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Understanding the time-dependent changes of biomarkers related to Alzheimer’s disease (AD) is a key to
assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article,
we validate an AD progression score model which uses multiple biomarkers to quantify the AD pro-
gression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects;
(2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal
as a function of disease progression. Fitting the parameters of this model is a challenging problem which
we approach using an alternating least squares optimization algorithm. To validate this optimization
scheme under realistic conditions, we use the Alzheimer’s Disease Neuroimaging Initiative cohort. With
the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly
estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey
auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes
divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the
mini-mental state examination score) in no particular order and at last the AD assessment scale-
cognitive subscale.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The ability to precisely identify the stage of disease, predict the
rate of disease progression, and accuratelymeasure the outcomes of
potential therapies (Morris and Price, 2001; Perrin et al., 2011) is
critical to the successful management of Alzheimer’s disease (AD).
The classical characterization of late-onset AD progression is a
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time-ordered succession of 3 stages: normal (N), mild cognitive
impairment (MCI), and AD. Physical measurements of disease
progression, that is, biomarkers, are used to classify patients into
these 3 stages, but it has been challenging to reliably define finer
stages of the disease. In Jedynak et al. (2012), we have proposed a
method for computing an Alzheimer’s disease progression score
(ADPS) by computationally combining 7 biomarkers of AD. A
biproduct of this study was a temporal ordering of the biomarkers.
Experiments conducted on the combined AD Neuroimaging
Initiative (ADNI) I, GO, and II data sets provided an ordering of the
biomarkers which was consistent with Jack et al. (2010) except for a
cognitive test, the Rey Auditory Verbal Learning Test, 30 minutes
recall (RAVLT30), which was found to become dynamic very early in
the development of the disease. The statistical validation of this
ordering was performed by resampling from the collection of
subjects. Because the statistical model used is a regression, it can be
argued that an additional validationwould be obtained by sampling
from the residuals.
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In this article, we validate the methodology presented in
Jedynak et al. (2012) using the technique of sampling from the re-
siduals. We adopt the model-based bootstrap that is widely used in
regression analysis (see M. C, 2007; Shao and Tu, 1995, and refer-
ences therein) and time series (Bühlman, 2002; Politis, 2003) and
has become increasingly popular for inference of longitudinal
processes (Newsom et al., 2013; Skrondal and Rabe-Hesketh, 2008).
The benefit of the proposed approach is that it enables us to
quantify estimation uncertainty and impute missing values
(Graham, 2012). The rest of this article is organized as follows: in
Section 2.1, we present the statistical model. The optimization al-
gorithm used for fitting the parameters is presented in Section 2.2.
The ADNI data set and the selection of the biomarkers is presented
in Sections 2.3 and 2.4, respectively. Section 2.5 motivates and then
describes the sampling method. The results are presented in Sec-
tion 3 followed by a discussion of our findings in Section 4.
Concluding remarks are presented in Section 5.

2. Method

Our research first describes then evaluates an algorithm for
computing an ADPS, which assigns a time-dependent score to each
subject.

2.1. Statistical model

The method we use is based on 3 assumptions:

1. All subjects follow a common disease progression but differ in
their age of onset and rate of progression.

2. As the disease progresses, each biomarker changes continu-
ously and monotonically following a sigmoid shaped curve.

3. In the longitudinal period over which biomarkers are observed,
the rate of progression for a given subject is constant.

The proposed computation positions the longitudinal mea-
surements of each subject on a common disease progression scale.
Because it is considered to be a common scale, all subjects are ex-
pected to undergo the same biological and cognitive changes when
they reach the same value (or score) on this scale. Thus, individuals
are generally mapped to different positions on this scale and they
progress at different rates regardless of their age of disease onset.

The age t of subject i is to be transformed into the ADPS si as.

siðtÞ ¼ ait þ bi (1)

after estimation of the subject-dependent parameters ai and bi,
which indicate rate and onset of disease, respectively. A linear
transformation is justified because the interval over which longi-
tudinal observations of the ADNI subjects occur is short relative to
the overall disease duration. Our objective is to compute a score for
all I subjects in the ADNI database by estimating a ¼ (a1, ., aI) and
b ¼ (b1, ., bI). The subject-dependent parameters a and b are
deliberately modeled as fixed effects, not random effects, as the
ADPS may ultimately be used as a covariate.

The longitudinal dynamic of each biomarker is assumed to be
the same across the population and can be represented as a
sigmoidal function f of ADPS s. Using qk ¼ (ak, bk, ck, dk) to represent
the vector of sigmoid function parameters for the kth biomarker, we
can write the form of the kth biomarker as

f ðs; qkÞ ¼ ak
�
1þ e�bkðs�ckÞ

��1 þ dk (2)

The minimum and maximum values of the sigmoid function
are dk and dk þ ak, and the value of s for which the biomarker is
the most dynamic, having maximum slope akbk/4 corresponding to
its inflection point, is ck. Sigmoids offer a parsimonious parametric
model which is often a better fit than linear models for biomarkers
(Caroli and Frisoni, 2010; Sabuncu et al., 2011). They are also
similar in form to the conceptual evolution of biomarkers envi-
sioned by Jack et al. (2010) (Fig. 1). A comparison of different
shapes (linear, sigmoid, quadratic, and splines) of various bio-
markers as function of ADAS-COG is presented in Mouiha and
Duchesne (2012).

The ADNI database contains measurements yijk of biomarker k
for subject i at visit j. Because there are irregularities in data
collection, we use I to denote the set of triples (i, j, k) for which
measurements are available. Each biomarker observation can be
written as

yijk ¼ f
�
aitij þ bi; qk

�þ skεijk; ði; j; kÞ˛I; (3)

where tij is the age of subject i at visit j. Observation noise in each
biomarker is modeled for simplicity by the product of εijk, which are
independent random variables with zero mean and unit variance,
and sk, which is the standard deviation of biomarker k. The
collection of standard deviations s ¼ (s1, ., sK) comprise another
unknown that must be estimated.

The unknowns in this problem are a, b, q, and s and the least
squaresproblemassociatedwith the observationmodel in Equation3
is

lða; b; q; sÞ ¼
X

ði;j;kÞ˛I
log sk þ

1
2s2k

�
yijk � f

�
aitij þ bi; qk

��2
(4)

Necessary conditions on the available data I for guaranteeing the
identifiability of the parameters are as follows:

1. For each biomarker, there is at least 1 subject i with ai s 0 and
with at least 4 distinct time points in I.

2. For each subject, there is at least 1 biomarker which is available
at 2 time points in I.

In practice, a sufficient number of data points per parameter is
needed to obtain tight estimators. Examining first the case with no
missing data, the number of equations in Equation (3) is ijkwhere i
is the number of subjects, j is the number of time points, and K is the
number of biomarkers. The number of parameters is 2i þ 5k,
counting 2 parameters per subject and 5 per biomarker (4 for the
sigmoid and 1 for the standard deviation). In applications where i is
large compared with k, the number of data points per parameter is
close to jk/2. Note that longitudinal data (j > 1) is critical for such
modeling. However, a small number j of time points together with a
small number k of biomarkers is in principle acceptable. The subset
of ADNI presented in Section 2.4 has numerousmissing data points.
Wewill use simulations to study the quality of the estimation of the
parameter c for each biomarker. This parameter is critical for
ordering the biomarkers.
2.2. Parameter fitting

Parameter fitting is performed using alternating least squares
wherein the parameters q, a, b, and s are optimized iteratively
starting from the values computed in the previous step. The de-
tails of the fitting algorithm are shown in Algorithm 1. The initial
values (line 1) are að0Þh1 and bð0Þh0. Because of the additive
form of Equation (4), optimization over q is done serially over
each of the k biomarkers while keeping (a and b fixed). Similarly,
optimization over (a, b) is performed serially over each of the i
subjects while keeping q fixed. Fitting of q, a, and b requires
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optimization of continuously differentiable nonconvex functions,
which is carried out using the Levenberg-Marquardt algorithm
(Levenberg, 1944) (lines 4 and 8). Ik (line 4) is the number of
subjects and visits available for biomarker k. The denominator in
the equation of line 5 is the number of degrees of freedom. A
canonical way to parameterize sigmoid functions is to constrain
the parameter bk in Equation (2) to be nonnegative. This is
enforced with the loop over biomarkers (lines 12e16), which does
not modify the objective function in Equation (4). Our experi-
ments confirm that successful fitting is accomplished in 30 iter-
ations, that is, L ¼ 30 on line 2.

The units of ADPS are arbitrarily defined, which implies that we
must choose 2 specific numerical values to fully specify the ADPS.
This situation is analogous to the selection of a scale for tempera-
ture, where the numerical values of the freezing and boiling points
of water determine the scale. In our experiments, we chose to fix
the ADPS such that after computation over the entire population,
the computed ADPS for all visits of subjects with normal clinical
assessment had a trimmed mean value (mN) and a trimmed stan-
dard deviation (sN), which are set respectively to 0 and 1. This is
accomplished in lines 17e19.

Algorithm 1. Algorithm for the fitting of the parameters

1. Initialize að0Þ; bð0Þ

2. for l ¼ 1 to L do
3. for k ¼ 1 to K do
4. qð1Þk ¼ argminqk

P
ði;jÞ˛Ik

ðyijk � f ðað0Þi tij þ bð0Þi ; qkÞÞ2

5. sð1Þ
2

k ¼ 1
jIk�2I�4j

P
ði;jÞ˛Ik

ðyijk � f ðað0Þi tij þ bð0Þi ; qð1Þk ÞÞ2

6. end for
7. for i ¼ 1 to I do

8. ðað1Þi ; b
ð1Þ
i Þ ¼ argminai;bi

P
ðj;kÞ˛Ii

1
sð1Þ2
k

ðyijk � f ðaitij þ bi; q
ð1Þ
k ÞÞ2

9. end for
10. að0Þ ¼ að1Þ; bð0Þ ¼ bð1Þ

11. end for
12. for k ¼ 1 to K do
13. if bk < 0 then

14. að1Þk ¼ �að1Þk ; bð1Þk ¼ �bð1Þk ; dð1Þk ¼ dð1Þk þ að1Þk
15. end if
16. end for
17. for i ¼ 1 to I do

18. að1Þi ¼ að1Þ
i
sN

; b
ð1Þ
i ¼ b

ð1Þ
i �mN

sN

19. end for
2.3. ADNI cohort

Data used in the preparation of this article were obtained from
the ADNI database (http://adni.loni.ucla.edu/). The ADNI was
launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies, and
nonprofit organizations, as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of CaliforniadSan
Francisco. ADNI is the result of efforts of many coinvestigators from
a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the
United States and Canada. The initial goal of ADNI was to recruit 800
adults, aged 55e90 years, to participate in the research, approxi-
mately 200 cognitively normal older individuals to be followed for
3 years, 400 people with MCI to be followed for 3 years, and 200
people with early AD to be followed for 2 years. For up-to-date
information, see www.adni-info.org.

2.4. Biomarker selection

The available data in ADNI are measurements in elderly humans
of multiple biomarkers associated with AD. Hundreds of subjects,
categorized into N, MCI, and AD, were examined at baseline and
with repeat visits every 6e12 months for a period of up to
60 months.

The following 7 biomarkers were selected for use based on their
relevance in assessing the progression of AD.

1. The sum of the 2 lateral hippocampal volumes (Freesurfer
version 4.4.0 for longitudinal data http://surfer.nmr.mgh.
harvard.edu) normalized by dividing the intracranial volume
(HIPPO);

2. The Alzheimer’s Disease Assessment Scale-cognitive subscale
(ADAS);

3. The Mini-Mental State Examination score (MMSE);
4. The Ab42 protein level measured from the cerebrospinal fluid

(ABETA);
5. The tau protein level measured from the cerebrospinal fluid

(TAU);
6. The Clinical Dementia Rating Sum of Boxes score (CDRSB);
7. The Rey Auditory Verbal Learning Test, 30 minutes recall

(RAVLT30)

A detailed description of the ADNI population, protocols, and
biomarkers is provided at http://adni.loni.ucla.edu/.

The ADNI, ADNI GO, and ADNI 2 biomarker data sets were
downloaded from the ADNI server (http://adni.loni.ucla.edu/) on
November 24, 2011. All visits without date information were
removed. Subjects not having at least 2 measurements for at least 1
of the 7 biomarkers were also removed. Subjects not having at least
2 measurements of the HIPPO biomarker were removed. The total
number of subjects remaining was 687, where 389 were male, 275
were female, and 23 had unknown sex. The total number of visits
was 3658, and the clinical diagnoses at these visits were 1103
normal, 1513 MCI, and 1010 AD (note that we used ABETA and TAU
data from files UPENNBIOMK, UPENNBIOMK2, UPENNBIOMK3, and
UPENNBIOMK4. For each subject, we use the latest available file
[batch], i.e., if UPENNBIOMK4 data are available for this subject, we
use it. Otherwise, we use UPENNBIOMK3 and so on. For each sub-
ject, all his/her ABETA and TAU data always come from the same file
[batch]). Of the 7 biomarkers considered, only ADAS and RAVLT30
were available at the time of download from the ADNI 2/GO data
set. The protocol for these biomarkers is the same in ADNI, ADNI 2,
and ADNI GO.

2.5. Sampling from the residuals

The analysis of a longitudinal simultaneously acquired collection
of biomarkers of ADNI data set is a complex task for several reasons.
First, for each biomarker, the sequences of measurements obtained
across timepoint are correlated. Table 1 shows the correlation

http://adni.loni.ucla.edu/
http://www.adni-info.org
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://adni.loni.ucla.edu/
http://adni.loni.ucla.edu/


Fig. 1. The values of 7 biomarkers, measured at all visits of all ADNI subjects, are plotted on the normalized ADPS. Each connected polyline represents the consecutive visits of a
single subject and each line segment is colored according to the subject’s clinical diagnoses between visits (see legend). The gray curves are the sigmoid functions representing the
fitted behavior of each biomarker in the normalized space. Reproduced from Jedynak et al. (2012). Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADPS, Alz-
heimer’s disease progression score. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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between measurements taken at baseline and 1 year after baseline.
The correlation is larger than 0.7 for all the biomarkers and is as
high as 0.98 in case of the volume of the hippocampus over all
subjects.

Second, the structure of the missing data in ADNI is complex.
The schedule of visits depends on the status (N, MCI, and AD) at
baseline and is different for different biomarkers (see ADNI General
Procedures Manual, pages 6, 7, and 8). Moreover, the subjects are
recruited over a relatively long period; hence, the number of
available measurements at an earlier visit (e.g., baseline) is signif-
icantly larger than at a later one (e.g., baseline plus 36 months).
Table 2 shows the proportion of available measurements relative to
the total number of subjects for each of the 7 selected biomarkers
and each timepoint.

We now describe the sampling from the residual algorithm
whichweuse. The key idea is to construct a bootstrap distribution of
yijk while taking into account its dependence structure, which then
Table 1
Correlation coefficient for each biomarker between the measurements at baseline
and 1 year after baseline

Biomarker Correlation coefficient

HIPPO 0.98
MMSE 0.74
ABETA 0.94
RAVLT30 0.8
ADAS 0.83
TAU 0.93
CDRSB 0.85

Key: ADAS, Alzheimer’s disease assessment scale; CDRSB, clinical dementia rating
sum of boxes; MMSE, Mini-Mental State Examination; RAVLT30, Rey Auditory
Verbal Learning Test, 30 minutes recall.
can be used for inference and imputation purposes. In particular, the
residuals εijk are ideally independent and identically distributed.
However, becausemeasurements are taken consecutively over time,
this is not the case, as Table 1 indicates. Thus, we can attempt to
filter out temporal dependence among εijk by applying an appro-
priate filter (e.g., an autoregressive model) and the resulting new
filtered residuals hijk should be close to the independent and iden-
tically distributed assumption. Hence, given conditional indepen-
dence of hijk, we can use the classical bootstrap and sample new
realizations of h�ijk from the estimated empirical probability distri-
bution of hijk. Substituting in the sampled h�ijk into the filter yields
new bootstrap residuals ε

�
ijk, which in turn can be plugged-in into

the estimated model Equation (3), and the new proxy bootstrap
values y�ijk are thus obtained. The resulting bootstrap distribution of
y�ijk serves as a proxy to the unknown distribution of yijk and can be
used to assess errors in parameter estimation and imputation of
missing values as described in the Algorithm 2 in the following.
Table 2
Proportion in percentage of available data for each biomarker and each time point

Time point HIPPO ADAS MMSE TAU ABETA CDRSB RAVLT30

Baseline 99 100 100 53 53 100 99
6 mo 97 99 99 0 0 99 99
12 mo 96 99 99 45 45 98 98
18 mo 40 45 45 0 0 45 45
24 mo 73 88 88 13 13 87 86
36 mo 20 62 64 3 3 62 63

The denominator is the number of subjects with ADAS measurement at baseline.
Note that only MCI subjects have a visit at 18 months after baseline which explains
why the numbers are lower for all the biomarkers at the 18-month visit.
Key: ADAS, Alzheimer’s disease assessment scale; MCI, mild cognitive impairment.



Fig. 2. Distribution of the errors in estimating the parameter c of the sigmoid (see Equation 2) as function of the progression time line of the disease. (For interpretation of the
references to color in this Figure, the reader is referred to the web version of this article.)
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To assess the quality of the parameter fitting algorithm pre-
sented in Algorithm 1, we generated a large number (M¼ 40,000) of
simulated data sets by sampling from the residuals as follows. First,
we estimated all the parameters in the model using Algorithm 1
and the ADNI data set. Second, we computed the residuals εijk from
Equation (3). Because these residuals showed correlation over time
for each biomarker, we fit an autoregressive AR(1) model for the
residuals of each biomarker. We then repeated the procedure
described in Algorithm 2 M ¼ 40,000 times.

Algorithm 2. Algorithm for sampling from the residuals

1. Sample hijk independently from a standard normal distribution,
assuming no missing data.

2. Compute εijk using the AR(1) model, imputing the values hijk as
residuals.

3. Compute yijk using the model Equation (3), imputing εijk as
residuals.

4. Determine the missing data for each biomarker with the
following sampling procedure: sample from a 2 state (not
available [NA]) nonhomogeneous Markov chain indexed by the
successive visits. The transition matrix was estimated sepa-
rately for each status at baseline (N, MCI, and AD) and before
hand.

5. Estimate all the parameters from the simulated data set with
missing data obtained at the last step using Algorithm 1. Notate
cðmÞ
k the estimated parameter c for biomarker k at iteration m.
3. Results

3.1. ADPS computed for ADNI subjects

The ADPS was computed for all subject visits in the combined
ADNI, ADNI 2, and ADNI GO data sets (with minimal exclusions as
described in Section 2.4). Results are presented in Fig. 1. Overall,
normal subjects (black) have the smallest ADPS, MCI subjects (red)
have moderate ADPS, and AD subjects (green) have the largest
ADPS. Lower ADPS are therefore consistent with the normal pop-
ulation and higher ADPS are indicative of increased presence of
dementia. Those subjects whose clinical status changes fromMCI to
AD (blue) are found mostly between the red and green colors. The
estimated sigmoidal behaviors of each biomarker are shown in
gray.
3.2. Assesment of the quality of the estimation of the inflection
point of each biomarker curve

The estimator of the parameter ck for biomarker k using the
ADNI data set is denoted as cTk , where “T” stands for “target.” Each
sampling from the residuals, indexed by m, produces a simulated
data set fromwhich an estimator of ck is computed using Algorithm
1 and is notated cðmÞ

k . The histograms for the data
fcðmÞ

k � cTkgm˛f1;.;40;000g for each biomarker k are presented in
Fig. 2. In comparing these histograms, be advised that the scale of
the horizontal axis is not the same for each biomarker. Recall that
the parameter ck, the inflection point of each sigmoid, records the
moment in the disease progression where the biomarker k changes
the most (is the most dynamic). First, consider the biomarkers
HIPPO, TAU, ABETA, and RAVLT30. The mean square error for these
estimators is small. Indeed, the histograms obtained by sampling
from the residuals are centered close to the origin with a small
standard deviation. These results give validity to the choices and
the settings of the optimization algorithm. Second, in the case of
MMSE and CDRSB, some bias is observed, and the standard devia-
tion is moderated. Finally, in the case of ADAS, the bias as well as the
standard deviation is larger. Note that the fitted sigmoids for these 3
biomarkers do not level off in the later stages of the disease (see
Fig. 1), which might explain why the fit is less stable (large boot-
strap standard deviation). One remedy to stabilize the estimation
could be to constrain the extremal values, dk and dk þ ak. For
example, the maximum value for ADAS is 70 which could be
enforced during the optimization process.

3.3. Ordering of the biomarkers

For each simulation, the parameter ck, that is, the inflection point
of the sigmoid fitted to biomarker k, was obtained, and the sum-
mary of the ordering of the ck values for each of the 40,000 simu-
lations is presented in Table 3. Clearly, the ordering of the most
prevalent is as follows: RAVLT30, HIPPO, ABETA, TAU, then (CDRSB,
MMSE) in no particular order, and then ADAS. This result is
consistent with our results obtained in Jedynak et al. (2012) where
the statistical method used to assess this ordering, that is, resam-
pling from the subjects, was different than the method used here,
that is, sampling from the residuals. Care should be taken in
interpreting this result in term of the ordering of the biomarkers. In
particular, ABETA and TAU biomarkers are not well explained by the



Table 3
Ordering of the biomarkers according to the location of the inflection point

#1 #2 #3 #4 #5 #6 #7

RAVLT30 99.7 0.3 0 0 0 0 0
HIPPO 0 99.4 0.4 0.1 0 0.1 0
ABETA 0.1 0.2 95.9 3.7 0 0 0
TAU 0.1 0.1 3.8 96 0 0 0
CDRSB 0 0 0 0.1 65.4 33.5 1
MMSE 0 0 0 0 32.3 66 1.7
ADAS 0 0 0 0 2.2 0.4 97.3

For each biomarker (line), the value recorded in column j is the number of times, in
percentage, this biomarker has an inflection point which is the jth smallest of the 7
biomarkers. This was computed using 40,000 independent samples. The results are
truncated to the nearest 10th of a percentage.
Key: ADAS, Alzheimer’s disease assessment scale; CDRSB, clinical dementia rating
sum of boxes; MMSE, Mini-Mental State Examination; RAVLT30, Rey Auditory
Verbal Learning Test, 30 minutes recall.
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model, see Fig. 1. One can visually see that there is a large residual
variance in the case of these 2 biomarkers by comparing the spread
of the data points around the sigmoid curves in gray. As a conse-
quence, we prefer to eliminate these biomarkers from our analysis
and propose the following ordering of the biomarkers: RAVLT30,
HIPPO, then (CDRSB and MMSE) in no particular order, and then
ADAS.

4. Discussion

Amyloid concentration in the brain is known to change very
early in the disease process (Vemuri et al., 2010; Villemagne et al.,
2013). Why is it then that we do not detect an early change of
ABETA? There are several nonexclusive possible explanations. One
is that ABETA is a noisy measurement of the amyloid burden,
eventually contaminated by 1 or several physiological covariates. A
complementary explanation is that there are several paths to dis-
ease within the ADNI subjects. For example, there might be MCI or
even AD subjects who are impaired for reasons unrelated to AD
(depression, tau only pathologies, and vascular dementia). Recall
that the first assumption in our model is that there is a unique
disease progression for all the subjects. A violation of this hypoth-
esis would result in a lack of fit for some of the biomarkers and
could also modify our conclusions about the ordering of the
biomarkers.

The fact that the RAVLT30 biomarker is dynamic early in the
disease process is an interesting result which deserves further in-
vestigations in ADNI. Using data from the Canadian Study of Health
and Aging, it was found in Tierney et al. (2005) that the RAVLT was
predictive of neurodegenerative changes up to 10 years before
diagnosis Also, early changes in the hippocampus volume might
occur very early in the disease process while being too subtle to be
detected with the current protocol and that progress in the acqui-
sition and/or image processing technology might reveal these
subtleties. Finally, the reader is reminded that the results were
obtained for the ADNI data set as of November 4, 2011 and do not
necessarily extrapolate to a larger or different population.

5. Conclusion

We have presented a validation of a multi-biomarker, data-
driven approach to assess time-dependent changes of biomarkers
in AD and to localize subjects on a common scale of disease pro-
gression over the entire range of progression represented in the
ADNI cohort. The sampling from the residuals analysis shows that
the inflection point of the biomarker sigmoid curves is well esti-
mated for most biomarkers. Our presented model and subsequent
validation argue that the following ordering of the biomarkers
should be considered: RAVLT30, HIPPO, then (CDRSB and MMSE) in
no particular order, and at last ADAS.
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