 between MT subtype and D subtype.
yFDR corrected P , .05 between MT subtype and P subtype.
zFDR corrected P , .05 between D subtype and P subtype.
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4. Discussion

The main findings of our present study are as follows: (1)
cluster analysis of a multicenter international data set based
on cortical atrophy patterns groups AD subjects into two
subtypes (MT, D, and P); (2) the areas of glucose hypome-
tabolism match well with the regions of cortical atrophy,
whereas Ab accumulation is predominant in the P subtype;
(3) some parts of neuropsychological test results were indic-
ative of cortical thinning patterns; and (4) neither CSF Ab
nor p-tau differ among the subgroups.

4.1. Structural MRI and clinical findings in three AD
subgroups

The three subtypes of AD revealed by our cluster analysis
showed different patterns of glucose hypometabolism and
Fig. 2. Differences in cortical thickness and comparable glucose hypometabolism

patterns comparing each of the three subtypes. The scale bar indicates the T-value

significance in cortical thickness compared with normal control groups. (B) Stati

between each of the three subgroups. Maps at FDR corrected P, .05 were shown

breviations: AD, Alzheimer’s disease; FDG, fluorodeoxyglucose; PET, positron e

FLA 5.4.0 DTD � DADM75_proof �
Ab accumulation (sections 4.2. and 4.3.). Intriguingly,
these results reflected a recent autopsy report on the
pathologic classification of AD into three subtypes based
on the distribution and density of neurofibrillary tangles
[6]. In that report, the neurofibrillary tangle pathology
groupings were 14% with limbic predominant AD, 75%
with typical AD, and 11% with hippocampal sparing AD,
similar to the MT, D, and P subtypes in our present study.
In that previous autopsy study also, hippocampal sparing
AD (homologous to the P subtype in this study) had the
most severe cortical atrophy and limbic predominant AD
(homologous to the MT subtype in this study) had the
most severe MT lobe atrophy. In addition, limbic predomi-
nant type patients were older, more likely to be women,
and prone to harbor the APOE4 allele. On the other hand,
the hippocampal sparing AD cases tended to be younger at
among the three subtypes of AD. (A) Statistical maps of cortical thickness

from 24.0 to 4.0. Gray areas indicate brain regions showing no statistical

stical maps representing the differences in glucose metabolism (FDG-PET)

with age, sex, education, and intracranial volume serving as covariates. Ab-

mission tomography.
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Table 3

Amyloid-b deposition of each region of interest of Florbetapir-PET

Region of interest

MT subtype (n 5 15) D subtype (n 5 43) P subtype (n 5 19)

Adjusted PMean 6 SD Mean 6 SD Mean 6 SD

Precentral, Lt 1.26 6 0.18 1.22 6 0.15 1.33 6 0.16 .0464*

Precentral, Rt 1.31 6 0.18 1.26 6 0.14 1.38 6 0.15 .0225*

Superior frontal, Lt 1.36 6 0.22 1.29 6 0.17 1.45 6 0.17 .0271*

Superior frontal, Rt 1.44 6 0.24 1.35 6 0.18 1.54 6 0.18 .0138*

Superior orbital frontal, Lt 1.42 6 0.22 1.35 6 0.18 1.52 6 0.15 .022*

Superior orbital frontal, Rt 1.43 6 0.23 1.36 6 0.18 1.53 6 0.16 .0248*

Middle frontal, Lt 1.54 6 0.27 1.43 6 0.23 1.64 6 0.19 .0213*

Middle frontal, Rt 1.56 6 0.27 1.45 6 0.24 1.67 6 0.19 .0259*

Middle orbital frontal, Lt 1.47 6 0.23 1.40 6 0.18 1.58 6 0.16 .0457*

Middle orbital frontal, Rt 1.47 6 0.25 1.39 6 0.18 1.56 6 0.16 .0479*

Inferior frontal opercular, Rt 1.49 6 0.24 1.41 6 0.19 1.59 6 0.15 .0342*

Inferior frontal triangular, Rt 1.55 6 0.26 1.46 6 0.19 1.65 6 0.18 .0487*

Inferior frontal orbital, Rt 1.50 6 0.24 1.41 6 0.18 1.60 6 0.16 .0245*

Supplementary motor, Lt 1.48 6 0.24 1.36 6 0.18 1.57 6 0.18 .0049*

Supplementary motor, Rt 1.47 6 0.25 1.32 6 0.18 1.53 6 0.20 .0042y*
Superior medial frontal, Lt 1.51 6 0.31 1.38 6 0.23 1.60 6 0.20 .0429*

Median cingulum, Lt 1.50 6 0.27 1.39 6 0.20 1.58 6 0.22 .0182*

Median cingulum, Rt 1.48 6 0.26 1.36 6 0.21 1.53 6 0.22 .0393*

Calcarine, Rt 1.56 6 0.21 1.48 6 0.18 1.61 6 0.17 .045*

Fusiform, Rt 1.52 6 0.24 1.44 6 0.18 1.60 6 0.17 .0405*

Postcentral, Lt 1.48 6 0.26 1.36 6 0.17 1.56 6 0.19 .0038*

Postcentral, Rt 1.48 6 0.25 1.36 6 0.19 1.56 6 0.20 .011*

Superior parietal, Lt 1.53 6 0.27 1.39 6 0.20 1.60 6 0.23 .0072*

Superior parietal, Rt 1.50 6 0.25 1.36 6 0.20 1.51 6 0.18 .0312*

Inferior parietal, Lt 1.56 6 0.28 1.44 6 0.20 1.64 6 0.22 .0359*

Inferior parietal, Rt 1.57 6 0.28 1.43 6 0.21 1.62 6 0.19 .0286*

Supramarginal, Rt 1.64 6 0.27 1.54 6 0.20 1.73 6 0.21 .0414*

Angular, Rt 1.65 6 0.28 1.53 6 0.21 1.74 6 0.20 .0203*

Precuneus, Lt 1.66 6 0.31 1.49 6 0.21 1.72 6 0.28 .0076y*
Precuneus, Rt 1.62 6 0.29 1.47 6 0.21 1.67 6 0.25 .0191*

Paracentral lobule, Lt 1.42 6 0.22 1.34 6 0.15 1.52 6 0.20 .0048*

Paracentral lobule, Rt 1.41 6 0.22 1.35 6 0.15 1.51 6 0.18 .0248*

Abbreviations: MT subtype, medial temporal subtype; D subtype, diffuse atrophy subtype; P subtype, parietal-dominant subtype; SD, standard deviation;

PET, positron emission tomography; FDR, false discovery rate; Lt, left; Rt, right; ICV, intracranial volume.

NOTE. For each variable, the mean and standard deviation, as well as the P value of between-group comparisons, are shown. Age, gender, education, and ICV

were treated as covariates.

*FDR corrected P , .05 between MT subtype and D subtype.
yFDR corrected P , .05 between D subtype and P subtype.
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symptom onset and have a shorter disease duration, a faster
disease course, and more atypical and nonamnestic presenta-
tion than the other subtypes.

In our present study, the P subtype cases were also
younger at symptom onset than those of the MT or D sub-
Fig. 3. Prominent deposition of fibrillary forms of amyloid-beta (Florbetapir-PET

P, .05 were shown with age, sex, education, and intracranial volume serving as c

tomography; FDR, false discovery rate.

FLA 5.4.0 DTD � DADM75_proof �
types, which finding is consistent with hippocampus-
sparing AD Q. Given the fact that the global cognitive assess-
ments did not differ among these three subgroups (Table 1),
the younger age in the P subtype subjects may suggest a
faster disease course [7]. There were some discrepancies
) in the brains of the parietal dominant AD subtype. Maps at FDR corrected

ovariates. Abbreviations: AD, Alzheimer’s disease; PET, positron emission
Q6
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Table 4

Neuropsychological test results

MT subtype (n 5 15) D subtype (n 5 43) P subtype (n 5 19)

P Adjusted PMean 6 SD Mean 6 SD Mean 6 SD

Clock drawing* 3.33 6 1.63 3.44 6 1.42 2.84 6 1.50 .3316 .4446

Clock copy* 4.60 6 0.83 4.47 6 0.74 3.63 6 1.71 .0819 .1352

BNT 20.47 6 5.90 22.53 6 5.68 25.00 6 4.29 .0560 .2391

RAVLT trial (sum of five trials) 19.80 6 5.44 25.07 6 8.32 21.84 6 7.09 .0492 .0714

RAVLT 30-min delay* 0.33 6 0.62 1.02 6 1.93 0.63 6 1.38 .5413 .4788

RAVLT recognition 7.20 6 3.80 7.49 6 3.81 6.11 6 3.00 .3849 .4170

Logical memory, immediate 3.60 6 3.14 5.07 6 2.74 3.95 6 2.46 .1293 .2401

Logical memory, delayed* 0.87 6 1.41 2.00 6 2.16 1.68 6 2.11 .2117 .2122

Category fluency (animals) 11.67 6 4.27 13.09 6 5.55 11.42 6 3.67 .3846 .3636

TMTA-time to complete 55.07 6 28.39 58.95 6 34.22 80.67 6 39.46 .0541 .0412yz

TMT B-time to complete 198.86 6 88.07 160.92 6 80.09 194.82 6 69.80 .2235 .1785

ADNI-MEM 20.80 6 0.41 20.44 6 0.44 20.68 6 0.43 .0116x .0237x

ADNI-EF 20.75 6 0.86 20.55 6 0.89 21.07 6 0.71 .0844 .0679

Interlocking pentagon, n (%) 13 (86.7) 38 (88.4) 4 (21.1) ,.0001yz .001yz

Abbreviations: MT subtype, medial temporal subtype; D subtype, diffuse atrophy subtype; P subtype, parietal-dominant subtype; SD, standard deviation;

BNT, Boston naming test; RAVLT, Rey’s auditory vocabulary list test; TMT, trail making test; ADNI-MEM, Alzheimer’s Disease Neuroimaging Initiative

memory composite score; ADNI-EF, Alzheimer’s Disease Neuroimaging Initiative executive functioning composite score; FDR, false discovery rate; ICV,

intracranial volume.

NOTE. Age, gender, education, and ICV were treated as covariates.

*Kruskal-Wallis test was done.
yFDR corrected P , .05 between MT subtype and P subtype.
zFDR corrected P , .05 between D subtype and P subtype.
xFDR corrected P , .05 between MT subtype and D subtype.
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between our findings and those of the autopsy study. For
example, the male predominance in the hippocampal sparing
AD group and the APOE4 allele preference in the limbic
predominant group were not noted in our P or MT subtypes,
respectively. This may be due to the relatively small number
of subjects assessed in our present analyses. However,
similar to the autopsy study, we found no significant differ-
ences between the P, MT, and D patients in terms of educa-
tion level, cognitive performance, or daily activities
measured by MMSE, CDR, CDR-SB, ADAS-Cog 11,
ADAS-Cog 13, MoCA, and GDepS, thereby suggesting
that our subgroups had a similar disease status and were
well matched for comparison (Table 1). When we addition-
ally assessed detailed neuropsychological tests, we found
the MT subtype showed less performance in memory tests
and the P subtype scored less in the interlocking pentagon
test, which suggest that the cortical thinning patterns reflect
cognitive changes at least in part. Taken together, we
conclude that clustering according to cortical atrophy pat-
terns onMRI is comparablewith grouping based on the path-
ologic subtypes of AD.
832
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4.2. Glucose hypometabolism comparable with cortical
atrophy

The FDG-PET image findings in our study potentially re-
flected the AD pathologies in the brain. FDG-PET, a marker
of synaptic activity and neuronal functioning, is known to
correlate well with tau accumulation or neuronal and synap-
tic injuries in the brain [20–22]. At the same time, glucose
FLA 5.4.0 DTD � DADM75_proof �
hypometabolism is indicative of neurodegeneration and
structural changes in MRI [23–26]. Areas of
hypometabolism noted in each subtype in our present
study matched well with regions of cortical atrophy
(Table 2 and Fig. 2). Patients in the P subtype showed
glucose hypometabolism in the right superior, left inferior
parietal, and left middle occipital cortices. This is consistent
with previous study results showing glucose hypometabo-
lism in the parietal lobes in patients with EOAD compared
with late-onset Alzheimer’s disease (LOAD) patients
[8,27]. Interestingly, patients in the MT subtype in our
current series showed glucose hypometabolism in the left
hippocampus. As the MT lobe is the most vulnerable area
to tau accumulation and subsequent neurodegeneration, the
glucose hypometabolism and cortical atrophy in these
lobes in the MT subtype may be indicative of the limbic
predominant AD reported in the autopsy study [28,29].

In terms of the progression of the tau pathology (neuro-
fibrillary tangles) in the brain, previous studies suggest
that neurofibrillary tangles begin to accumulate in the
MT lobes, including the transentorhinal cortex, and then
spread to the posterior temporal lobes and parietal lobes,
finally evolving to the frontal lobes [30]. It has been
further suggested that this pattern of spread matches
well with future brain atrophy [31]. As FDG-PET results
can reflect tau-mediated injury and both FDG-PET and
tau are markers of neurodegeneration [24,32], the three
subtypes noted in our current analyses may include
information on pathologically defined subtypes based on
neurofibrillary tangles.
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4.3. Prominent amyloid uptake in the P subtype

In our Florbetapir-PET analysis, patients in the P subtype
showed marked Ab accumulation in most brain regions
compared with that in the MT and D subtypes. Recent ad-
vances in the understanding of preclinical AD indicate that
Ab builds up rapidly and almost plateaus before the onset
of clinical symptoms of AD [33]. Many experimental and
clinical studies have demonstrated that Ab accumulation pre-
cedes tau-mediated neuronal injury and glucose hypometab-
olism [24,34,35]. At the same time, the extent of tau
pathology but not Ab burden is known to correlate with the
rate of atrophy in AD [4]. The lack of difference in amyloid
uptake between the MT and D subtypes, but not in glucose
hypometabolism or cortical atrophy patterns, may also stem
from the fact that Ab builds up preclinically and reaches its
maximal level by the time of clinical symptom development.
Because patients in the P subtype were younger and had a
similar degree of global cognitive function at the time of
PET imaging, they may have an earlier Ab accumulation
and faster disease course. These findings are in line with a
previous study that compared the amyloid PET findings be-
tween EOAD and LOAD patients and demonstrated marked
amyloid uptakes in the cortices of EOAD subjects [36].
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4.4. No difference in CSFAb and tau among the subtypes

In our present study, the CSF results showed no signifi-
cant differences among the P, MT, and D subtypes. Because
changes in the CSF Ab levels are known to precede the
fibrillar forms of amyloid noted by amyloid PET, as well
as FDG-PET and structural MRI changes, any differences
in CSFAb among the three groups would have been dimin-
ished at the time of assessment [32]. Moreover, because the
CSF obtained by lumbar puncture would yield pooled infor-
mation on tau or Ab in the whole brain, it may have less tem-
poral or regional resolution than PET or structural MRI.

Correlations between glucose hypometabolism, impaired
cognition, and high CSF tau levels have been demonstrated
[37]. On the other hand, there are other evidences showing
that cortical atrophy on MRI would be a later event in AD
progression, preceded by changes in CSF tau and FDG-
PET [24]. Based on these findings, and because our current
subjects were all demented at the time of assessment, the dif-
ferences in CSF tau would have been diminished. Relatively
small number of subjects investigated in this study would
have affected the lack of difference among the groups.

There were several limitations of our present study of
note. First, without autopsy findings we could not confirm
whether the regional distribution of glucose hypometabo-
lism measured by FDG-PET directly reflected the regional
distribution of neurofibrillary tangles. This will need to be
confirmed in subsequent studies using tau or neuroinflam-
mation images. Second, there were some demographic dis-
crepancies between our findings and the results from the
autopsy study. This was due in part to the relatively small
FLA 5.4.0 DTD � DADM75_proof �
number of subjects we analyzed. We hope to address
whether the differences in cortical thickness can also indi-
cate demographic differences among the P, MT, and D sub-
groups in a future study with a larger sample size. The
prevalence of TDP 43 pathology is known to be high in
limbic predominant AD and affects the clinical manifesta-
tions of AD [38,39]. By excluding subjects with
hippocampal sclerosis and TDP 43, previous autopsy
studies have tried to specifically address neurofibrillary
tangle pathology, which is not possible in an MRI-based
study [6,38,39]. Therefore, our three subtypes classified by
MRI cortical thickness patterns potentially included TDP
43 or hippocampal sclerosis pathologies in the brain. This
would have contributed to discrepancies in the clinical
characteristics among our three subgroups. Finally, brain
atrophy in our AD subjects potentially affected the PET
findings. Using partial volume correction in both sets of
PET analyses, we tried to eliminate the possibility of an
underestimation in glucose hypometabolism or amyloid
uptake in regions with marked atrophy [17].

The AD subtypes described in our present study may sug-
gest different patterns of disease progression and responses to
treatment. Consideration of these three patterns of brain
cortical atrophy will potentially be important when esti-
mating the prognosis of AD and in planning treatment strate-
gies in a clinical setting. Future studies supported by
pathologic findings or tau imaging will enable further under-
standing of the regional and temporal relationships between
the main pathophysiological manifestations of AD, including
neurofibrillary tangle accumulation and cortical atrophies.
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RESEARCH IN CONTEXT

1. Systematic review: We investigated whether a
cortical thickness–based clustering method would
reflect pathologically defined subtypes of Alz-
heimer’s disease (AD). After clustering of 77 AD
subjects from the Alzheimer’s Disease Neuroimag-
ing Initiative 2 data set, biomarker findings were
compared among the groups.

2. Interpretation: Three cortical thinning patterns were
noted: medial temporal (MT; 19.5%), diffuse
(55.8%), and parietal dominant (P; 24.7%) atrophy
subtypes. The P subtype was the youngest and repre-
sented more glucose hypometabolism in the parietal
and occipital cortices and marked amyloid-beta
accumulation in most brain regions. The MT sub-
type revealed more glucose hypometabolism in the
left hippocampus and bilateral frontal cortices. These
findings suggest cortical thickness patterns can
indeed reflect pathophysiological changes in AD.

3. Future directions: Given the easy accessibility of
magnetic resonance imaging, our findings have
advanced the AD field with imaging-based expecta-
tions of pathophysiology, disease progression, and
responses to treatment in AD. Future studies sup-
ported by pathologic findings will enable further
understanding of our results.
FLA 5.4.0 DTD � DADM75_proof �
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