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Abstract

Accurate diagnosis of Alzheimer’s disease (AD), as well as its pro-dromal stage (i.e., mild

cognitive impairment, MCI), is very important for possible delay and early treatment of the

disease. Recently, multi-modality methods have been used for fusing information from multiple

different and complementary imaging and non-imaging modalities. Although there are a number

of existing multi-modality methods, few of them have addressed the problem of joint

identification of disease-related brain regions from multi-modality data for classification. In this

paper, we proposed a manifold regularized multi-task learning framework to jointly select features

from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-

task learning framework, where each task focuses on the classification based on each modality. In

order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a

group sparsity regularizer, which ensures only a small number of features to be selected jointly. In

addition, we introduced a new manifold based Laplacian regularization term to preserve the

geometric distribution of original data from each task, which can lead to the selection of more

discriminative features. Furthermore, we extend our method to the semi-supervised setting, which

is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is

usually expensive and time-consuming, while the collection of unlabeled data is relatively much

easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic

resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data

of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our experimental results

demonstrate the effectiveness of the proposed method.

1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia, accounting for 60–80

percent of age-related dementia cases. It is predicted that the number of affected people will

double in the next 20 years, and 1 in 85 people will be affected by 2050 [1]. Since the AD-

specific brain changes begin years before the patient becomes symptomatic, early clinical

diagnosis becomes a challenging task. Therefore, many studies have focused on possible
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identification of such changes at the early stage, i.e., mild cognitive impairment (MCI), by

leveraging neuroimaging data [2–4].

Recently, machine learning and pattern classifications methods have been widely used in

neuroimaging analysis of AD and MCI, including both group comparison (i.e., between

clinically different groups) and individual classification. Early researches mainly focus on

extracting features (e.g., regions of interest (ROIs) based or voxel-based) from single

imaging modality such as structural magnetic resonance imaging (MRI) or

fluorodeoxyglucose positron emission tomography (FDG-PET), etc. More recently,

researchers have begun to integrate multiple imaging modalities to further improve the

accuracy of disease diagnosis.

Different imaging modalities provide different views of brain function or structure. For

example, structural MRI provides information about the tissue type of the brain, while FDG-

PET measures the cerebral metabolic rate for glucose. Intuitively, integration of multiple

modalities may uncover the previously hidden information that cannot be found by using

single modality. A number of studies have exploited the fusion of multiple modalities to

improve the AD or MCI classification performance [2, 3, 5]. For example, Zhang et al. [2]

combined three modalities, i.e., MRI, FDG-PET, and cerebrospinal fluid (CSF), to

discriminate AD/MCI and normal controls. Existing studies have indicated that different

imaging modalities can provide essential complementary information that can improve

accuracy in disease diagnosis.

For imaging modalities, even after feature extraction (i.e., from brain regions), there may

still exist the irrelevant features. So, feature selection is commonly used to remove the

irrelevant features. However, due to the complexity of brain and the disease, it is challenging

to detect all relevant disease-related regions from a single modality alone, especially in early

stage of the disease. Different imaging modalities may provide essential complementary

information that can help identify these dysfunctional regions implicated by the same

underlying pathology. In addition, recent studies also show that there is overlap between the

disease-related brain regions detected by MRI and FDG-PET, such as regions in the

hippocampus and the mesia temporal lobe [3]. Some feature selection techniques (e.g., t-

test) have been used for identifying the disease-related regions from multi-modality data,

while an obvious disadvantage of these techniques is that they don’t consider the intrinsic

relatedness between features across different modalities. To the best of our knowledge, only

a few works have exploited to jointly select features from multi-modality neuroimaging data

for AD/MCI classification. For example, Huang et al. [3] proposed to jointly identify

disease-related brain features from multi-modality data by using sparse composite linear

discrimination analysis (SCLDA) method. Zhang et al. [5] proposed a multimodal multi-task

learning for joint feature selection for AD classification, and achieved the state-of-the-art

performance in AD classification.

In this paper, as motivated by the work in [5], we proposed a new multi-task-based joint

feature selection model that considers both the intrinsic relatedness among multimodality

data and the geometric distribution of each modality data. To this end, we formulate the

classification of multi-modality data as a multi-task learning (MTL) problem, where each
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task focuses on the classification of each modality. The aim of MTL is to improve the

generalization performance by jointly learning a set of related tasks [6]. Specifically, two

regularization items are included in the proposed model. The first item is group Lasso

regularizer [7], which ensure only a small number of features to be jointly selected across

different tasks (i.e., modalities). The second item is Laplacian regularization term, which can

preserve the geometric distribution information of the whole data from each task. This

information may help to capture more discriminative features. Furthermore, we extend our

method to the semi-supervised setting (i.e., learning from both labeled and unlabeled data),

which is of great importance in practice since the acquisition of labeled data (i.e., diagnosis

of disease) is generally expensive and time-consuming, while the collection of unlabeled

data is relatively much easier.

2 Manifold Regularized Multi-Task Feature Selection

In this section, we first briefly introduce the existing multi-task feature selection method [5].

Then, we derive our proposed manifold regularized multi-task feature selection models as

well as the corresponding optimization algorithm.

2.1 Multi-Task Feature Selection (MTFS)

Assume that there are M supervised learning tasks (i.e., the number of modalities), Denote

 as the training data matrix on m-th task (i.e., m-th

modality) from N training subjects, and Y = [y1, y2, …, yN]T ∈ RN as the response vector

from these training subjects, where  represents feature vector of the i-th subject, and yi is

the corresponding class label (i.e., patient or normal control). Let wm ∈ Rd parameterizes a

linear discriminant function for task m. Then the multi-task feature selection (MTFS) model

is to solve the following objective function:

(1)

where W = [w1, w2, …, wM] ∈ Rd×M is the weight matrix whose row wj is the vector of

coefficients associated with the j-th feature across different tasks. Here,

 is the sum of the ℓ2-norms of the rows of matrix W, as was used in the

Group Lasso [7]. The use of ℓ2,1-norm encourages matrix with many zero rows. In other

words, this ℓ2,1-norm combines multiple tasks and ensures that a small number of common

features will be selected across different tasks. The parameter λ1 is a regularization

parameter which balances the relative contributions of the two terms.

2.2 Manifold Regularized Multi-Task Feature Selection (M2TFS)

In the MTFS model, a linear mapping function (i.e., f(x) = xTw = wTx) was adopted to

transform the data from the original high-dimensional space to one-dimensional space. In

this model, for each task we only consider the relationship between data and class label,

while the mutual dependence among data is ignored, which may result in large deviations

even for very similar data after mapping.
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To address this problem, we introduced a new regularization term which preserves the

geometric distribution information of the whole data:

(2)

where  denotes a similarity matrix that defines the similarity on task m across

different subjects. Lm = Dm − Sm represents combinatorial Laplacian matrix for task m,

where Dm is the diagonal matrix defined as . Here, the similarity matrix can

be defined as:

(3)

This penalized item can be explained as follows. The more similar between  and  (i.e.,

 and  come from the same class), the distance between  and  shoud be

smaller, and vice versa. It is easy to see that Eq. (2) aims to preserve the local neighboring

structure of same-class data during the mapping. With the regularizer in Eq. (2), the

proposed manifold regularized multi-task feature selection model (M2TFS) has the

following objective function:

(4)

where λ1 and λ2 are the two positive constants. Their values can be determined via inner

cross-validation on training data.

2.3 Semi-supervised M2TFS (Semi-M2TFS)

Generally, semi-supervised learning methods attempt to exploit the intrinsic data distribution

disclosed by the unlabeled data and thus help to construct a better learning model [8]. It is

easy to find that, in the proposed M2TFS model, only the first item and the similarity matrix

Sm in Eq. (2) involve the supervised information (i.e., the class labels of subjects), so we can

easily extend our model to semi-supervised version as follows.

We first define a diagonal matrix P ∈ RN×N to indicate labeled data, i.e., Pii = 0 if the class

label of subject i is unknown, and Pii = 1 otherwise. Then, according to [9], we redefine the

similarity matrix Sm with the following Gaussian function

(5)

Finally, based on the formulation in Eq. (4), the objective function of our semi-supervised

M2TFS model (denoted as Semi-M2TFS) can be written as follows:
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(6)

where Lm is the corresponding Laplacian matrix based on the new defined similarity matrix

Sm in Eq. (5). It is worth noting that Eq. (4) is a special case of Eq. (6) except the definition

of similarity matrix. Below, we will develop a new method for optimizing the objective

function in Eq. (6).

2.4 Optimization Algorithm

To optimize the problem in Eq. (6), we resort to the widely applied Accelerated Proximal

Gradient (APG) method [10]. In this paper, we have implemented an APG optimization

procedure similar to that of [11]. Specifically, we first separate the objective function in Eq.

(6) to the smooth part:

(7)

and non-smooth part:

(8)

Then, the following function is constructed for approximating the composite function f(W) +

g(W):

(9)

where ∇f(Wk) denotes the gradient of f(W) at point Wk of the k-th iteration, and l is the step

size.

Finally, the update step of AGP algorithm is defined as:

(10)

where l can be determined by line search, and 

The key of AGP algorithm is how to solve the update step efficiently. The study in [11]

shows that this problem can be decomposed into d separate subproblems, and the analytical

solutions of these subproblems can be easily obtained.

In addition, according to technique used in [10], instead of performing gradient descent

based on Wk, we can compute the following formulation as:

(11)
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where  and .

The algorithm for Eq. (6) can achieve a convergence rate of O(1/K2), where K is the

maximum iteration.

3 Classification

Following in [2], we adopted the multi-kernel based support vector machine (SVM) method

for classification. Specifically, for each modality of training subjects, a linear kernel was

first calculated based on features selected by the above-proposed method. Then, the multi-

kernel SVM used in [2] was adopted to combine the multi-modality data for classification.

4 Experiments

To evaluate the effectiveness of our proposed method, we perform a series of experiments

on the multi-modality data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (www.loni.ucla.edu/ADNI). We used a total of 202 subjects with corresponding

baseline MRI and PET data, which includes 51 AD patients, 99 MCI patients (including 43

MCI converters and 56 MCI non-converters), and 52 normal controls (NC).

Image pre-processing is performed for all MRI and FDG-PET images. Specifically, we use

the specific application tool for image pre-processing as similarly used in [2], i.e., spatial

distortion, skull-stripping, and removal of cerebellum. Then, for structural MR images, we

use the FSL package [12] to segment each image into three different tissues: gray matter

(GM), white matter (WM), and CSF. With atlas warping, each subject was registered to a

template with 93 manually labeled regions-of-interest (ROIs) [13]. For each ROI, the

volume of GM tissue in that ROI was computed as a feature. For FDG-PET image, we use a

rigid transformation to align it onto its respective MR image of the same subject, and then

compute the average intensity of each ROI in the FDG-PET image as a feature. Overall, for

each subject, we can acquire 93 features from MRI image and another 93 features from PET

image.

To evaluate the performance of proposed method, we adopt the classification accuracy, area

under receiver operating characteristic (ROC) curve (AUC), sensitivity (i.e., the proportion

of patients that are correctly predicted), and specificity (i.e., the proportion of normal

controls that are correctly predicted), as performance measures. Two sets of experiments,

i.e., supervised classification and semi-supervise classification, were performed on 202

ADNI baseline MRI and PET data, respectively. In both sets of experiments, multiple binary

classifiers, i.e., AD vs. NC, MCI vs. NC, and MCI converters (MCI-C) vs. MCI non-

converters (MCI-NC), are built, respectively.

4.1 Supervised Classification

In this experiment, 10-fold cross-validation strategy was adopted to evaluate the

classification performance. This process is repeated for 10 times independently to avoid any

bias introduced by randomly partitioning dataset in the cross-validation. In current studies,

we compared our proposed method with the state-of-the-art multimodality-based methods,
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including multi-modality method proposed in [2] (denoted as MM and MML, corresponding

to ‘without feature selection’ and ‘lasso as feature selection’, respectively) and multi-task

feature selection method [5] (denoted as MTFS). In addition, for more comparisons, we also

concatenate all features from MRI and FDG-PET into a long feature vector, and then

perform two different feature selection methods, i.e., t-test, Lasso and sequential floating

forward selection (SFFS) [14]. Finally, the standard SVM with linear kernel was used for

classification. The detailed experimental results are summarized in Table 1.

As we can see from Table 1, our proposed M2TFS method consistently outperforms the

other methods on three classification groups. Specifically, our proposed M2TFS method

achieves the classification accuracy of 95.03%, 79.27% and 68.94% for AD vs. NC, MCI vs.

NC, and MCI-C vs. MCI-NC, respectively, while the best classification accuracy of other

methods are 92.25%, 74.34% and 61.67%, respectively. Also, M2TFS is consistently

superior to other methods in sensitivity measure as well as AUC value.

Besides, we performed the significance test between accuracy of our proposed and those of

compared methods, using the standard paired t-test. The results show that our proposed

method is significantly better than the comparison methods (i.e., all the corresponding p-

value are less than 0.01). All these results show that our proposed M2TFS method can take

advantage of geometric distribution of data to seek out the most discriminative subset of

features.

4.2 Semi-supervised Classification

In the experiment, we validated the classification performance of our proposed method

under semi-supervised setting. Specifically, we first fixed a ratio r1 =50% of positive and

negative subjects as labeled data. At the following procedure, we used a fraction r2 ∈ {10%,

20%,40%,60%,80%} of the rest of subjects as unlabeled data. We evaluated our methods

with selected labeled data and unlabeled data by using 10-fold cross validation. This process

is also repeated 10 times independently. For any chosen fraction r2 of unlabeled data, we

also repeated 10 times to avoid any bias introduced by randomly choosing unlabeled data.

The experiment was also repeated 10 times to avoid any bias introduced by randomly

choosing labeled data. Fig. 1 shows the classification accuracy of our proposed method with

respect to the use of different number of unlabeled samples.

As we can see from Fig. 1, the classification accuracy can be consistently improved with the

increase of unlabeled samples on three classification groups, which show that the proposed

method can lead to the selection of more discriminative features by using geometric

distribution of data, and as a result the classification performance was significantly

improved with increase of number of unlabeled data. These results also demonstrate the

significant gain obtained by adding the distribution information of data.

5 Conclusion

In summary, this paper addresses the problem of exploiting the geometric distribution of

data to build the multi-task feature selection method for jointly selecting features from

multi-modalities data. By introducing the manifold regularization item into the multi-task
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learning framework, we used the accelerated proximal gradient algorithm to seek the

optimal solution for seeking out the most informative features subset. We have developed

the manifold regularized multi-task feature selection method for both supervised and semi-

supervised cases, and the corresponding algorithms are denoted as M2TFS and Semi-

M2TFS, respectively. Experimental results on ADNI dataset validate the efficacy of our

proposed method. Different from the existing multi-task feature selection method, our

method utilizes the geometric distribution knowledge of data for early diagnosis of AD with

better results.
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Fig. 1.
Classification accuracy with different number of unlabeled samples
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