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heimer’s Disease Assessment Scale-cognitive (ADAS-cog) obtained from the Alzheimer’s Disease

Neuroimaging Initiative.

Methods: The model was fit to the longitudinal ADAS-cog scores from 817 patients. Risk factors

(age, apolipoprotein 34 [APOE 34] genotype, gender, family history of AD, years of education) and

baseline severity were tested as covariates.

Results: Rate of disease progression increased with baseline severity. Age, APOE 34 genotype, and

gender were identified as potential covariates influencing disease progression. The rate of disease pro-

gression in patients with mild to moderate AD was estimated as approximately 5.5 points/yr.

Conclusions: A disease progression model adequately described the natural decline of ADAS-cog

observed in Alzheimer’s Disease Neuroimaging Initiative. Baseline severity is an important covariate

to predict a curvilinear rate of disease progression in normal elderly, mild cognitive impairment, and

AD patients. Age, APOE 34 genotype, and gender also influence the rate of disease progression.
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1. Introduction

Understanding the natural progression of Alzheimer’s dis-

ease (AD) is critical for almost all avenues of research in the

AD community. An understanding of how clinical outcomes

change in relation to underlying biological changes that are

reflected by changes in plasma and cerebrospinal fluid bio-

markers and brain imaging is a fundamental requirement in

moving toward qualified biomarkers of disease, much like

how high-density lipoprotein and low-density lipoprotein

have been accepted as surrogates for cardiovascular disease.
se Neuroimaging Initiative: Data used in the prepara-

e obtained from the Alzheimer’s Disease Neuroimag-

database (www.loni.ucla.edu\ADNI). As such, the

e ADNI contributed to the design and implementation

ed data but did not participate in analysis or writing of

vestigators include (complete listing available at

NI\Collaboration\ADNI_Authorship_list.pdf).
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It is also crucial to understand how rapidly the disease prog-

resses so as to test and design new trials for drugs that may go

beyond a simple symptomatic effect, such as disease modi-

fiers that may be used to prevent development or slow pro-

gression of AD. Given the number of risk factors

associated with AD and its progression, it is likely that these

relationships will be complex, multivariate, nonlinear, and

differ in their temporal relationship in many cases.

In a previous analysis, we developed a disease progression

model to describe the longitudinal changes in Alzheimer’s

Disease Assessment Scale-cognitive (ADAS-cog) in patients

with mild to moderate AD, using data from all available lit-

erature from 1990 to 2008 for acetylcholinesterase (AChE)

inhibitors (donepezil, galantamine, rivastigmine) [1]. In that

analysis, the average rate of disease progression (a) was es-

timated as 5.5 points per year (6.229, standard error) for a pa-

tient population with mean baseline ADAS-cog score of 25.

Baseline ADAS-cog score was found to be a significant

covariate on the rate of disease progression. The results indi-

cated that the milder the baseline cognitive impairment in
served.
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a population observed within a trial, the slower the disease

progression, and that the more severe the cognitive impair-

ment, the faster the deterioration. For example, if the baseline

ADAS-cog was 10, 20, 30, 40 points, then the slope estimate

from the model is 2.97, 4.73, 6.20, and 7.52 points per year,

respectively. These findings are consistent with the current

understanding of cognitive deterioration, as assessed by

ADAS-cog, in that it is slow during the early stages of AD

or in mild cognitive impairment (MCI), and more rapid dur-

ing the middle stages. The analysis provided quantitative es-

timates of the mean yearly effect and the variability

surrounding it. It also provided an overall summary of the

treatment effect of AChE inhibitors across all studies in the

published data.

However, there were limitations of this meta-analysis con-

ducted on published study-level data. In the published data,

typically only summary results are reported, (i.e., mean values

and standard errors), and, therefore, the model was not able to

detect the effect of potential factors influencing scores at an

individual level such as age, apolipoprotein (APOE) 34 geno-

type, gender, and duration of education. In contrast, clinical

information from individual patients would be significantly

more useful in analyzing the effect of these covariates on

model parameters, such as rate of disease progression (slope).

In this analysis, we fitted a model to individual ADAS-cog

scores obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (available at https://www.loni.

ucla.edu/ADNI) to describe the typical disease progression.

Furthermore, we evaluated potential covariates which may

influence disease progression.

The goal of this analysis was to develop a mathematical

model to describe the longitudinal changes in ADAS-cog

(11-item) using individual data, to enable a quantitative un-

derstanding of the disease progression in AD with an estimate

of between-patient variability, as well as the potential influ-

ence of important covariates which can be used for predicting

the disease progression. These estimates (and the associated

uncertainties in the estimates) can then be used as informative

priors in aiding in the evaluation of various study designs,

and in understanding the complex relationship between pa-

tient risk factors, biomarkers, imaging data, genotypes, and

clinical endpoints, such as ADAS-cog. The characterization

of such relationships is required to qualify biomarkers and

imaging data as surrogates of clinical outcome, allowing

for potentially more efficient clinical designs in the future.
2. Methods

2.1. Data

Data used in the preparation of this article were obtained

from the ADNI database (available at www.loni.ucla.

edu\ADNI). ADNI was launched in 2003 by the National In-

stitute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, the Food and Drug Administration,

private pharmaceutical companies, and nonprofit organiza-
tions, as a 5-year public-private partnership. The primary

goal of ADNI has been to test whether serial magnetic reso-

nance imaging, positron emission tomography, other biolog-

ical markers, and clinical and neuropsychological assessment

can be combined to characterize the progression of MCI and

early AD. Determination of sensitive and specific markers of

very early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their effec-

tiveness, as well as lessen the time and cost of clinical trials.

ADNI is the result of the efforts of many co-investigators

from a broad range of academic institutions and private corpo-

rations, and subjects have been recruited from more than 50

sites across the United States and Canada. The initial goal of

ADNI was to recruit 800 adults, aged 55–90, to participate

in the research; approximately 200 cognitively normal elderly

(NL) individuals to be followed up for 3 years, 400 people with

MCI to be followed up for 3 years, and 200 people with early

AD to be followed up for 2 years. All subjects had clinical or

cognitive assessments and 1.5 T structural magnetic resonance

imaging at specified intervals for 2–3 years. AD subjects (n 5

200) were studied at 0, 6, 12, and 24 months. MCI subjects at

high risk for conversion to AD (n 5 400) were studied at 0, 6,

12, 18, 24, and 36 months. Age-matched NL controls (n 5

200) were studied at 0, 6, 12, 24, and 36 months. Detailed pro-

tocol information can be found at www.adni-info.org.
2.2. Model development
2.2.1. Base model structure
For a nonrandomized natural history nontreatment study,

the natural disease progression in AD can be described as fol-

lowing [2]:

ADAScogðtÞ5ADAScog;t501a t1e

where ADAScog(t) is the ADAS-cog score at time t.
ADAScog,t 5 0 is the baseline status, and a is the rate of pro-

gression of the untreated disease.

The linear relationship between baseline ADAS-cog and

baseline MMSE over the entire range of ADAS-cog scores

has been characterized previously [1,3,4]. In this analysis,

therefore, baseline ADAS-cog (ADAScog,t 5 0) was described

by a linear relationship with baseline Mini-Mental State Ex-

amination (MMSE):

ADAScog;t505Intercept1Slope � bMMSE

Random effects were included on the intercept (h1) and

slope (h2) as additive error assumed to have a normal proba-

bility distribution with mean 0 and variance u1 and u2. Re-

sidual error (e) was assumed to have a normal probability

distribution with mean 0 and variance s [2].

2.2.2. Covariate evaluation
Covariates of interest included in this analysis were age,

APOE 34 genotype, family history of AD, gender, years of

https://www.loni.ucla.edu/ADNI
https://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu%5CADNI
http://www.loni.ucla.edu%5CADNI
http://www.adni-info.org
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education, and baseline ADAS-cog. Baseline ADAS-cog

was used as a marker of disease severity, which is hypothe-

sized to influence the rate of disease progression (a).

Similar to the approach previously reported by Ito et al [1],

continuous variables (age, education, baseline ADAS-cog)

were normalized to a value representative of the population

for that variable, that is, the approximate mean value of the

dataset. They were incorporated into the model using a power

function (power function model) described as following:

a5apop,

�
AGE

75

�qAGE

,

�
bADAScog

20

�qADAS

,

�
YEAReducation

15

�qEDCT

where apop is the population estimate of rate of progres-

sion and qx are the power coefficients that are fitted. The

power function allows for the relationship between the cova-

riates and slope to take different nonlinear forms (for exam-

ple, 0 being no relationship, and 1 approximating a linear

relationship). Normalization to the mean of the dataset allows

for a more numerically stable model.

For baseline severity, we tested an inverse-U type function

(modified inverse-U function) in addition to the power func-

tion, to describe the nonlinear relationship between the rate of

change (slope) and severity (baseline ADAS-cog score). This

parameterization allows the model to go through zero at both

ends, and it is divided by 1000 (520 ! 50) so that apop can

be interpreted as the population mean slope at a baseline

ADAS-cog of 20:

a5apop,

�
AGE

75

�qAGE

,

�
bADAScog

20
,

702bADAScog

50

�qADAS

,

�
YEAReducation

15

�qEDCT

We also tried a model similar to that of Ashford and

Schmitt [5], which allows a change in the shape of the U-

curve by two power coefficient parameters. As mentioned

earlier, the model is formulated so that apop can be interpreted

as the population mean slope at a baseline ADAS-cog of 20:

a5apop,

�
AGE

75

�qAGE

,

�
bADAScog

20

�qADAS1

,

�
702bADAScog

50

�qADAS2

,

�
YEAReducation

15

�qEDCT

Categorical variables (APOE 34 genotype, family history of

AD, gender) were modeled as dichotomous data as following.

a5apop,qAPOE4
i ,qSEX

i11 ,qFH
i12

where APOE4, SEX, and FH dichotomous variables take the

value 0 or 1. APOE 34 genotype was categorized into ‘‘non-car-

rier’’ (APOE4 5 0) and ‘‘carrier’’ (APOE4 5 1), where sub-

jects having at least 1 APOE 34 allele (34) were considered

carriers (APOE4 5 1). Gender was male (SEX 5 1) or female

(SEX 5 0). Family history of AD was categorized as ‘‘Yes’’
(FH 5 1) or ‘‘No’’ (FH 5 0). The ‘‘No’’ (FH 5 0) group is de-

fined by neither mother nor father having a clinical diagnosis of

AD. ‘‘NA’’ (not available) values for family history of AD were

present in the dataset, and therefore the test for family history

was completed with the subset with available data.

Model fitting was performed using a population analysis

approach (NONMEM version VI, Level 1.2, ICON Develop-

ment Solutions, Ellicott City, MA). Diagnostic graphics and

postprocessing of NONMEM output and simulation were

performed using S-Plus Professional Edition (version 7.0)

for Windows XP (Insightful Corporation, Seattle, WA) and

R (version 2.7.1).

2.2.3. Model selection criteria and performance evaluation
The model building strategy is based on modification of

different approaches discussed by Beal et al [6], Mandema

et al [7], Maitre et al [8], and Ette and Ludden [9]. Covariates

were added one by one in a stepwise manner, examining the

change in minimum objective function (MOF) values in

hierarchical models, and also the precision of the parameter

estimate.

During model building, the goodness of fit of different

models to the data and hypotheses testing were evaluated us-

ing the following criteria: change in the MOF, visual inspec-

tion of different scatter plots including population and

individual predicted versus observed value and conditional

weighted residuals, precision of the parameter estimates, as

well as decreases in both inter-individual variability and re-

sidual variability. These criteria were used only when the

minimization step was successful and standard errors of pa-

rameter estimates were obtained using the covariance step.

The difference in MOF values between 2 hierarchically

nested models has an approximate c2 probability distribution

with the number of degrees of freedom for the c2 distribution

equal to difference in the number of parameters between the 2

models. Any decrease of .6.6 in the objective function dur-

ing model building indicated that a proposed model with 1

additional parameter provided a better fit than the reduced

reference model (P , .01). The covariate(s) of interest

were kept in the model if the model was stable and its param-

eter estimate demonstrated acceptable precision, regardless

of its statistical significance (using MOF as reference).

After the final model was identified, 100 datasets identical

in structure and covariate values to the original dataset were

simulated, using the parameter estimates and uncertainties

from the final model to evaluate the model performance.

The longitudinal ADAS-cog scores over time by population

group (AD, MCI, NL) were generated with 90% and 95%

prediction intervals simulated from the final model.
3. Results

3.1. Data characteristics

The dataset available as of December 10, 2009 contained

817 subjects consisting of 229 normal, 402 MCI, and 186 AD



Table 1

Demographic characteristics

AD MCI NL

No. patients 186* 402 229

Age (yr) 75.3 6 7.6 74.8 6 7.4 75.9 6 5.0

Female (%) 47.3 35.6 48.0

Baseline ADAS-cog 18.7 6 6.3 11.5 6 4.4 6.2 6 2.9

Baseline MMSE 23.3 6 2.0 27.0 6 1.8 29.1 6 1.0

Education (yr) 14.7 6 3.2 15.7 6 3.0 16.0 6 2.9

APOE 34 status

34 non-carrier (%) 63 (33.9) 187 (46.5) 186 (73.4)

32, 32 (%) 0 0 2 (.9)

32, 33 (%) 5 (2.7) 17 (4.2) 31 (13.5)

33, 33 (%) 58 (31.2) 170 (42.3) 135 (59.0)

34 carrier (%) 123 (66.1) 215 (53.5) 61 (26.6)

32, 34 (%) 4 (2.1) 11 (2.7) 3 (1.3)

33, 34 (%) 83 (44.6) 157 (39.1) 53 (23.1)

34, 34 (%) 36 (19.4) 47 (11.7) 5 (2.2)

Race (%)

American Indian

or Alaskan Native

0 1 (.2) 0

Asian 2 (1.1) 9 (2.2) 3 (1.3)

Black or African American 8 (4.3) 15 (3.7) 16 (7.0)

White 174 (93.5) 376 (93.5) 210 (91.7)

More than

one race

2 (1.1) 1 (.2) 0

*Mild 5 171, moderate 5 13, severe 5 1, NA 5 1.
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patients (Table 1). Overall, the age distributions are similar

among these populations. The proportion of females in the

MCI group is slightly lower but similar between AD and nor-

mal, with the majority of subjects classified as white. The dis-

tribution of APOE 34 (3334 and 3434) carrier status was more

frequent in patients with AD. As expected, baseline MMSE

scores and baseline ADAS-cog are highly correlated.

Observed longitudinal ADAS-cog data are visualized in

Fig. 1A (line: loess) and the linear relationship between base-

line ADAS-cog and baseline MMSE is presented in Fig. 1B

(line: linear regression). Because of the number of superim-
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Fig. 1. Clinical data obtained from ADNI. (A) Longitudinal ADAS-cog by patient p

MMSE. Loess lines for (A) and linear regression line for (B).
posed data points at the same time point, visit values (month)

in Fig. 1A and actual score (MMSE) in Fig. 1B were slightly

jittered in the figures to aid visual interpretation.
3.2. Final model compared with base model

As described in the Methods section, covariates of inter-

est were tested in a forward stepwise manner. Baseline

ADAS-cog, APOE 34 genotype, and age were significant co-

variates affecting rate of disease progression. APOE 34 effect

was further evaluated by patient population to account for

the unbalanced APOE 34 carrier prevalence among NL,

MCI, and AD patients. Gender was not statistically signifi-

cant but showed some trend with reasonable precision (rela-

tive standard error [RSE] 5 13.2%); therefore, it was also

included in the final model. Year of education was neither

statistically significant nor was its precision acceptable

(RSE 5 9.7%); it was not included in the final model. Fam-

ily history of AD was excluded because it was not significant

and did not show any trend toward significance with the lim-

ited data available.

The parameter estimates from the base model and the final

model are summarized in Table 2. Overall, the final model

parameters were well estimated with reasonable confidence

intervals.

To ascertain the appropriateness of covariates included in

the final model, plots of random effect (interindividual vari-

ability: IIV) estimates on slope (h2) were generated by study

population as well as by covariates of interest (APOE 34 ge-

notype, gender, baseline ADAS-cog) from the base and final

model (Fig. 2). Trends in the distribution of random effects

for the base model (no covariates in the base model) were ob-

served. On inclusion of the covariates into the model, the

trends observed by visual inspections in the distribution of

random effects were removed, with the distribution dispersed

around zero, confirming appropriateness of the final model. It
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ADAS-cog=56.4-1.86*MMSE
R-squared: 0.4815, p<0.0001

opulation, (B) Linear relationship between baseline ADAS-cog and baseline



Table 2

Model parameter estimates

Base model Final model

Objective function 14,014.818 13,752.884

Parameter Estimate RSE (%) Estimate RSE (%) 95% CI*

Disease progression

(a) (point/yr)

1.87 7.86 4.83 11.9 (3.63, 6.00)

ADASt 5 0-intercept 52.9 3.82 56.4 2.98 (53.4, 59.9)

ADASt 5 0-slope -1.53 4.76 –1.68 3.58 (–1.80, –1.58)

Covariate

Baseline ADAS-cog —z —z 3.45 9.57 (2.82, 4.07)

Age —z —z –1.80 35.2 (–3.24, –.593)

APOE 34 effect (MCI)y —z —z 1.21 21.9 (.823, 2.24)

APOE 34 effect (AD)y —z —z 1.22 23.0 (.775, 2.03)

Sex (male) —z —z .893 13.2 (.684, 1.11)

Random effect

sqrt of h1 on ADASt 5 0 3.81 9.93 3.78 10.0 (3.42, 4.16)

sqrt of h2 on a (point/yr) 3.12 15.7 2.47 18.4 (2.04, 2.90)

Covariance of random effect .465 17.6 –.099 58.7 (–.20, .0056)

Residual error

Standard deviation (SD) 2.81 2.29 2.83 2.33 (2.72, 2.96)

*95% CI are obtained from non-parametric bootstrap (n 5 500).
yEstimated within the patient population.
zNot estimated (covariates are not included in the base model).

K. Ito et al. / Alzheimer’s & Dementia 7 (2011) 151–160 155
should be emphasized that the random effect by patient pop-

ulation showed a clear trend in the base model (Fig. 2, top-left

panel), suggesting unexplained variability for the patient

population with the base model; that is, the random effect
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-0
.5

0.
0

0.
5

1.
0

1.
5

ra
nd

om
 e

ffe
ct

 o
n 

Sl
op

e

APOE ε4
 non-carrier

APOE ε4
 carrier

-0
.5

0.
0

0.
5

1.
0

1.
5

NL MCI AD

-0
.5

0.
0

0.
5

1.
0

1.
5

ra
nd

om
 e

ffe
ct

 o
n 

Sl
op

e

APOE ε4 
 non-carrier

APOE ε4
 carrier

-0
.5

0.
0

0.
5

1.
0

1.
5
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was shifted higher in the AD population because the base

model attempted to capture the higher slope estimate with

AD population by adjusting the random effect term for AD

patients. However, these trends were corrected (Fig. 2,
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Fig. 3. Final model visual predictive check from 100 simulations with 90% and 95% predicted interval (shaded area and dashed lines).
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bottom-left panel) after including these covariates, indicating

that APOE 34 genotype, gender, and baseline ADAS-cog ac-

count for some of the interindividual variability in the slope.

The predictive performance of the final model was as-

sessed by evaluating whether the distribution of the observed

data was contained within the empirical distribution of the es-

timates predicted by the final model over a number of simu-

lations. For this evaluation, 100 data sets were simulated

from the final model (and its uncertainty in parameter esti-

mates) using the original dataset. Figure 3 shows the time-

course of ADAS-cog, with both the 90% and 95% prediction

intervals (shaded area and dashed-line, respectively) for each

population. These results indicate that the final model predic-

tion is reasonable for both the point estimates as well as the

distributions.
Table 3

Slope estimate by baseline ADAS-cog and age (APOE 34 negative)

Baseline

ADAScog

Baseline

MMSE* Age

Slope estimate (95% CI)

(point/yr)

5 30 75 .10 (–1.02, 1.22)

10 .27 75 .83 (–.29, 1.95)

15 25 75 2.49 (1.36, 3.61)

20 22 75 4.83 (3.71, 5.95)

25 19 75 7.25 (6.13, 8.37)

30 16 75 9.06 (7.94, 10.2)

35 13 75 9.73 (8.60, 10.9)

40 ,10 75 9.06 (7.94, 10.2)

20 22 65 6.25 (5.13, 7.37)

20 22 70 5.47 (4.35, 6.59)

20 22 75 4.83 (3.71, 5.95)

20 22 80 4.30 (3.18, 5.42)

20 22 85 3.86 (2.73, 4.98)

*Baseline MMSE was approximately calculated based on the linear re-

gression relationship with baseline ADAS-cog.
The underlying disease progression slope (a) from the

model for ADAS-cog was estimated to be 4.83 points per

year in female, APOE 34 non-carrier patients whose baseline

ADAS-cog was 20 (considered as mild AD patients). Base-

line ADAS-cog was negatively related to baseline MMSE

(Fig. 1B), and the parameter estimate for the slope was

–1.68 (R2 5 .48, P , .0001). Covariates included in the final

model were baseline ADAS-cog, age, APOE 34 status, and

gender. Years of education and family history of AD were

not significant and did not show any trend. It is noted that

the information for family history of AD was only available

with 682 of the total 817 subjects. The use of AChE inhibitor

as background therapy was also investigated; however, it did

not show any difference at baseline. The effect of AChE in-

hibitors could not be evaluated with the longitudinal data be-

cause of the nature of the ADNI study (nonrandomized

natural history, nontreatment study).

Baseline severity of disease, as assessed by the ADAS-cog

score, was found to have a significant effect on slope (a) with

both the power model and the modified inverse-U model,

with no statistical superiority demonstrated between the

two models. The modified Ashford model was unstable and

the estimation algorithm did not converge. This is likely

due to insufficient data in patients with severe AD to describe

the upper end of the curve. Although both the power model

and modified inverse-U models are able to describe the

data obtained from ADNI, the change in slope should theoret-

ically go through zero at both ends; therefore, the inverse-U

model was selected in the final model. In clinical terms, the

rate of disease progression is, in part, a function of the base-

line severity of the cognitive deficits, with more moderately

affected populations demonstrating more rapid deterioration

in cognitive function compared with more mildly affected
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populations on the ADAS-cog (within the range of values

available in the dataset). Slope estimates by baseline severity

(different baseline ADAS-cog) are summarized in Table 3.

The plot shown in Fig. 4 is the model-predicted individual

slope (open circle) and mean predicted slope (solid line)

from the model versus baseline ADAS-cog, demonstrating

that the model is able to predict the curvilinear relationship

between disease progression and baseline severity. Note

that the gray area in the plot indicates the data are not avail-

able in ADNI, and the dotted line is the prediction from the

modified inverse-U function.

APOE 34 effect was a significant covariate when it was in-

cluded in the model. Because of the different APOE 34 carrier

prevalence among patient populations, the parameters were

estimated within each individual patient population

(estimates of 1.22 and 1.21 for MCI and AD patients, respec-

tively), suggesting that APOE 34 carriers have approximately

22% increase in yearly disease progression compared with

non-carrier patients. The parameter could not be estimated

for normal elderly (NL) patients, likely due to very small

changes in cognition (slope close to zero) for the rate of dis-

ease progression in NL patients. Gender effect was estimated

as .893 (95% CI: .684–1.11), representing a 10.7% slower

decrease in yearly progression in males relative to females.

Year of education was not a significant covariate in this

analysis set. The parameter was not well estimated, demon-

strated large RSE 90.7% and wide 95% CIs (–.27 to –1.32)

from the nonparametric bootstrap, suggesting it may not ap-

propriate to estimate or discuss the effect of education with

the data available at this point.
4. Discussion

Two of the stated major goals for the ADNI trial were (1)

to acquire a generally accessible data repository that de-

scribes longitudinal changes in brain structure and metabo-
lism and in parallel, acquires clinical cognitive and

biomarker data for validation of imaging surrogates, and

(2) develop methods that will provide maximum power to de-

termine treatment effects in trials involving these patients.

The underling progression of disease in AD is a complicated

process, and with time, imaging or biomarkers (dependent on

stage of disease) will likely become better at quantifying the

pathological or physiological disease progression process.

Providing a correlation of these markers to clinical outcomes

such as cognitive change will be crucial to having the markers

become validated for clinical use. It is likely that both the im-

aging endpoints as well as the clinical outcomes will be non-

linear and differ in the temporal order in which they change.

Jack et al [10] propose a framework in which they relate dis-

ease stage to AD biomarkers, where Ab biomarkers become

abnormal first before neurodegenerative biomarkers and cog-

nitive symptoms, and neurodegenerative biomarkers become

abnormal later and correlate with clinical symptom severity.

To link the components of this framework, it will be im-

portant to understand the relationship between cognitive

changes over time (the clinical outcome) and the changes

in markers of underlying disease, through the use of disease

progression models.

The work here represents an initial model-based attempt to

relate these different factors to understand the natural decline

of cognitive function. Such a model provides a common

quantitative basis for further evaluation of study design and

analysis methodologies for clinical studies in the mild to

moderate AD population and MCI. These findings can be ap-

plied to all stages of drug development; proof of concept,

dose-ranging, and confirmatory trial designs. Trial simulation

based on quantitative models can support the use of new and

innovative trial designs and endpoints across the Alzheimer’s

community.

Various disease progression models for AD have been

published in the past [2,11–13], and the methods for

building and testing these models have been well described

[14]. Although the general model building principles and

model structure provided similar results and interpretations,

the studies on which these initial models were based were

of short duration or did not contain more recent key data,

such as imaging, proteomic, and genetic biomarkers, now

shown to be important covariates in understanding the rate

of conversion to AD and the rate of decline in AD patients.

We previously reported a meta-analyses using all avail-

able literature data from 1990 to 2008 that estimated the nat-

ural history of AD and provided estimates of treatment effects

for currently available AChE inhibitor therapies [1]. How-

ever, because of the nature of the literature data in that it is

only study-level summary data, the model has limited ability

to evaluate important individual covariates, such as age and

APOE 34 genotype. The meta-analysis model from the liter-

ature using study-level data also does not provide inter-

subject variability information. Therefore, we applied a simi-

lar modeling approach to the ADNI database, which contains

a wealth of longitudinal natural history data from more than
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800 subjects including individual demographics, and a wide

range of patient populations including normal elderly and

MCI patients, as well as imaging, proteomic, and genetic bio-

markers. As such, the true natural history of changes in cog-

nition (as measured by ADAS-cog) up to mild to moderate

AD can be estimated.

There are two core elements in the model structure, one

predicts baseline ADAS-cog (ADAScog, t 5 0) and the other

estimates the natural disease progression (slope: a). Because

a linear relationship between baseline ADAS-cog and base-

line MMSE was observed, a linear relationship between

ADAS-cog and MMSE was incorporated into the baseline

ADAS-cog (ADAScog, t 5 0) model. We also attempted non-

linear relationships (power function normalized by popula-

tion mean of baseline MMSE score), but the linear model

provided a statistically better fit than the power function

model within the range of data available. The estimate of in-

tercept and slope are 56.4 and –1.68, respectively, similar to

the estimates previously reported by Ito et al (60.9 and –1.85

for intercept and slope, respectively, from literature meta-

analyses [1]). Doraiswamy et al and Caro et al also reported

a linear relationship between baseline ADAS-cog and base-

line MMSE using patient data (ADAS-cog 5 72.2–2.41 !
MMSE [3] and ADAS-cog 5 70–2.33 ! MMSE [4]).

Baseline ADAS-cog was a significant covariate for dis-

ease progression (a) in our previous analysis [1]. Atchison

et al also reported that baseline cognitive function predicted

the rate of decline in basic-care abilities with AD patients

[15]. We evaluated baseline ADAS-cog as a covariate in

this analysis, and found it to be a significant factor for disease

progression. This is in keeping with the findings of other in-

vestigators who have demonstrated the influential effect of

cognitive performance on rates of change in the ADAS-cog

[3,16]. The importance of baseline ADAS-cog may in part

explain some difference observed between various authors

in estimates of yearly progression, and in understanding

whether disease progression has changed over the years.

Baseline ADAS-cog was considered an indicator of base-

line severity for this analysis, and disease progression (slope)

was found to be highly dependent on baseline disease sever-

ity. The high correlation amongst patient populations (NL,

MCI, AD) and baseline ADAS-cog can be observed in

Fig. 1A. In the base model which did not include baseline

ADAS-cog on slope (a), the distribution of random effect

(IIV) was unbalanced (Fig. 2, top-left and top-right panels);

however, the trends disappeared with inclusion of baseline

ADAS-cog in the final model (Fig. 2, bottom-left and

bottom-right panels). It is noted that patient population

(NL, MCI, AD) is not included as a covariate in the model,

indicating that baseline ADAS-cog alone is a good predictor

of the severity. Because MMSE is used as a standard tool to

diagnose patients with AD and for inclusion in trials, we also

tested baseline MMSE (test model) instead of baseline

ADAS-cog (final model) on the slope estimate. However,

goodness of fit, as measured by the MOF, increased 51 points

in the test model, indicating that the model fit is worse when
using baseline MMSE as a covariate on slope compared with

the final model which used baseline ADAS-cog. The reason

for this is unclear, but MMSE itself may not be sufficiently

sensitive to differentiate disease severity as the disease prog-

resses over time because of the limited range of MMSE

values relative to ADAS-cog.

Baseline ADAS-cog also plays an important role in the

model to capture the curvilinear relationship of the disease

progression (Table 3, Fig. 4). For simplicity, the assumption

that disease progression is linear within the study duration of

6–12 months for individual patients appears likely sufficient.

However, the mean model prediction describes the curvilin-

ear relationship between disease progression and baseline se-

verity over a longer period, because the slope estimates are

dependent on the baseline ADAS-cog through a modified

inverse-U function which goes through zero at both ends.

This is consistent with a general understanding of disease

progression in AD and the different stages of progression

of dementia; that is, an early stage in which it may be difficult

to diagnose the normal aging process from MCI, followed by

mild to moderate AD where the rate of deterioration gradu-

ally increases. ADAS-cog scores range from 0 to 70; and

scores theoretically plateau as deterioration progresses. How-

ever, in severe AD, using cognitive measurements such as

ADAS-cog becomes difficult, and other clinical endpoints,

such as Severe Impairment Battery, are used. It is also noted

that the patients in the ADNI database are not severe enough

to observe this plateau phase.

Ashford and Schmitt [5] reported another mathematical

approach to describe the rate of disease progression using

‘‘time-index’’ intervals, which captures these different

stages. We also attempted to apply a similar model to that

of Ashford and Schmitt [5], which is theoretically preferable,

as it allows more flexibility in the shape of the curve. How-

ever, the estimation results showed several signs of model in-

stability or overparameterization. This is probably because of

the range of data available within ADNI; we do not have

enough information for the later stage of AD to characterize

the parts of the curve in more severe disease where change

starts to diminish using ADAS-cog.

There are also limitations to using ADAS-cog to ade-

quately predict the severity of disease for early stages of cog-

nitive impairment or patients with severe AD because of the

well-known ceiling and floor effects of the ADAS-cog.

Grundman et al [17] also reported that the percentage of

word list items contributing to the ADAS-cog score is high

in the control group (normal) and MCI group (84% and

81%, respectively) compared with AD groups (CDR: .5,

group: 68%; CDR: 1.0, group: 58%), although MCI had

higher ADAS-cog total scores than control group (MCI:

11.3 6 4.4, control: 5.6 6 3.3 expressed mean 6 SD).

MCI patients had primarily prominent memory impairment,

but were also very mildly impaired on other cognitive do-

mains, and these characteristics were not well captured by us-

ing only ADAS-cog. Consistent with previous reports [18–

20], APOE 34 carriers demonstrated more rapid decline in
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cognitive function. On average, approximately 22%

increases in yearly deterioration for AD and MCI patients

with APOE 34 carriers were predicted from the final model.

It is noted that the APOE 34 effect on disease progression

is detected with MCI and AD patients, and little or no

effect of genotype observed in NL patients. These results

are consistent with the more rapid conversion from MCI to

AD in APOE 34 carriers observed in clinical trials.

Aging is considered an important risk factor for dementia,

and baseline age was tested and shown to be an important de-

terminant of the rate of cognitive decline. The power coeffi-

cient of age effect was estimated to be –1.8, indicating that

younger subjects have a more rapid decline in cognitive func-

tion than older subjects, holding all other factors constant

(Table 2). For example, for patients with baseline ADAS-

cog score of 20 (mild to moderate AD patients) in 65- and

85-year-olds, the estimated cognitive decline in ADAS-cog

scores are 6.25 and 3.86 per/yr, respectively (Table 2). This

indicates that the cognitive decline may progress faster

with patients who develop dementia in their earlier than those

who develop it a later age. It is important to note that this

analysis tests the effect of age on cognitive decline using

ADAS-cog, and is not intended to predict the probability to

develop dementia. Several authors have reported age as

a risk factor of incidence of dementia [19–23], and one

author reported that age is not a significant factor in

predicting progression to AD [24].

A gender effect was also identified in this analysis, with

male patients having a 10.7 % slower rate of progression

on average compared with female patients. The 95% CI esti-

mates included null values for the gender effect (.684–1.11),

indicating that gender may not be a strong predictor for dis-

ease progression, or that the data in this analysis were insuf-

ficient to obtain a definitive relationship. Like the age risk

factor, gender effects are discussed in many articles

[20–22,25] and the results are controversial. These different

results may be in part due to different distributions of the

population, different analysis methods, or insufficient data

to detect the signal. The covariate effect will be re-

evaluated when all data are available from the ADNI study.

Education effect in this analysis was not significant, with

the 95% confidence intervals being large and including the

null value. Epidemiologic analysis and several clinical trials

have shown that education is a significant risk factor to ac-

quire dementia and there is a significant protective effect of

education [20,23,26], whereas others have reported it is not

significant [19,22,24,27]. Therefore, the effect of education

needs to be re-evaluated when all data are available.

The mean rate of disease progression for mild to moderate

AD patients (baseline MMSE 16–26) was estimated as 5.22

points per year for 75-year-old, female, APOE 34 non-

carrier patients. If the patient is male, the slope estimate was

4.52 points per year (10.7% decrease), and if APOE 34 carrier,

a 22% increase (6.37 and 5.52 points per year for female and

male, respectively). To estimate the disease progression for

mild to moderate AD patients, the slope was estimated from
the model for baseline MMSE score from 16 to 26 and then

averaged. The overall mean rate of disease progression was

also estimated for 75-year-old mild to moderate AD patients

as 5.5 points per year by using the prevalence of APOE geno-

type and gender in ADNI AD patients (female APOE 34 non-

carrier: 18.6%, male APOE 34 non-carrier: 15.4%, female

APOE 34 carrier: 28.7%, male APOE 34 carrier: 37.2%).

The estimates obtained are consistent with the previously re-

ported results using literature data analysis [1]. The benefit

with the individual data analysis is that the effect of covariate

effects, such as age, APOE 34 genotype, and gender, could be

estimated, as discussed earlier, which was not possible in the

literature data analysis [1]. Inter-subject variability was also

estimated in this analysis, which allows us to calculate power,

efficiency, and ruggedness of different study designs, and to

simulate individual responses in future clinical trials.

There are limitations in the interpretation of this analysis

that should be considered. First, the floor and ceiling effects

with ADAS-cog score and use of a linear function over time

to describe the natural decline of cognitive function may not

be appropriate for longer duration data. The ADNI study does

not include patients with severe AD where ceiling effects

may appear, and the model may not predict well for those pa-

tients. This is likely to be a concern, as ADAS-cog is not used

as a primary endpoint in clinical trials of severe AD patients;

rather, other endpoints such as the Severe Impairment Battery

and Modified Alzheimer’s Disease Cooperative Study Activ-

ities of Daily Living Inventory for Severe AD are used. Sec-

ond, the correlation between the risk factors identified is still

unknown and potential interaction between covariates and/or

among patient populations needs to be investigated. Third,

we did not include a placebo effect in the model because of

the nature of ADNI study. Placebo effects are often seen in

AD clinical trials. The ‘‘placebo effect’’ component was in-

corporated in our previous analysis [1] to describe the nonlin-

ear relationship observed over the first 3–6 months. This is

important for estimating disease progression from blinded tri-

als, especially if trial simulation is planned for a shorter

period study, such as proof-of-concept studies. Finally, drop-

out is an important factor in real clinical trials and is not cur-

rently accounted for in this longitudinal data modeling.

Despite these limitations, the model provides a quantitative

understanding of disease progression; that is, the natural de-

cline of cognitive function. It also describes the relationship

between covariates and risk factors and clinical outcome.

As such, it can be used to simulate disease progression in dif-

ferent populations and to test study designs and scenarios. Ul-

timately, the understanding of the relationship between

biomarkers and imaging data may allow these types of end-

points to be used as surrogates of clinical outcomes, enabling

more efficient clinical trial designs for AD.
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