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Abstract Introduction: This article reviews the work done in the Alzheimer’s Disease Neuroimaging Initia-
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tive positron emission tomography (ADNI PET) core over the past 5 years, largely concerning tech-
niques, methods, and results related to amyloid imaging in ADNI.
Methods: The PET Core has used [18F]florbetapir routinely on ADNI participants, with over 1600
scans available for download. Four different laboratories are involved in data analysis, and have
examined factors such as longitudinal florbetapir analysis, use of [18F]fluorodeoxyglucose (FDG)-
PET in clinical trials, and relationships between different biomarkers and cognition.
Results: Converging evidence from the PET Core has indicated that cross-sectional and longitudinal
florbetapir analyses require different reference regions. Studies have also examined the relationship
between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-
PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid
scale.
Conclusion: The PET Core has demonstrated a variety of methods for the standardization of bio-
markers such as florbetapir PET in a multicenter setting.
� 2015 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The Alzheimer’s Disease Neuroimaging Initiative posi-
tron emission tomography (ADNI PET) core began life
entirely focused on the use of metabolic brain imaging
with [18F]fluorodeoxyglucose (FDG)-PETas a potential sur-
rogate outcome measure for use in clinical trials. Over time,
the goals of the PET core have expanded and changed
considerably, consonant with the overall goals of the
ADNI project. A relatively early addition was the use of am-
yloid imaging with [11C]PIB (Pittsburgh Compound B);
whereas this was done on a small scale it paved the way
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gust@berkeley.edu

16/j.jalz.2015.05.001

e Alzheimer’s Association. Published by Elsevier Inc. All r
for the subsequent large scale addition of [18F]florbetapir
amyloid PET imaging. The initial phase of the ADNI PET
core was reviewed previously [1]. This review will cover
work in the ADNI PET core since the addition of florbetapir
imaging as part of the ADNI-Grand Opportunities (GO)
project and continuing into ADNI-2. This work includes
both the continued acquisition of FDG-PET images, along
with the addition of amyloid imaging. Current availability
(as of early 2015) of PET scans in both of these modalities
is shown in Tables 1 and 2. The wealth of imaging data in
ADNI, paired with other data that is part of ADNI (i.e.,
magnetic resonance imaging [MRI], fluid biomarkers,
cognitive measures) is clearly a major international
resource for the study of Alzheimer’s disease (AD).

The addition of amyloid imaging offered several new op-
portunities to investigators using ADNI data, which reflected
ights reserved.
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Table 1

Numbers of longitudinal fluorodeoxyglucose (FDG) scans available at the

University of Southern California Laboratory of Neuroimaging (LONI)

website as of January 13, 2015 are shown for each diagnostic group

Number of

FDG scans Normal SMC EMCI LMCI AD Total

1 343 106 307 411 239 1406

2 258 0 167 279 112 816

3 93 0 2 181 75 351

4 85 0 0 162 58 305

5 72 0 0 146 0 218

6 39 0 0 105 0 144

7 25 0 0 56 0 81

8 5 0 0 28 0 33

9 0 0 0 5 0 5

Total 920 106 476 1373 484 3359

Abbreviations: SMC, subjective memory concern; EMCI, early mild

cognitive imapirment; LMCI, late mild cognitive impairment; AD, Alz-

heimer’s disease.

Note that each cell represents scan number and not subject number, so

some subjects are represented more than once in the table.
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the major new goals of this phase of the project. First, the
collection of longitudinal amyloid imaging data offered
the potential to examine rates of accumulation over time,
and to see the variability in longitudinal measurements.
This is particularly important for the use of amyloid PET
as a biomarker in trials testing amyloid-lowering drugs, an
approach begun with PIB [2] that is spreading to more
widely available [18F] labeled tracers. Work in ADNI has
pioneered in the development of new approaches to longitu-
dinal florbetapir data analysis to reduce variability in mea-
surement (reviewed later). Other major goals of amyloid
imaging in ADNI include the assessment of whether and
how brain amyloid deposition affects cognitive decline,
and how PET amyloid may be related to other biomarkers
including cerebrospinal fluid (CSF) measures of amyloid.
Another major question is what factors should be used in se-
lecting individuals for clinical trials—especially important
as such trials move to earlier stages when cognitive and clin-
ical assessments alone are less useful [3]. The use of amyloid
PET, along with other biomarkers studied in ADNI, will be
Table 2

Numbers of longitudinal florbetapir scans available at the University of

Southern California Laboratory of Neuroimaging (LONI) website as of

January 13, 2015 are shown for each diagnostic group

Number of

florbetapir scans Normal SMC EMCI LMCI AD Total

1 266 85 302 220 191 1064

2 197 0 199 135 48 579

3 13 0 20 9 4 46

Total 476 85 521 364 243 1689

Abbreviations: SMC, subjective memory concern; EMCI, early mild

cognitive imapirment; LMCI, late mild cognitive impairment; AD, Alz-

heimer’s disease.

Note that each cell represents scan number and not subject number, so

some subjects are represented more than once in the table.
of greater importance in subject selection as therapeutic tri-
als move earlier. Findings from studies addressing these
goals are discussed in subsequent sections.
2. PET quality control, image processing, and quality
control

[18F]Florbetapir imaging began at the start of ADNI-GO/
2 after initial experience with [11C]PiB. Quality assurance/
control (QA/QC) procedures, and the image standardization
and preprocessing steps for [18F]florbetapir are essentially
the same as were used for [11C]PiB.

2.1. PET quality assurance/control

All subjects enrolled in ADNI-GO/2 received both [18F]
FDG and [18F]florbetapir scans, with follow-ups at 2 and
4 years, although FDG-PET was discontinued in 2014
because of the extensive data already available. All PET im-
ages are downloaded from the Laboratory of Neuroimaging
(LONI) in DICOM, ECAT, or Interfile formats. The QA/QC
process consists of visual inspection and quantitative mea-
sures for all image sets. Visual inspection includes (1) qual-
itative assessment of subject motion, (2) determination of
whether the entire brain was included in the FOV, and (3)
detection of artifacts arising from sources such as spatial
mismatch between the transmission/computed tomography
(CT) and emission scans, or from detector and scanner
normalization issues. Automated routines extract informa-
tion from the image headers, which are checked for consis-
tency with the PET acquisition and (scanner-specific)
reconstruction protocols.

For each scan, the 5-minute frames (six for FDG acquired
at 30- to 60-minute postinjection, four for florbetapir, ac-
quired 50- to 70-minute postinjection) are coregistered to
frame 1 (rigid-body translation/rotation, 6� of freedom) us-
ing the NeuroStat “mcoreg” routine. The magnitude of mo-
tion between frames for the three translation and three
rotation parameters is recorded and flagged when thresholds
are exceeded. Global correlation and root mean square error
(RMSE) are calculated pair-wise between all frames, both
before and after coregistration. The correlation and RMSE
matrices are inspected for frames that have low correlation
and/or high RMSE. Both visual inspection and quantitative
measures are used to fail frames. After coregistration, all
frames are averaged into a single “static” frame. Both the
realigned dynamic (preprocessed set 1), and averaged
“static” images (preprocessed set 2) are converted to DI-
COM format and uploaded to LONI. These two prepro-
cessed images sets remain in native space.

2.2. Image standardization

Additional QC procedures are performed on all follow-
up scans. Each subject’s baseline averaged-FDG image is
oriented to a standard grid using the NeuroStat “stereo”
routine. This orientation is based on the Talairach atlas
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[4]. Scans are written into a 160 ! 160 ! 96 grid with
1.5 mm3 voxels. This image set becomes the subject’s
“FDG Standard”. The baseline averaged-florbetapir image
is coregistered to the “FDG Standard” using NeuroStat’s
“coreg” routine with a mutual-information cost-function.
This coregistered set becomes the “AV Standard”. To pro-
cess every scan in as similar a manner as possible, all frames
of each original PET scan are coregistered to their corre-
sponding “Standard” image: FDG to the “FDG Standard”,
florbetapir to the “AV Standard”. The individual frames of
each scan are averaged. This averaged scan is then normal-
ized (intensity scaled). FDG scans are normalized using an
iterative procedure such that the global mean of a masked
image equals 1.0. In the first iteration, the entire image is
scaled to a mean of 1.0. Successive iterations mask out
voxel values ,0.5, and the remaining voxels are rescaled
to a mean of 1.0. This is repeated until the number of
masked voxels becomes constant. Florbetapir images are
normalized using an atlas-defined cerebellar gray matter
reference region. These normalized images (preprocessed
set 3) for each scan are uploaded to LONI. With this proce-
dure, all individual frames are registered (hence interpo-
lated) only once, yet yield a common orientation and
image grid for all scans of each subject.

There are 20 PET-only or PET/CT scanner models from
three vendors represented in the 57 sites participating in
ADNI-GO/2. These have a large range of reconstructed res-
olutions;w4–8mm full-width, half-maximum (FWHM). To
better compare scans across different centers, the ADNI PET
core defined specific in-plane and axial smoothing kernels
for each scanner model designed to achieve an isotropic res-
olution of 8 mm FWHM. The smoothing kernels were deter-
mined by comparing scans of the three-dimensional (3D)
Hoffman brain phantom to a digital version of the phantom
smoothed with an 8 mm 3D-Gaussian filter. Each phantom
scan was smoothed using different combinations of in-
plane and axial filters (0.5 mm increments) and then
compared with the smoothed digital phantom. The in-
plane and axial smoothing-kernel pair that yielded the high-
est global correlation and lowest RMSE relative to the
smoothed digital phantom was calculated for each scan.
Themedian values across all scans for a given scanner model
became that scanner’s smoothing-kernel pair. This pair was
used to smooth the preprocessed image set 3 for all scans of
that model, resulting in preprocessed set 4.

Coregistration and reorientation of all scans for a given
subject to a common image grid (both FDG and florbeta-
pir), not only provides more robust and consistent extrac-
tion of quantitative values, but also provides additional
quantitative checks that have proven to be very valuable
in the QC process. Using the image mask obtained from
FDG normalization, the global correlation and RMSE are
calculated between longitudinal scans (separately for
FDG and florbetapir). Both global correlation and RMSE
measures have proven to be sensitive for flagging problem-
atic scans.
2.3. Preprocessed data sets

As described previously, four sets of “preprocessed” PET
images are uploaded to LONI, which allows different start-
ing points for subsequent analyses. Preprocessed sets 1
and 2, and the original uploaded images, are in native space.
Set 1 is the dynamic sequence of coregistered frames. Set 2 is
the single-frame average of set 1.

Set 3 provides two additional steps of preprocessing:
transformation into a standardized orientation and grid and
intensity normalization (scaling) of the images. As described
previously, FDG scans are globally normalized, whereas
florbetapir scans are normalized to cerebellar gray matter.
Because intensity normalization is a simple scaling of the
images, any subsequent analysis can “renormalize” using
any other reference. For example, cerebellar vermis or
pons is often used to normalize FDG in mild cognitive
impairment (MCI)/Alzheimer’s disease (AD), because those
regions are affected least in these disorders. Similarly, flor-
betapir images can be rescaled using other reference regions
such as pons, whole cerebellum, or white matter. Because all
scans on a given subject have been coregistered, subsequent
analyses can be performed without further manipulation of
the images. A single set of volumes of interest (VOIs), how-
ever defined, can be applied to all scans for that subject. To
allow analysis of images at the highest possible resolution,
set 3 is not smoothed, and though not optimal for across-
site comparisons, within-subject analysis of longitudinal
change can be performed. Preprocessed set 4 is exactly the
same as set 3, except that scanner-specific smoothing has
been applied. It should be pointed out that none of the pre-
processed images sets have nonlinear spatial warping. For
automated analyses using group data in template space,
such as those performed with statistical parametric mapping
(SPM) or NeuroStat, users will need to apply spatial normal-
ization. Fig. 1 demonstrates several of the QC and prepro-
cessing steps for ADNI-GO/2 PET images.

It is difficult to see quantitative changes over time from
simple visual inspection alone of panels C to F. One of the
final steps in the QC process is to display an overlay of base-
line and follow-up images; baseline displayed in red, and
follow-up in green. Where there is perfect correspondence
between scans, the overlay appears with a yellowish hue.
Any region that has higher values at baselinewill appear red-
dish, whereas regions higher at follow-up will appear
greenish. Note in panel G the greenish color of regions
known to accumulate amyloid, indicating this subject’s am-
yloid burden increased over the 2-year period. Similarly,
note in panel H the reddish colors in areas known to be
affected metabolically in AD, indicating decreased glucose
metabolic rate over time. The effects of tissue loss, hence
increased CSF space between the heads of the caudate, are
also readily seen. Visual overlay of all follow-up scans not
only provides a sensitive means for a quick look for areas
of longitudinal change, but has proven to be an effective
way of detecting problems with scans; such as misalignment



Fig. 1. All panels on the left side of the figure are from one late mild cognitive impairment (LMCI) subject scanned with florbetapir on a positron emission

tomography (PET) only Siemens ECAT-Exact HR1. Shown on the right are fluorodeoxyglucose (FDG) images from a different LMCI subject scanned on

a GE Discovery-STE PET/computed tomography. Panels A–F show slices from two scans; baseline (top) and 2-year follow-up (bottom). Panels A and B

show slices from preprocessed image set 2. These are “native-space” as seen by different head orientations for the baseline and 2-year scans. Different in-

plane voxel sizes for the HR1 (2.57 mm); (A) and STE (2.0 mm); (B) are apparent. The image intensities appear different, as the 2-year florbetapir scan

had higher counts than at baseline, whereas the baseline FDG had slightly higher counts than the 2-year follow-up. Panels C and D show preprocessed image

set 3, after coregistration to the standard orientation and intensity normalization (derived from A and B, respectively). Panels E and F show the preprocessed

image set 4, after smoothing to 8 mm (derived from C and D, respectively). Panel G shows an overlay of the baseline image (in red) and the follow up image (in

green) for the smoothed images from E, whereas panel H shows the overlay of the unsmoothed images from (D). See text for full explanation of this overlay.
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of images, problems with attenuation or scatter corrections,
or asymmetry artifacts related to motion between the trans-
mission/CT scan and the emission scan.
3. Florbetapir imaging and Region of interest (ROI)-
based analysis

The availability of [18F] labeled, relatively long-lived
positron emitting amyloid imaging agents has enabled the
large-scale measurement of brain amyloid deposition in
the typical ADNI subject groups: initially normal older con-
trols, MCI, and AD, more recently those with subjective
memory concern (SMC) and the addition of early MCI
(EMCI in contrast to “typical” MCI, now late or LMCI).
SMC individuals perform within normal range but have a
memory complaint, whereas EMCI subjects are similar to
LMCI patients but have less severe memory deficits. Florbe-
tapir, initially named AV45, is delivered to most ADNI sites,
where participants undergo routine imaging. The image
acquisition protocol is simple and straightforward: After
the injection of approximately 10 mCi as an intravenous
bolus, subjects are seated and then scanned from 50 to 70mi-
nutes after injection. Images are collected as a series of 4!
5 minute frames, and attenuation corrected with either CTor
PET transmission. Participants also undergo FDG-PET ac-
cording to the standard ADNI protocol of a 5 mCi injection
and imaging from 30 to 60 minutes. Because both radio-
tracers use F18 labels, the scans must be done on two sepa-
rate days. Because the initiation of florbetapir imaging, all
ADNI participants have received florbetapir and FDG-PET
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scans every 2 years, although longitudinal FDG scans were
eliminated in late 2014 because of the extensive amount of
data already available.

As has been the case since the initiation of FDG-PET in
ADNI, after the acquisition of PET images, all images tran-
sition through LONI to the University of Michigan, where
they are checked for quality and preprocessed for analysis,
as described previously. Most scans pass QC; problems
requiring rescanning are extremely uncommon at this point
as all sites are familiar with procedures. All scanners are spe-
cifically qualified for ADNI, a process that includes imaging
a brain phantom to ascertain the smoothing characteristics
for each individual scanner as described previously; if a
new scanner is brought online during ADNI the site is requa-
lified. Scanner changes do occur and are unavoidable in any
longitudinal multisite study. Although this undoubtedly con-
tributes to measurement noise, this factor has not yet been
statistically quantified in the ADNI PET data.

These standardized images are the basis for the region-
of-interest based analyses performed on both FDG-PET
and florbetapir images at UC Berkeley. The methods
used in data analysis of these images have been previously
reported in a number of publications; FDG analyses
including the template set of metaROIs was described in
the 2010 ADNI PET update [1]. Florbetapir analyses use
coregistered MRI images obtained at the baseline PET
scan when available, which are segmented and parcellated
using freesurfer 4.5.0 (surfer.nmr.mgh.harvard.edu).
Although use of a time point-specific MRI scan would be
advantageous in accounting for longitudinal volume
changes in the definition of cortical ROIs for florbetapir
analysis, we used the baseline scan only, because ROI defi-
nition changes might be due to image parcellation error and
could contribute excessive longitudinally variability. Both
UC Berkeley analyses involve use of the set 4 image
data (common resolution) as described previously. A com-
posite cortical target reference ROI is created using a
weighted average of the frontal, temporal, parietal, and
cingulate regions, regions that typically harbor b-amyloid
(Ab), and a number of possible reference regions also pro-
vided including whole cerebellum which has been the
usual ROI in most Berkeley-based ADNI standardized up-
take value ratios (SUVR) cross-sectional analyses [5].
These approaches are documented in many publications
and on the ADNI website where spreadsheets of all ROI
data are also available.
4. Longitudinal florbetapir analyses

Because one of the key goals of ADNI is the assessment
of longitudinal change in brain b-amyloid deposition, ADNI
investigators began analyzing longitudinal florbetapir data
as it became available. Table 2 indicates that of 1064 sub-
jects with a baseline florbetapir scan, just over half (579,
54%) now have two florbetapir time points, whereas 46
(4%) have three scans. Analysis of two time point data
acquired at a 2-year interval showed what appeared to be
considerable variability, with some subjects demonstrating
very large increases or decreases in tracer retention. These
results, along with comparison to recent longitudinal amy-
loid PET analyses using PiB [6,7] suggested that
methodological changes might be necessary, and both the
UC Berkeley and Banner groups simultaneously and
independently began to investigate different ways of
examining longitudinal change with a particular emphasis
on how choice of a reference region affected the variability
of longitudinal measures.

Landau et al. [8] from Berkeley examined cortical florbe-
tapir change calculated using 6 candidate reference regions
(cerebellar gray matter, whole cerebellum, brainstem/pons,
eroded subcortical white matter, and two additional combi-
nations of these regions). There was poor agreement in the
amount and direction of cortical change calculated using
these reference regions. (For example, approximately 22%
of subjects who were in the highest quartile of change
when using a whole cerebellum reference region were in
the lowest quartile of change when using a white matter
reference region.) To determine which reference region(s)
were most accurate, we evaluated them in a group of subjects
expected to remain stable (stable Ab group) and a group of
subjects expected to increase (increasing Ab group). To
avoid biasing the results in favor of any particular reference
region, we used concurrent CSF Ab1–42 measurements and
cognitive status rather than the florbetapir data itself to
define these groups.We found that cortical florbetapir annual
changewas minimal (within 1%–2%) across all reference re-
gions stable Ab group. In the increasing Ab group, however,
reference region selection had a strong influence on the
observed cortical change. Reference regions containing
eroded subcortical white matter (as opposed to cerebellum
or pons) enabled the detection of cortical change that was
more physiologically plausible and more likely to increase
over time.

In a somewhat different approach, Chen et al. [9] (re-
viewed in more detail in section 4.2) the Banner group found
that use of a reference region consisting of subcortical white
matter substantially reduced the variability of longitudinal
measures in subjects who were amyloid positive at baseline,
thereby greatly increasing the power to detect both a change
in the rate of Ab accumulation or a reduction in brain Ab.
This topic has also been investigated by Brendel et al. [10]
who examined the separate contributions of reference region
selection and partial volume correction and found that the
use of both white matter reference region and partial volume
correction resulted in reduced longitudinal variability and
greater increases in subjects who were amyloid positive at
baseline.

A considerable challenge in this work is the lack of lon-
gitudinal gold standard for evaluating candidate methodolo-
gies. Nonetheless, all three studies, each using a different
strategy for evaluating methodologies, have converged on
the finding that the optimal reference ROI for longitudinal

http://surfer.nmr.mgh.harvard.edu
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florbetapir data analysis should include a large region of
subcortical white matter, and that cerebellum as a single
reference ROI for longitudinal studies is not optimal. These
results are essentially empirical, but some post hoc explana-
tions have been suggested. This includes the possibility that
differential placement of subjects from scan to scan results in
cerebellar slices being at different positions in the axial field
of view in the scanner, so that sensitivity and scatter may
differ from scan to scan. White matter essentially provides
a reference ROI in the same axial plane as the target ROI.
Furthermore, the large size of the subcortical white matter
region may help optimize counting statistics. Whether the
findings in this study generalize to other amyloid PET
tracers is unknown, but should be tested if longitudinal
data analysis is contemplated. In any case, this work has
hopefully helped the goal of ADNI standardization by point-
ing to an important methodological development that will
affect the design of clinical trials using longitudinal florbeta-
pir PET measurement as an outcome.

It is important to note that the goals of ADNI, whereas
ambitious in some respects, are limited in others. ADNI is
designed to test and validate methods that can be applied
to clinical trials of AD therapeutics. As such, the protocols
are required to have relatively brief times for data collection
and simple methods that can be applied at imaging centers
with different levels of expertise. This inevitably involves
compromises. We recognize, for example, that PET experi-
ments that gather dynamic time-varying data, perhaps even
including blood sampling, represent the “gold standard”
for most imaging tracers. Although PiB has previously
been validated using this approach [11] other [18F] tracers
including florbetapir have not been similarly validated.
Thus the use of SUVRs with ADNI florbetapir data may sub-
stantially increase variability due to regional blood flow
changes (both cross-sectionally and longitudinally) and
other sources of error (such as a biased estimate compared
with distribution volume ratio (DVR) values) that are intro-
duced by sampling from 20 minutes of the entire dynamic
data set. Although this may be a particular problem for lon-
gitudinal measurements, the approach represents what we
consider to be a necessary compromise to have a protocol
that can be widely used in a multisite clinical trial.
5. Data analysis in PET core laboratories

Data analysis is performed in four PET core laboratories.
In Berkeley, FreeSurfer-based cortical parcellation produces
whole-brain measures of florbetapir uptake that has been
used as both a continuous and dichotomous variable (i.e.,
amyloid positive or negative) in analyses. At the Banner
Alzheimer’s Institute (BAI), investigators have used voxel-
based approaches to classify subjects and examine relation-
ships. In Utah, investigators have used stereotaxic surface
projection (SSP), in which images are compared with
normative data bases allowing a pixel-wise classification
of images. In Pittsburgh, investigators have begun the
process of converting PET florbetapir values obtained using
SUVRs to a 100-point scale that has been defined as “centi-
loids” [12].
5.1. Data analysis in Berkeley

Berkeley uses a region of interest based approach to
cross-sectional and longitudinal analysis of the FDG and
florbetapir data, which is available in spreadsheet format
on the ADNI website as described previously. As of January
13, 2015 we have processed a total of 3359 FDG scans and
1689 florbetapir scans (Tables 1 and 2). One thousand four
hundred and six subjects have had at least one baseline
FDG scan, and 1064 subjects had at least one florbetapir
scan. Berkeley analyses of this ever-growing data set have
addressed the interrelationships between PET data and other
biomarkers, cognitive change, and vascular disease.

5.1.1. Associations between amyloid biomarkers
A unique feature of the ADNI data set is the availability

of multiple markers of amyloid pathology (CSF Ab, florbe-
tapir PET, PiB-PET) within the same subjects. Starting in
ADNI-2, nearly all enrolled subjects received both a florbe-
tapir PET scan and lumbar puncture, making it possible to
examine the concordance between these different assess-
ments of amyloid pathology. Concurrent florbetapir PET
and CSF Ab measurements were in agreement in 86% of
374 ADNI subjects [13]. We also observed fluctuations
over time in 60 ADNI-1 subjects who had longitudinal
CSF Ab measurements before a florbetapir scan, which
was concordant with the final CSF Ab measurement in
nearly all subjects. A more recent study has extended these
findings in a larger sample size and shown that CSF Ab
and florbetapir are more likely to be discordant at earlier
stages of disease [14]. Furthermore, CSF Ab was more
closely related to APOE ε4 status although florbetapir was
more closely related to CSF tau measurements, supporting
the idea that florbetapir and CSF Ab contribute partially in-
dependent information.

We also examined relationships among amyloid PET
tracers. Of ADNI-1 subjects who received PiB-PET scans,
32 of these subjects (24 MCI and 8 normal at enrolment)
were subsequently scanned with florbetapir during ADNI-
GO/2. Although the scans were not concurrent (the time in-
terval between PiB and florbetapir scans was approximately
1.5 years), cortical PiB and florbetapir retention was highly
correlated across several reference regions and processing
methods. A key difference between tracers was that the dy-
namic range of SUVRs was lower for florbetapir compared
with PiB. This PiB-florbetapir data set was further explored
in relationship to 40 subjects in a separate study who had
concurrent scans using PiB and another F18 amyloid PET
tracer, flutemetamol [15]. Again, relationships between
cortical retention of PiB and each [18F] tracer were high
across several reference regions and processing methods.
Similar associations have been reported between PiB and
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the [18F] tracers flutemetamol [16] and florbetaben [17].
Importantly, both studies showed that positivity thresholds
could be reliably converted between tracers and processing
methods using the linear association across subjects. These
ideas are further reflected in work developing the centiloid
scale [12], and in the work accomplished by the University
of Pittsburgh group, described in more detail later.

5.1.2. AD PET biomarkers and cognitive change
The availability of florbetapir PET data for characterizing

amyloid status in ADNI-GO/2 has made it possible to
examine how biomarkers relate to cognitive function at
different stages of disease. In 417 subjects with concurrent
florbetapir and FDG scans, florbetapir was negatively asso-
ciated with temporoparietal metabolism and positively
correlated with ADAS-cog measurements, but only in early
and late MCI groups [5]. Seventy-one of these subjects had
longitudinal cognitive measurements before the concurrent
florbetapir and FDG scans, making it possible to examine
the question of whether florbetapir or FDGwas more closely
related to retrospective or ongoing cognitive change. In
normal subjects only, florbetapir was associated with cogni-
tive change, whereas in the LMCI group, FDG was more
closely associated with cognitive change than was florbeta-
pir. This is consistent with a model in which amyloid
changes precede neurodegeneration (measured by FDG),
which is tied to subsequent cognitive decline. In another
study, Berkeley investigators examined the rates of change
of CSFAb, FDG-PET, hippocampal volume, and cognition,
Fig. 2. Frequency histograms for a total of 1050 Alzheimer’s Disease Neuroima

standard uptake volume ratios (SUVRs) by clinical diagnosis and stratified by AP

region, and the dotted vertical line shows the positivity threshold of 1.11 that has
and found that CSF Ab was more dynamic in normal con-
trols, whereas glucose metabolism and hippocampal volume
changed more in MCI and AD, with cognition changing
most in AD patients [18]. This sequence of events is also
consistent with the proposed pathological progression of
AD that has been strongly influenced by ADNI data
[19,20]. Recent unpublished data have examined the
association between APOE ε4 status and florbetapir across
nearly the entire available baseline florbetapir data set.
Fig. 2 illustrates the influence of APOE ε4 status on florbe-
tapir positivity across diagnostic groups. APOE ε4 carriers
had a higher rate of florbetapir positivity across all diagno-
ses, ranging from 50% in normals to nearly all (99%) of
AD patients. The rate of positivity for APOE ε4 noncarriers,
however, ranged from only 26% (normals) to 60% (ADs).
The considerable proportion of florbetapir negative, APOE
ε4 negative individuals suggests that a non-AD dementia
(or other etiology) may explain the “AD-like” phenotype
of many of these MCI and AD patients. The rate of amyloid
negativity in ADNI AD subjects is strikingly consistent with
recent data from the bapineuzumab phase 3 trial [2].

5.1.3. Vascular disease and AD biomarkers
Although ADNI patients do not generally express severe

levels of cerebrovascular disease, vascular risk has been
examined to understand whether vascular disease influences
AD-specific biomarkers and disease progression. Lo et al.
found that cardiovascular risk scores and white matter hy-
perintensities were related to poor executive performance
ging Initiative (ADNI) subjects show the distribution of florbetapir cortical

OE ε4 status. SUVRs were calculated using a whole cerebellum reference

been previously validated [5].
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but were not related to change in AD biomarkers (CSF Ab,
FDG-PET, or hippocampal atrophy), suggesting that
vascular disease does not directly influence AD-specific
pathological processes [21]. Similarly, Haight et al. [22]
found that white mater hyperintensity burden, a measure
of vascular disease, was associated with lower frontal (but
not temporoparietal) glucose metabolism in MCI patients
who subsequently converted to AD. Higher CSF Ab was
associated with temporoparietal (but not frontal) hypome-
tabolism in the same patients. This dissociative pattern sug-
gests that vascular-based and amyloid-based mechanisms
are linked to distinct pathways of neurodegeneration.
5.2. Data analysis at Banner Alzheimer’s Institute

As noted in the earlier ADNI review [1], Banner
Alzheimer Institute (BAI) previously used FDG-PET and
related ADNI data to characterize cross-sectional regional
cerebral metabolic rates of glucose (rCMRgl) reductions
and to correlate rCMRgl reductions with categorical and
continuous measurements of clinical disease severity in the
aggregate probable AD dementia, MCI, and normal control
(NC) group [23]. Banner investigators developed a hypome-
tabolic convergence index (HCI) to characterize in a single
summary metric the extent to which both the magnitude
and spatial extent of cerebral glucose hypometabolism in a
person’s FDG-PET image corresponds to that in patients
with probable AD dementia [24]. This work demonstrated
that the HCI could distinguish between probable AD demen-
tia, MCI and NC groups and predict subsequent progression
from MCI to probable AD dementia, and that it could even
better predict subsequent progression from MCI to probable
AD dementia when used in conjunction with MRI hippo-
campal volumes [24]. BAI had also characterized longitudi-
nal rCMRgl declines in the probable AD dementia and MCI
groups, developed an empirically predefined statistical
region-of-interest (sROI) strategy to optimize the power to
track AD-related rCMRgl declines in a single measurement
with improved power, and estimated the sample sizes needed
to evaluate putative AD-modifying treatments in patients
with probable AD dementia and MCI [25]. Sample sizes us-
ing FDG-PET and our sROI method were roughly compara-
ble to structural MRI [26].

With the growing availability of longitudinal florbetapir
PET scans in ADNI, BAI and researchers from other labs
(as noted previously) have collaboratively and independently
continued to develop, test, and apply data analysis techniques
with improvedpower to detect, classify, and trackAD, predict
subsequent clinical progression and evaluate AD-modifying
treatments in probable AD, MCI, and NC subgroups with
and without a positive baseline Ab PET scan, and in cogni-
tively normal APOE ε4 carriers and noncarriers irrespective
of their baseline Ab PET measurements. They have also
begun to extend their methods and findings to data from other
longitudinal cohorts and therapeutic trials and to help inform
therapeutic trial design and sample sizes, as noted later.
5.2.1. Longitudinal florbetapir data analysis
BAI and its collaborators have begun to develop, test, and

apply data analysis strategies with improved power to track
longitudinal changes in fibrillar amyloid-b (Ab) deposition
and evaluate Ab-modifying treatments [9]. We and other
investigators had noted greater than expected variability in
longitudinal cerebral-to-reference region SUVRs using the
cerebellar and pontine reference regions commonly used
in cross-sectional measurements. Using baseline and
24-month follow-up florbetapir PET images from ADNI,
we compared the power of template-based cerebellar,
pontine, and a cerebral white matter reference regions to
track SUVR increases and evaluate Ab-modifying treat-
ments in Ab-positive and Ab-negative probable AD demen-
tia patients, MCI patients, and cognitively NCs and in
cognitively normal older adult APOE ε4 carriers and noncar-
riers. The BAI template-based white matter reference region
included voxels from corpus callosum and centrum semio-
vale, and excluded those voxels closest to gray matter and
ventricles. In comparison with SUVRs using the other refer-
ence regions, SUVRs using cerebral white matter reference
region were associated with significantly less variability,
greater longitudinal Ab increases, and greater power to eval-
uate Ab-modifying treatment effects in Ab1 AD, MCI, and
NC subjects and cognitively normal APOE ε4 carriers.
Cerebral-to-white matter florbetapir SUVRs were also
distinguished by the ability to detect significant associations
between 24-month Ab increases and clinical declines.
Ongoing studies by BAI and others continue to clarify the
extent to which the findings are generalizable to other Ab
PET tracers and more quantitative (e.g., DVR) measure-
ments and influenced by differential effects of longitudinal
or treatment-related brain shrinkage and partial-volume
averaging on different cerebral and reference regions.
Finding the most appropriate techniques for the analysis of
longitudinal Ab PET scans will have important implications
for the size, design, analysis, and interpretation of data from
therapeutic trials of Ab-modifying treatments. For instance,
the white matter reference region was recently used to
analyze data from a small phase 2 biomarker trial of the pas-
sive Ab immunization therapy crenezumab in Ab-positive
patients with probable AD dementia, helping to inform the
investigational agents’ further development, dose, and route
of administration in phase 3 trials.

5.2.2. Analysis of FDG-PET
BAI’s HCI and sROI methods continue to be used to

analyze FDG-PET data from ADNI and other longitudinal
cohorts, and the sROI method continues to help to inform
the size, design, and planned analysis of FDG-PET data
from therapeutic trials. For instance, HCI was found in an
analysis of ADNI and other data sets to be roughly compa-
rable to two other summary metrics of AD-related cerebral
hypometabolism (i.e., those generated from Berkeley’s
meta-analytically derived ROIs [metaROI] and from the
PMOD Technologies Alzheimer’s discrimination analysis
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tool) in the ability to distinguish between probable AD
dementia, MCI, and NC groups [27]. When the HCI method
was used to analyze cross-sectional FDG-PET data from
cognitively unimpaired late to middle-aged APOE ε4 homo-
zygotes, heterozygotes, and noncarriers from the Arizona
APOE cohort, HCIs were significantly different in the three
genetic groups and significantly associated APOE ε4 gene
dose, despite substantial overlap among the groups [28].
Although HCI appears to have some value in the study of
preclinical AD, BAI continues to explore the use of more
sensitive approaches, including an automatically labeled
posterior cingulate region-of-interest approach, to detect
and track preclinical AD in the Arizona APOE Cohort Study
and the Alzheimer Prevention Initiative Biomarker Study of
PEN1 E280A mutation carriers and noncarriers from the
world’s largest autosomal dominant AD cohort [29,30]. In
expired ADNI participants who donated their brains, HCIs
were highly predictive of subsequent AD pathology,
whereas hypometabolism in additional occipital regions
was highly predictive of comorbid dementia with Lewy
Bodies pathology [31]. In cognitively normal adults from
ADNI, measures of AD-related cerebral hypometabolism,
including either HCIs or a posterior cingulate region-of-
interest measurement, were less helpful than an MRI sum-
mary metric of early brain atrophy and CSF p-tau/Ab1–42
ratios in predicting the subsequent progression to the clinical
stages of AD [32].

BAI continues to assist other groups in the development
and testing of newMRI and PET data analysis techniques us-
ing the ADNI data set, and to help clarify their utility in the
detection and tracking of AD, the prediction of subsequent
clinical progression and the evaluation of AD-modifying
treatments [33,34]. ADNI methods and BAI data analysis
techniques and findings continue to have a profound
impact on the design and implication of therapeutic trials.
In a 12-month proof-of-concept randomized clinical trial
in 80 mild-to-moderate probable AD dementia patients,
the peroxisome proliferator-activated receptor (PPAR)-g
agonist rosiglitazone failed to slow either CMRgl decline
in AD affected brain regions or clinical progression [35].
In a 24-week proof-of-concept randomized clinical trial of
22 mild-to-moderate probable AD dementia patients, mem-
antine increased and/or reduced declines in both CMRgl in
AD-affected regions and clinical performance [36]. Findings
from these trials provide preliminary support for the poten-
tially theragnostic value of FDG-PET in clinical trials (i.e.,
the extent to which a treatment’s biomarker effects predict
a clinical benefit). Larger and longer studies are needed to
confirm these findings, extend them to earlier clinical and
preclinical stages of AD, and help determine the extent to
which FDG-PET should be qualified for use as a reasonably
likely surrogate end point in the evaluation of putative AD-
modifying treatments.

ADNI procedures, data analysis techniques, and findings
have also had a profound effect on API, including its preclin-
ical AD biomarker development trials of investigational Ab-
modifying treatments in cognitively unimpaired 30- to
60-year-old members of Colombia’s PSEN1 E280A cohort
and in cognitively unimpaired 60- to 75-year-old APOE ε4
homozygotes [37,38]. The 5-year potentially license-
enabling trials are intended to evaluate the treatments’ ef-
fects on the cognitive decline associated with preclinical
AD, to clarify the extent to which a treatment’s 24-month ef-
fects on different brain imaging and CSF biomarkers are
associated with a clinical benefit and provide evidence
needed to support the relevant biomarker’s qualification
for use as reasonably likely surrogate endpoints in future
24-month trials. These data will also provide a public
resource of data and samples after the trials are over.
5.3. Data analysis at the University of Utah

The University of Utah laboratory analyzes images using
Neurostat [39] to develop 3D SSP metabolic, amyloid bind-
ing, and statistical maps that allow a visual comparison of in-
dividual and group data. Thesemaps then define and calculate
exploratory metrics that are sensitive to cognitive change.
Submitted summary values are stereotactically defined and
based on regional peak surface values, regional volumetric
values for subcortical structures, and topographic extent of ab-
normalities defined as values that are more than 2 and 3 stan-
dard deviations from those observed in cognitively normal
subjects. This provides a metric to track progressive expan-
sion of the cortical extent of hypometabolism over time.

5.3.1. Method development
Utah investigators have developed analysis methods us-

ing 3D-SSP to minimize scan-to-scan variability in longitu-
dinal FDG-PET data. All scans in a single individual are
coregistered to the initial visit image. These coregistered
scans are then used to create a template for extracting values
from directly comparable regions in each scan. This avoids
the problem of having somewhat different regions defined
in each scan when scans are analyzed independently. The
values of reference regions change as data from multiple
images in a subject become available. 3D-SSP values are
reported relative to reference regions. Rather than using
the value for a reference region from a single scan, the value
is recalculated using data across all available scans. Conse-
quently, the posted calculated summary values relative to a
reference region change slightly as serial images are avail-
able for analysis. Measures of topographic extent also are
adjusted.

Because gray matter cortical uptake may be lower than
white matter uptake in amyloid images, it was necessary to
address four main considerations: (1) to optimally extract
the cortical amyloid values, (2) to define relevant regions
of interest, (3) to select an appropriate reference region for
intensity normalization that minimized within-subject vari-
ability in serial scans and yet was sensitive enough to capture
small longitudinal changes in amyloid uptake and (4) to
define a normal control group that Neurostat could use to
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compute statistical maps. Cortical amyloid values could be
extracted by using Neurostat to coregister each amyloid
scan with the concurrent FDG-PET scan. Atlas-based tem-
plates derived from coregistered FDG-PET images ensured
that cortical values extracted from the amyloid scan were
always derived from gray matter.

As noted previously, the choice of reference region is
complex and has frequently relied on the cerebellum. We
have found that normalizing with a reference value derived
from white matter reduces the dispersion in cortical ROI
values from a coefficient of variation of 14.6% using cer-
ebellum to 9.6% using white matter. Thus, similar to other
ADNI investigators, we have selected cerebral hemi-
spheric white matter as a reference region and adapted
Neurostat to select white matter pixel values in the cere-
bral hemispheres.

The final consideration in Neurostat analysis of amy-
loid PET data was defining a group of cognitively normal
subjects with amyloid negative images that could be used
for comparison with other groups and for individual scan
analysis. This is critical if amyloid PET is to be used for
subject selection in clinical drug trials. We used an itera-
tive outlier approach for classifying cognitively normal
subjects in ADNI into amyloid-positive and -negative
groups. An amyloid negative subject had to have no outlier
value in any of seven medial and lateral cortical regions
(parietal, temporal, frontal, occipital, posterior cingulate,
anterior cingulated, and sensorimotor cortex). We identi-
fied 173 subjects that met criteria for a negative amyloid
scan based on the white matter reference region and 168
subjects that met these criteria when cerebellar gray was
used as a reference region. We used the values derived
from the normal control group to calculate Z scores and
generate 3D-SSP amyloid binding statistical maps. Conse-
quently, for each individual we have posted two sets of
amyloid biomarkers, one based on the cerebellar reference
region and the other based on the cerebral hemispheric
white matter reference region.

5.3.2. Early frame data reflecting perfusion
A substudy as part of ADNI-2 collected the dynamic

early frame data after injection of florbetapir to ascertain
whether the perfusion information in these scans were
similar to measures of glucose metabolism, as has been
seen with [11C]PIB and smaller studies with florbetapir
[40,41]. Use of early frame data could theoretically
provide useful functional information, obviating the need
for FDG scans. Thus, in a subgroup of subjects, data were
collected for the first 20 minutes after injection according
to the time scheme 4 ! 15 seconds, 4 ! 30 seconds, 3 !
60 seconds, 3 ! 120 seconds, and 2 ! 240 seconds.

Utah investigators examined relationships between these
early frame data and glucose metabolism in 22 cognitively
normal subjects and 12 AD subjects. Visual analysis demon-
strated comparable results with a highly similar topographic
pattern of abnormalities on both tracer and in statistical
z-score 3D-SSP images (Fig. 3). The same regions, temporal
and frontal lobes, that best discriminate between normal and
AD subjects in FDG-PET scans also did so in early-phase
florbetapir scans. Regional z-score and spatial extent mea-
sures were not statistically different with the two tracers.
Within-subject correlations using all 102 ADNI subjects
with concurrent FDG and early phase florbetapir scans
showed high positive correlations between early florbetapir
and FDG on a within-subject pixelwise basis (r 5 0.82)
and regional basis (parietal lobe r 5 0.67, temporal lobe
r 5 0.71 and frontal lobe r 5 0.61). These data suggest
that early florbetapir perfusion data might be able to substi-
tute for FDG-PET, reducing the number of scans and radia-
tion exposure.
5.4. Data analysis at the University of Pittsburgh

ADNI data analysis at Pittsburgh has been aimed at
applying a scaling process similar to that described in the
Centiloid (CL) project [12] to convert regional brain [18F]
florbetapir SUVR outcomes to standardized units that will
be referred to as approximate CL units (aCU). This was
based on the methods of Klunk and colleagues [12] that
described the standardization of PETAb imaging outcomes
using a linear 100-point CL scale that can be applied across
sites and radiotracers. The basic CL hypothesis is that com-
parable results can be achieved across analysis techniques
and tracers by linear scaling of the outcome data of any
Ab PET method to an average value of zero in “high-cer-
tainty” amyloid-negative subjects and to an average value
of 100 in “typical” AD subjects. There are three possible
CL analysis levels: Level-1, is the standard method for
choosing subjects to define the 0-anchor and 100-anchor
points for users to apply for all future scaling (performed
only once in [12]); Level-2, can be used to calibrate a spe-
cific method to the CL scale (i.e., a site-specific [11C]-PiB
method outcome [or any other Ab imagingmethod outcome]
to a CL scale); and Level-3, can be performed to check pro-
cessing pipeline results. In this work, a Level-2 analysis was
used to convert the ADNI florbetapir SUVR data to approx-
imate CL units.

Two ADNI data sets were used in this work. The first was
the PiB reference scaling data set of 24 subjects who were
diagnosed as cognitively normal (n 5 5) or as MCI
(n 5 19) with PiB SUVR . 1.5 (n 5 12) and PiB
SUVR , 1.5 (n 5 12). These subjects were used because
they had subsequent florbetapir PET scans acquired within
24 months after the PiB study. The second data set corre-
sponded to 539 ADNI florbetapir PET studies for CL conver-
sion that were acquired in subjects at various ADNI
participant stages: 136 normal (76 6 7 years), 2 MCI
(84 6 8 years), 119 EMCI (72 6 8 years), 130 LMCI
(74 6 9 years), 66 with SCI (72 6 5 years), and 86 AD
(75 6 9 years). These data were collected using Siemens
HR 1 at 6 sites, and GE Discovery-RX, Siemens HRRT,
and GE Discovery-STE tomographs (each at a single site).



Fig. 3. Neurostat stereotaxic surface projection (SSP) surface maps of uptake and z scores for early phase florbetapir (0- to 20-minute postinjection), FDG, and

late phase florbetapir images (50- to 70-minute postinjection) are shown comparing one normal subject and one Alzheimer’s disease (AD) subject. Early flor-

betapir cerebral blood flow rate is normalized to the pons value. FDG glucose metabolic rate is normalized to pons. Late florbetapir uptake value is normalized to

the cerebellum. The normal subject shows few deficits in cerebral blood flow, metabolism, and amyloid binding. The AD subject shows similar regions for

deficits in cerebral blood flow and metabolism. The AD subject also shows a significant accumulation of amyloid.
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The image processing methods used herein were the same
as those used in the CL publication [12]. The PiB and florbe-
tapir PET data were averaged over frames corresponding to
the 50- to 70-minute postinjection intervals and cortical
SUVR values were determined for a global cortical ROI
(CTX) using a whole cerebellar (WC) region-of-interest as
reference region (these regions are available on the Global
Alzheimer’s Association Interactive Network [GAAIN] web-
site [http://gaain.org/datasets/]). Statistical Parametric Map-
ping (SPM8) was used for image registration and spatial
normalization, as previously described [12]. Briefly, the MR
and PET image data were reoriented to match the Montreal
Neurological Institute (MNI)-152MR template (2mmresolu-
tion). Each subject’sMR imagedatawas registered to theMNI
template and the averaged PET data were then registered to
the correspondingMRI. Spatial normalization was performed
using the SPM8 unified method [42]. Further details of the
registration and normalizationmethods are provided inKlunk
et al. [12]. A general stepwise QC procedure was applied to
each scan to evaluate image quality as described in section 1.

5.4.1. Conversion of ADNI florbetapir SUVR to
approximate CL units (aCU)

Klunk et al. [12] determined anchor points for the
100-point CL scale, using PiB PET data acquired in a
non-ADNI data set of 79 subjects (34 young control [YC]
and 45 AD subjects) to define 0-anchor and 100-anchor
points for all future scaling (Level-1 of CL process). The first
step of the CL conversion process is the onsite processing of
the Level-1 data (available on GAAIN website) to ensure
that the onsite methods yield results consistent with those
reported in [12], with inclusion of these results as supple-
mental data in the first such publication for that site.
Members of the ADNI PET Core group (RAK, JCP) per-
formed the Level-1 analysis using the same methods
described herein (see 2.2.2.2 of [12]).

For the Level-2 analysis (florbetapir, notated as AV-45,
SUVR to aCU conversion), the ADNI PiB SUVR data
were used as the scaling reference (REF). In the first step
(Eq. 1 below), a linear relationship was determined between
the individual ADNI AV-45 SUVR (AV-45SUVRIND) and the
ADNI PIB SUVR (PiBSUVRIND) values in the reference data
set (n 5 23), based on Eq. 2.2.3.1a of [12]:

AV�45SUVRREF
IND5

AV�45slope!
�
PiBSUVRREF

IND

�

1AV�45intercept
(Eq. 1)

The previous equation was then rearranged and
applied to calculate a “PiB-calibrated” SUVR value
(PiB2CalcSUVRIND-AV-45) for the large AV-45 SUVR data set:

http://gaain.org/datasets/
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PiB�CalcSUVRIND�AV�455
ðAV�45SUVRIND2AV�45interceptÞ

AV�45slope

(Eq. 2)

The PiB-CalcSUVRIND-AV-45 values were then converted to
aCU based on the Level-1 linear equation that is the primary
CL conversion equation (equivalent to Eq. 1.3.a. of [12]):

aCU5
100ðPiB�CalcSUVRIND�AV�452PiBSUVRYC�0Þ

ðPiBSUVrAD�1002PiBSUVrYC�0Þ
(Eq. 3)

where PiBSUVRYC-0 and PiBSUVrAD-100 are the Level-1
mean SUVR results for the 0-anchor and 100-anchor groups,
respectively, that were published by Klunk et al. [12].

5.4.2. Results
There were 24 ADNI subjects with PiB and florbetapir

scans acquired within 2 years, but only 23 were used for
the reference scaling data set. One subject was excluded
because the PiB scan had insufficient cerebellar coverage
that would result in the WC reference region sampling vox-
els outside the PET field-of-view (FOV).

Quality control of the large ADNI florbetapir conversion
data set (n 5 539 studies) resulted in 29 failed studies.
Fig. 4. Example data for the approximate Centiloid scaling process. (A) Strong lin

tive (ADNI) reference data acquired for 23 subjects who underwent Pittsburgh Com

within a 24-month interval. (B) Comparison of the distribution of PiB standard upta

and the Level-1 anchor data reported in [12] (right). (C) Distributions of the 510 m

florbetapir SUVR values (middle) and the converted approximate Centiloid units, o

and cross.
Twenty-four failed as a result of poor MRI normalization
because significant meninges were classified as cortical
tissue (i.e., leading to CTXROI sampling of meninges), non-
brain voxels classified as cerebellar tissue, severe pons/
brainstem misalignment, or a combination of these prob-
lems. Five others were not included because of inadequate
brain coverage within the PET FOV and problematic sam-
pling for the CTX (n 5 2) and WC (n 5 3) regions.

Fig. 4A shows the strong linear relationship (R2 5 0.93)
that was observed between the ADNI PiB (x-axis) and flor-
betapir (y-axis) reference data, with lower florbetapir
SUVR (relative to PiB, slope w0.59), consistent with prior
observations [43]. The ADNI reference scaling PiB data
ranged from about 0.9 to 2.4 SUVR units (median: 1.2;
mean: 1.5) that was nearly the same range as that observed
for the Level-1 anchor data (median:1.8; mean: 1.6) in [12]
(Fig. 4B). Results of the Level-2 analysis steps applied for
conversion of the 510 ADNI florbetapir SUVR values are
shown in Fig. 4C. The measured ADNI florbetapir values
(or AV-45SUVRIND) ranged from 0.8 to 2.2 (median:1.2;
mean:1.3) (Fig. 4C, left). The calculated “PiB calibrated”
florbetapir values (or PiB-CalcSUVRIND-AV-45) ranged from
0.8 to 2.9 (median: 1.4; mean: 1.5) with a large dynamic
range (PiB-like), whereas the aCU range was 224 to
1178 (median: 35; mean: 46). The aCU for the 23
earity was observed between the Alzheimer’s Disease Neuroimaging Initia-

pound B (PiB) and florbetapir positron emission tomography (PET) imaging

ke volume ratios (SUVR) values observed for the ADNI reference data (left)

easured ADNI florbetapir SUVR values (left), calculated “PiB-calibrated”

r aCU (right). The median andmean are depicted, respectively, by the red bar



Fig. 5. Positron emission tomography (PET) images of tau accumulation superimposed on subjects’ magnetic resonance imaging (MRI) scans. Tau imaging

used the tracer [18F]AV-1451. Subject A is a normal older control, with a pattern of tracer retention suggesting minimal tau accumulation in the medial temporal

lobes. Subject B, also a normal control, shows tracer retention into the temporal neocortex; this individual also shows evidence of widespread b-amyloid accu-

mulation with [11C]Pittsburgh Compound B imaging (not shown). Subject C is a patient with Alzheimer’s disease (AD) who shows extensive tracer retention in

temporal lobes and parietal lobes.
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ADNI PiB subjects ranged from 26 to 127 (median: 21;
mean: 45).

It is recommended that CL scaling be performed using
PiB as the reference and the reference data set consist of at
least 25 subjects, including 10 that are cognitively normal
(�45 years) and highly likely to be Ab negative and 15 sub-
jects that are highly likely to be Ab-positive (with about five
typical AD patients and 10 subjects likely to have intermedi-
ate PiB SUVR values). It was also recommended that the
two reference PET studies be conducted within 3 months.
Such a reference PiB-florbetapir data set is not yet available.
For the ADNI data presented here, PiB was used in the refer-
ence data set, subjects were older than 45 years, the paired
PiB-florbetapir reference scans were acquired within a
2-year interval, and the distribution of reference SUVR
values included intermediate cases but no AD cases. The re-
sults of the florbetapir conversion appear to be consistent
with results reported by Klunk and colleagues [12] despite
these differences. The distribution of the 23 ADNI PiB
SUVR reference values was similar to that observed for
the Level-1 PiB anchoring data set of 79 subjects [12]. After
conversion of the ADNI florbetapir data, the aCU range for
the 510 ADNI subjects (about225 to1145) was consistent
with the CL range of about27 to1135 observed in the PiB
anchoring data for 79 subjects. It is not surprising that the
latter distribution was not as broad as that for the larger
ADNI subject group.

The approximate CL conversion process has proven to be
feasible for a large cohort of florbetapir studies with a small
technical failure rate of about 5% (29/539). A future goal is
to complete this standardization for all possible ADNI flor-
betapir SUVR values over the next year and to compare
these results to results obtained by other centers, as standard-
ization is applied by the research field.
6. The future of the ADNI PET core

The development of new imaging techniques has
continued to accelerate since the widespread application of
amyloid imaging in clinical research and therapeutic trials.
For example, whereas not planned for use in ADNI, com-
bined PET/MRI scanners could improve both patient
throughput and the ability to account for blood flow effects
on SUVRs cross-sectionally and longitudinally. A major
advance in the past year includes the reporting of several ra-
diotracers that bind to aggregated forms of tau with studies
performed in humans [44–46]. Continued work aimed at
validating these tracers is underway; each has unique
features that must be fully characterized to understand
nonspecific binding, pharmacokinetics, and in vivo
metabolism [47]. In addition, new tracers for tau are being
developed and applied. This is a fast moving field, but one
with great promise.

Plans for the future of ADNI (i.e., ADNI-3) will include
tau imaging as a prominent feature. Although the field is still
under development, there are several promising radiotracers
at least one of which will be available at multiple ADNI
sites. In Berkeley, preliminary data using the compound
initially known as [18F]T807, now [18F]AV-1451 has been
obtained [48]. As can be seen in Fig. 5 this radiotracer shows
tau accumulation in normal aging in the medial temporal
lobe. In some older individuals tau can be found in neocor-
tical regions, though generally not as widely dispersed as in
patients with AD.

These data suggest that tau imaging will be practical and
illuminating in the next phase of ADNI research. We intend
to combine tau imaging with amyloid imaging to understand
how these accumulated proteins reflect different stages of
AD and how the accumulation of one protein is related to
the other and to cognition. This approach will be useful in
terms of investigating these PET methods in assessing out-
comes of therapies, whether directed at Ab or at tau
itself—because it is possible that lowering Ab could have
beneficial effects on tau load. It could also provide useful in-
sights into the group of individuals exhibiting neurodegener-
ation in the absence of amyloid [49]. Furthermore, the use of
multimodality imaging of this sort offers the potential for
“staging” the progression of AD to include patients at a dis-
ease severity that is appropriate to the therapy being tested.
The public availability of a large data set with amyloid
imaging, tau imaging, and the other ADNI biomarkers and
clinical information promises to speed the development of
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knowledge about the earliest phases of AD, how the disease
progresses, and potential new treatments.
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