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A B S T R A C T

BACKGROUND AND PURPOSE: The anterior cingulate cortex (ACC) is involved in several cognitive processes including
executive function. Degenerative changes of ACC are consistently seen in Alzheimer’s disease (AD). However, volumetric changes
specific to the ACC in AD are not clear because of the difficulty in segmenting this region. The objectives of the current study
were to develop a precise and high-throughput approach for measuring ACC volumes and to correlate the relationship between
ACC volume and cognitive function in AD.
METHODS: Structural T1-weighted magnetic resonance images of AD patients (n = 47) and age-matched controls (n = 47)
at baseline and at 24 months were obtained from the Alzheimer’s disease neuroimaging initiative (ADNI) database and studied
using a custom-designed semiautomated segmentation protocol.
RESULTS: ACC volumes obtained using the semiautomated protocol were highly correlated to values obtained from manual
segmentation (r = .98) and the semiautomated protocol was considerably faster. When comparing AD and control subjects,
no significant differences were observed in baseline ACC volumes or in change in ACC volumes over 24 months using the two
segmentation methods. However, a change in ACC volume over 24 months did not correlate with a change in mini-mental state
examination scores.
CONCLUSIONS: Our results indicate that the proposed semiautomated segmentation protocol is reliable for determining ACC
volume in neurodegenerative conditions including AD.
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Introduction
Alzheimer’s disease (AD) is the most common cause of demen-
tia worldwide and progresses in stages, from mild to moderate
to severe.1,2 Impairment in higher-order cognitive skills is con-
sistently seen and exacerbates with each stage of the disease.3

In response, recent research has focused on developing inter-
ventions that target specific stages of the disease to modify the
course.4–6

Structural changes of the brain have been under close
scrutiny as a potential biomarker of AD progression and to
identify changes underlying cognitive symptoms.7–9 An under-
studied region is the anterior cingulate cortex (ACC), which

shows degenerative changes and reduced functional activity in
patients at early stages of AD.10,11 Moreover, loss of ACC vol-
ume has been demonstrated in converters from mild cognitive
impairment to AD.12,13 ACC is a critical hub and is exten-
sively connected to structures, including the insula, prefrontal
cortex, amygdala, hypothalamus, and brainstem; the ventral
ACC is implicated in the default mode network while the dor-
sal ACC is implicated in the frontoparietal attention network,
both of which are affected in AD.14–16 The ACC is also specifi-
cally implicated in cognitive functions, including conflict reso-
lution, error detection, task selection, and motivation.14–16 All of
these contribute to executive function, a core cognitive ability
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consistently impaired in AD.17 Impaired motivation to act is
typically manifested as apathy, a feature of lesions involving
the ACC,18,19 and a prominent symptom of AD.19,20

Anatomically, the ACC is comprised of gray matter demar-
cated by the paracingulate, cingulate, and callosal sulci.21,22 The
paracingulate sulcus, however, is found only in 30-60% of the
population.23 The inconsistent nature of this sulcus resulted in
several in vivo imaging studies considering the gray matter dor-
sal to the paracingulate sulcus, the paracingulate gyrus, as part
of the ACC.24,25 Consequently, segmentation of ACC volumes
is inconsistent. Manual segmentation is considered to be the
current gold standard,26,27 yet because portions of the ACC
must be segmented individually from each slice of a magnetic
resonance image (MRI) to isolate its whole volume, it is a time-
consuming task seldom feasible for large datasets.28 Although
results from automatic segmentations are reproducible, design-
ing software that can identify anatomical structures for segmen-
tation continues to be a complex problem as AD brains are
highly variable and landmarks do not exist for all structures.27,29

Such is the case for the ACC; although the corpus callosum is
a reliable landmark for its ventral boundary, the paracingulate
sulcus on its dorsal boundary is often discontinuous even in
healthy individuals.30

To address these complexities related to the segmentation
of the ACC, we proposed a modified set of landmarks to de-
fine the ACC and a protocol for semiautomated segmentation.
Our objectives included developing a semiautomated method
for determining ACC volume that could be used to determine
progressive changes in AD, and to study the relationship be-
tween the change in ACC volume and cognitive function in the
context of AD.

Methods
ADNI Database

Data used in the study were obtained from the
Alzheimer’s disease neuroimaging initiative (ADNI) database
(adni.loni.usc.edu). Written informed consent for participation
in the study was obtained from each participant or his/her fam-
ily. All procedures related to subject participation and data
acquisition were approved by the local ethics review board at
each participating site.

Imaging and Clinical Data

MRI images and clinical data were obtained from the ADNI
database. For the current study, subjects were only included
if their T1-weighted images and clinical data at baseline and
at 24 months were both available in the ADNI database.
Following consideration of the entire ADNI database, there
were 58 AD patients whose T1-weighted ACC images at
baseline and at 24 months were comprehensible for analysis
and had at least one of the neuropsychological assessments,
mini-mental state examination (MMSE),31 while 179 age-
and gender-matched elderly controls who met these re-
quirements. Consistency in scan sequence, orientation, and
angulation between MRI images was insured by ADNI’s
screening process and was based on ADNI protocol as listed:
http://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-
ADNI-MRITrainingManual_09Oct2012_reduced.pdf.

Defining Landmarks for ACC Segmentation

MRI images of each subject were imported into 3D Slicer, an
open-source software platform (www.slicer.org) for visualiza-
tion and segmentation. Each image was visualized from the
coronal plane. Eight of the 58 AD subjects were randomly se-
lected to establish ACC landmarks. ACC landmarks used in
healthy controls by Kitayama et al32 were qualitatively tested to
determine whether they may identify the ACC in AD brains. It
is important to note that in the current study, the pregenual and
retrogenual parts of the ACC are not considered due to high
variability seen in AD brains (Fig 1A). Therefore, the most an-
terior slice containing the anterior pole of the corpus callosum,
the most posterior slice containing the anterior commissure,
and each slice in between was considered to contain the ACC.
Within each of these approximately 20 slices, the segment of
the ACC was defined as the gray matter between the paracin-
gulate sulcus, which is the first sulcus from the dorsal surface of
the brain, and the corpus callosum. The cumulative gray matter
between these landmarks in each slice was defined as the ACC.

Upon review, these landmarks were modified to account
for the discontinuity of the paracingulate sulcus. In slices where
the paracingulate sulcus was absent, the dorsal boundary for the
ACC was determined to be equivalent to the dorsal boundary
of the nearest slice containing the paracingulate sulcus (Fig 1B).
Two blinded operators manually segmented the ACC in each
of the 8 randomly selected AD subjects and the results were
compared for the inter-rater reliability of the defined landmarks.
Similarity between the two sets of ACC volumes was quantified
by the Dice similarity coefficient (DSC).33 Correlation between
the two sets of ACC volumes was determined by a Pearson
correlation test and its significance was tested by a paired t-test.
P < .05 was considered statistically significant.

Semiautomated Segmentation of the ACC in AD

Separate cohorts of AD subjects (n = 3) and age-matched con-
trols (n = 3) were randomly selected to evaluate the validity of
the proposed semiautomated segmentation protocol. The ACC
volume of each subject was determined by both manual and
semiautomated segmentation. For the manual segmentation, a
blinded operator segmented the ACC in each subject and de-
termined its volume using 3D Slicer.

For the semiautomatic segmentation, an initial manual seg-
mentation was performed where a blinded operator traced a
circular region in each slice. The perimeter of each circle was
overlapped with the dorsal and ventral ACC landmarks such
that all of the ACC gray matter in a slice was encompassed
(Fig 1C). These circular regions were then multiplied with the
grayscale image and the histogram of the grayscale region was
obtained to determine the lower and upper threshold values.
This step produced adaptive threshold values for each subject.
This thresholding method was used to segment the ACC re-
gion in each subject and then each subject’s ACC volume was
measured. All steps were implemented in insight segmentation
and registration toolkit (ITK) (http://www.itk.org).34 It should
be noted that the bounding box around each subject was de-
fined using alignment between the test image and atlas image
to mitigate any errors introduced by the scanner. A Pearson
correlation was performed to evaluate the correlation between
the ACC volumes obtained by manual and semiautomatic
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Fig 1. (A) Anterior cingulate cortex (ACC) landmarks in the coronal (left) and sagittal (right) images of a representative control subject.
Manually traced left (green) and right (red) ACC and its component sulci, the paracingulate sulcus, cingulate sulcus and callosal sulcus, are
shown. The most anterior slice containing the corpus callosum (vertical line 1) was used for the anterior boundary for segmentation. The
most posterior slice containing the anterior commissure (vertical line 2) was used for the posterior boundary. (B) Manually segmented right
ACC in coronal slices of a representative Alzheimer’s disease (AD) subject. Note the absence of the paracingulate sulcus in the slice on
the right (arrow). The dorsal boundary for this slice was estimated by using the closest slice with a clear paracingulate sulcus (left). (C) The
semiautomatic segmentation protocol. Images display the same coronal slice in a control subject. The image on the left is the slice unlabeled.
The center image demonstrates a manual segmentation of the circular region encompassed by the dorsal and ventral landmarks of the
right ACC. The image on the right displays the slice after the manual segmentation has been processed using the insight segmentation and
registration toolkit (ITK-processed).

segmentation and the significance of this correlation was tested
using a paired t-test.

Volumetric Assessment of ACC and Clinical Outcomes in AD

Remaining group of 47 AD subjects and randomly selected 47
control subjects from the original sample were employed. Their
ACC volumes at baseline and at 24 months were determined
using the semiautomated segmentation protocol. Paired t-tests
were performed to assess the change in ACC volume in controls
and in AD subjects and the change in MMSE scores in controls
and in AD subjects obtained from the ADNI database. Pear-
son correlation tests were performed to assess the correlation
between the ACC volume and the MMSE scores and between
the change in ACC volume and the change in MMSE scores at
the two time points.

Results
Inter-Rater Reliability of ACC Landmarks

Example of manual segmentations of the ACC achieved by
two different blinded raters in the same AD subject is shown in
Fig 2A. The ACC volumes measured by manual segmentation
were highly correlated between the two raters (r = .89, P < .01;
Fig 2B). The DSC for the ACC volumes determined by the two
raters was .84.

ACC Volumes by Manual Versus Semiautomated Segmentation

The ACC volumes measured by the semiautomated segmen-
tation protocol were 1.513 cm3 larger on average than those
obtained by manual segmentation. However, the difference be-
tween the two volumes on average was not statistically sig-
nificant (P = .31) and the volumes determined for each sub-
ject by manual and semiautomated segmentation were highly
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Fig 2. (A) Images on left and right display the same coronal slice in a representative Alzheimer’s disease (AD) subject. The image on the left
shows the left (green) and right (red) anterior cingulate cortex (ACC) of the AD subject that was manually segmented by one blinded rater; the
image on the right displays manual segmentations of the left and right ACC performed by another blinded rater. The two raters segmented the
ACC individually and separately. (B) ACC volumes (cm3) of three AD and three control subjects manually segmented by two blinded raters were
highly correlated (r = .89; Pearson correlation). The correlation between the ACC volumes determined by each rater was statistically significant
(P < .01, paired t-test). Data represent the ACC volume of individual subjects. (C) ACC volumes (cm3) of AD and control subjects determined
by manual and semiautomated segmentation were highly correlated (r = .98; Pearson correlation). The correlation between the ACC volumes
determined by the two techniques was statistically significant (P < .001, paired t-test). Data represent the ACC volume of individual subjects.

correlated (r = .98, P < .001; Fig 2C). The average time re-
quired to segment the ACC was approximately 60 minutes per
subject for manual segmentation and 10 minutes per subject for
semiautomated segmentation.

ACC Volume and Clinical Outcomes in AD

For both AD and control subjects, the ACC volume at 24
months was significantly lower than at baseline (P < .0001;
Fig 3A). The mean of the difference ± SD in the ACC volumes
were −.40 ± .33 cm3 in control subjects and −.44 ± .37 cm3

in AD subjects. There were no significant differences in ACC
volumes at either time points or in the overall change in ACC
volume between AD and control subjects.

At both baseline and at 24 months, control subjects had sig-
nificantly higher MMSE scores than AD subjects (P < .0001).
In control subjects, no significant differences in MMSE scores
were observed over 2 years of this study. In contrast, the MMSE
score in AD subjects decreased significantly at 24 months com-
pared to baseline (P < .0001; Fig 3B). However, no significant
correlations were observed between change in ACC volume
and change in MMSE scores in the control (r = −.17) or AD
group (r = −.19) (Fig 4).

Discussion
In this study, we defined landmarks in T1-weighted MRI suit-
able to identify the ACC in people with AD and developed

and validated a semiautomated protocol to rapidly segment the
ACC based on these landmarks. Employing a semiautomated
protocol, we observed a small decline (.4 cm3) in ACC volume
over 2 years in both patient and control groups but there were
no differences in the rate of atrophy between the groups.

AD is characterized by progressive deficits in several do-
mains of cognitive function and varying degrees of degenerative
changes in brain regions. Whole brain analysis of MRI findings
is less correlative to the deterioration of specific symptoms.35

Consequently, regional analysis is often sought after. Auto-
mated analysis of magnetic resonance images of localized re-
gions shows significant correlation to clinical progress of AD.35

Since, ACC is considered critical for executive function and
shows degenerative changes in AD, a high-throughput analysis
of ACC may be a useful tool in identifying relevant changes.10–15

In the past, reproducible segmentation of the ACC was dif-
ficult in both AD and control subjects, partly because of the
difficulty in identifying the paracingulate sulcus, which is often
discontinuous and highly variable between individuals.23,32,36

Whereas previous guidelines for ACC segmentations simply ex-
cluded the paracingulate sulcus in volumetric assessments, and
consequently, the dorsal boundary and, hence, the ACC vol-
ume was inconclusive.10,32,37 The landmarks defined in our ap-
proach overcame the challenges in identification of the ACC’s
dorsal boundary. In our approach, if the paracingulate sulcus is
absent in a particular MRI slice, adjacent slices that do contain
the sulcus are referenced to define the dorsal boundary. Each
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Fig 3. (A) Semiautomatically segmented anterior cingulate cortex
(ACC) volumes (cm3) of control subjects and Alzheimer’s disease
(AD) subjects at baseline and 24-month (m24) time points. Data rep-
resent mean ACC volume ± standard deviation (SD). ACC volumes
for both AD and control (Ctrl) subjects were significantly higher at
baseline in comparison to m24 (*P < .0001, paired t-test). (B) Mini-
Mental Status Examination (MMSE) scores of control subjects and
AD subjects at baseline and m24 time points. Data represent mean
MMSE scores ± SD. MMSE scores for AD subjects were significantly
higher at baseline in comparison to their scores at m24 (*P < .0001,
paired t-test). In control subjects, there were no significant differences
in MMSE scores between the two time points. MMSE scores for con-
trol subjects were significantly higher than that of AD subjects at both
baseline and at m24 (*P<.0001, unpaired t-test).

of the landmarks from this study were also defined such that
they would be unaffected by the ACC’s sulcal variability and
AD-associated atrophy.30 Overall, these landmarks were able
to provide highly reproducible volumetric assessments of the
ACC between raters even in late-stage AD brains.

The semiautomated segmentation protocol developed and
validated in this study also satisfies the need for high-throughput
techniques to isolate ACC volume.10,27,29 The first step of this
protocol ensures accurate identification of ACC landmarks.
During this step, a roughly circular area was identified manually
such that the tracing’s perimeter overlaps with the dorsal and
ventral landmarks of the ACC. This step avoids the complex
challenge of developing an automated segmentation protocol
with anatomical specificity.27,28 The second step rapidly isolated
the ACC from the circular area through the use of the program
ITK.

Our overall technique demonstrated to be considerably less
time consuming than a full manual segmentation of the ACC
(�2-3 minutes per slice38). The difference in speed is largely

due to the circular ACC tracings in our technique compared
to precise manual segmentation of this region. The volumes
obtained when using the semiautomated protocol and those
obtained when using the gold-standard manual segmentation
showed a Pearson coefficient of .98, a value considerably higher
than available procedures for automated segmentation of brain
areas.39 A limitation of our methods is the small number of
independent raters and sample size employed in the validation
of our semiautomated technique. In future MR studies, which
may benefit from and implement semiautomated segmentation,
it would be important to consider increasing the number of
raters and sample to improve validity.

A high correlation between the ACC volumes was deter-
mined semiautomatically and manually, and was observed at
both at baseline and at 24 months in control and AD subjects.
With regard to the ACC volumes over 24 months, the semiau-
tomated segmentation protocol was, thus, demonstrated as ef-
fective as the current gold standard in assessing brains affected
by age- and AD-related atrophy. However, like many other au-
tomated techniques available, ACC volumes segmented semi-
automatically were higher than those segmented manually.40,41

A qualitative assessment of the semiautomated segmentations
revealed that this was mainly due to the isolation of the ACC
using ITK, which occasionally included extra pixels from the
boundaries between gray and white matter. The error is simi-
lar in nature to those observed in popular existing automated
segmentation protocols such as FSL/FIRST and FreeSurfer.42

Previously, it has been described that both of these automated
protocols provide significantly larger volume estimates than
manual segmentation, with FreeSurfer tending to inflate sur-
faces generally over the entire area of interest and FSL/FIRST
inflating surfaces over the head and tail of the area of interest
during segmentation.42 It is recommended that the threshold
used to differentiate between white and gray pixels in ITK be
further refined for future studies. The semiautomated segmen-
tation protocol developed in this study is, however, already a
suitable technique for longitudinal analysis due to its speed and
extent of correlation to manual segmentations.

Annual atrophy rate of the ACC in AD subjects was ob-
served to be 3.5%, consistent with those from previous work that
varied from 1.2 to 6.4%.43,44 ACC atrophy between the groups
in the present study is not significantly different as the control
group had an annual ACC atrophy rate of 3.0%. It may be
possible that some control subjects on the ADNI database may
have comorbidities that might have influenced these findings.44

Alternatively, in light of a previous report that found the ACC
to be one of the first structures to degenerate in AD,10–13 it is
possible that differentiation between control and AD subjects
based on ACC degeneration is most informative in the early
stages of the disease. Future work should investigate changes in
ACC volume at early stages of AD.

ACC volume was demonstrated to be a moderate indicator
of performance on the MMSE, supporting our hypothesis and
previous findings on the ACC’s role in cognition.14 However,
this is in contrast to Jones et al,10 they observed no correla-
tion between MMSE scores and ACC volume. This might be
because the previous study used different criteria to define the
ACC and considered only the cingulate gyrus for volumetric as-
sessment while excluding the paracingulate gyrus.10 Although
the results may also have been influenced by the limited sample
size, which the authors explain was due to the time-consuming
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Fig 4. Change in semiautomatically segmented anterior cingulate cortex (ACC) volumes (cm3) compared to change in Mini-Mental Status
Examination (MMSE) scores of control (left; n = 47) and Alzheimer’s disease (AD) subjects (right; n = 47) between baseline and 24 months.
Data represent individual statistics. No correlation was found between change in ACC volume and change in MMSE scores for either group
(r = −.17 for control; r = −.19 for AD; Pearson correlation).

nature of their manual segmentation protocol.10 The MMSE
tests global cognitive function while the ACC is implicated in
executive function.14–17 Although widely used for its ease of
administration and preference of patients and health profes-
sionals, MMSE is not suitable for identifying mild impairment
in cognition.44 Consequently, decline in ACC-related functions
might be difficult to isolate from MMSE scores alone. MMSE
was used in this study as it was the only cognitive measure
available for this cohort of patients in ADNI database. Thus, to
better understand the relationship between the ACC and AD, it
is recommended that tests to assess executive function, such as
the Wisconsin Card Sorting Test, be included in routine clinical
assessment for AD subjects in the future.

In this study, we designed a semiautomated protocol to as-
sess ACC volume in the AD brain and determined the nature of
AD-associated changes in ACC volume. There is still much to
be clarified about the relationship between brain atrophy and
cognitive dysfunction in AD. Continued study of neural struc-
tures that are associated with both the volumetric and cognitive
changes observed in AD may help clarify their association. The
semiautomated segmentation protocol developed and validated
in this study may serve as a useful tool to accelerate this pro-
cess and aid in the discovery of a suitable biomarker for AD
progression.
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