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Abstract.
Background: Psychometric tests predict conversion of mild cognitive impairment (MCI) to probable Alzheimer’s disease (AD).
Because the definition of clinical AD relies on those same psychometric tests, the ability of these tests to identify underlying
AD pathology remains unclear.
Objective: To determine the degree to which psychometric testing predicts molecular evidence of AD amyloid pathology, as
indicated by cerebrospinal fluid (CSF) amyloid-� (A�)1-42, in patients with MCI, as compared to neuroimaging biomarkers.
Methods: We identified 408 MCI subjects with CSF A� levels, psychometric test data, FDG-PET scans, and acceptable
volumetric MR scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We used psychometric tests and imaging
biomarkers in univariate and multivariate models to predict A� status.
Results: The 30-min delayed recall score of the Rey Auditory Verbal Learning Test was the best predictor of A� status among
the psychometric tests, achieving an AUC of 0.67 ± 0.02 and odds ratio of 2.5 ± 0.4. FDG-PET was the best imaging-based
biomarker (AUC 0.67 ± 0.03, OR 3.2 ± 1.2), followed by hippocampal volume (AUC 0.64 ± 0.02, OR 2.4 ± 0.3). A multivariate
analysis based on the psychometric tests improved on the univariate predictors, achieving an AUC of 0.68 ± 0.03 (OR 3.38 ± 1.2).
Adding imaging biomarkers to the multivariate analysis did not improve the AUC.
Conclusion: Psychometric tests perform as well as imaging biomarkers to predict presence of molecular markers of AD pathology
in MCI patients and should be considered in the determination of the likelihood that MCI is due to AD.
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INTRODUCTION

Recent guidelines for diagnosing mild cognitive
impairment (MCI) due to Alzheimer’s disease (AD)
have emphasized the importance of psychometric
testing for establishing the existence of MCI, and sub-
sequently relying on biomarkers based on imaging
and biofluids to assess the likelihood that the exist-
ing cognitive impairment is “due to AD” relative to a
different cause [1]. In particular, cognitive testing is
a component of the “core clinical criteria” for MCI,
which requires that impairment greater than expected
for age must be present in at least one cognitive domain.
Once clinical categorization of MCI is established, the
guidelines suggest that the likelihood that the cogni-
tive phenotype is “due to AD” should rely on various
imaging and molecular biomarkers (each classified as
either a biomarker of neurodegeneration or cerebral
amyloid), without specifically taking into account the
severity of the cognitive deficit within the MCI cate-
gory.

Although imaging-derived biomarkers for diagnosis
of AD and prediction of conversion from MCI to AD
have been the subject of intensive research [2–4], how
these biomarkers can be used most effectively in the
presence of alternative sources of clinical information
about a subject’s status, such as cognitive testing, is still
not settled. Several recent studies have examined the
relative utility of cognitive testing, imaging, or molec-
ular biomarkers for predicting conversion from MCI
to AD [5–9], These studies have generally found that
cognitive testing performs similarly to other biomark-
ers, but a potential criticism of these study designs is
that using psychometric measurements to predict con-
version to AD is circular, as the diagnosis of AD is
itself determined in large part based on psychometric
tests that are the same as or similar to those used to
predict conversion.

To avoid this circularity, we sought to determine
if cognitive testing with standard psychometric mea-
sures can predict the presence of cerebral amyloid
based on a well-established cerebrospinal fluid (CSF)
molecular biomarker, the detection of which is inde-
pendent of cognitive scores, unlike clinical diagnosis
of conversion to AD. Although postmortem histology
remains the gold standard for establishing AD pathol-
ogy, measures of CSF A�1-42 and amyloid positron
emission tomography (PET) imaging are the closest
currently available surrogate [10, 11]. For the present
study, we used CSF A� as a marker for AD pathol-
ogy given its higher uniform availability in the studied
cohort. We choose CSF A� in isolation, as opposed to

tau/A� ratio, because we were specifically comparing
the relationship between cognitive and neuroimaging
neurodegenerative biomarkers and evidence of AD
molecular pathology; thus, incorporating a molecular
neurodegenerative marker like tau may confound the
results. Moreover, we wanted to determine the relative
and combined predictive value of psychometric test-
ing with neuroimaging biomarkers of neuronal injury
or neurodegeneration.

In particular, we examined several cognitive mea-
sures, including verbal memory, given their putative
sensitivity to prodromal AD. We used diverse imaging-
derived biomarkers to accurately represent both
standard and developing measurement approaches.
Further, we chose structural magnetic resonance
imaging (MRI) and FDG-PET measures given their
emphasis in the MCI guidelines. For MRI data, we
used an automated hippocampal volume measurement,
several cortical-thickness measurements including a
summary measure of several regions associated with
AD-related tissue loss [12, 13], and multivariate anal-
ysis of voxelwise measurements of cortical thickness
[14, 15]. Hippocampal volume is considered to be one
of the most established biomarkers of AD with numer-
ous studies demonstrating its predictive value in MCI.
We also used FDG-PET data from a set of regions
(meta-region of interest, ROI) previously determined
to be sensitive to early AD and predictive of clini-
cal conversion to AD in MCI cohorts [16]. To obtain
such a wide variety of clinical data in a sufficiently
large population, we utilized the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset. If cognitive
measures perform similarly to both more standard and
developing imaging biomarkers in prediction of AD
pathology with MCI patients, they can provide a cost-
effective and easily accessible method for assessing the
likelihood of prodromal AD in patients with MCI.

METHODS

Clinical data

Subjects
This study was a retrospective analysis of data

obtained from the ADNI database (http://adni.
loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-
profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and spe-
cific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

Data used in this article were downloaded from the
ADNI website in January 2014. We included only
MCI subjects with complete datasets for the current
analysis, including CSF A� levels, all neuropsycho-
logical tests examined, and FDG-PET. Only those
subjects with Freesurfer cortical and hippocampal seg-
mentations of acceptable quality, as determined by the
publicly available Freesurfer dataset available through
ADNI, were included.

In the ADNI study, MCI is split into two groups,
early MCI (EMCI) and late MCI (LMCI). Diagnos-
tic criteria for both EMCI and LMCI subjects were
as follows: Mini-Mental State Examination (MMSE)
scores between 24–30 (inclusive), a subjective memory
concern reported by subject, informant, or clinician, a
Clinical Dementia Rating of 0.5, absence of signifi-
cant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and an
absence of dementia. They also were required to have
objective memory loss measured by education adjusted
scores on delayed recall of one paragraph from
Wechsler Memory Scale Logical Memory II, which
further determined EMCI (≥16 years: 9–11; 8–15
years: 5–9; 0–7 years: 3–6) or LMCI (≥16 years:≤8;
8–15 years: ≤4; 0–7 years: ≤2) status. In this
manuscript, MCI refers to both EMCI and LMCI.

The ADNI study includes a variety of collection sites
around the United States and Canada, and a full list
is available at http://adni.loni.usc.edu/about/centers-
cores/study-sites/. Recruitment for the ADNI study
aimed to achieve a balance of normal controls, MCI,
and AD subjects. For ADNI 1, a random subsample
of subjects was selected for FDG imaging; in ADNI
2/GO, all subjects enrolled received FDG imaging.
For up-to-date information on specific inclusion and
exclusion criteria, please see http://www.adni-info.org.

Psychometric testing

We aimed to include a battery of psychometric tests
that would cover a broad range of cognitive domains,
with special focus on memory due to its importance in
AD. For memory, we included components of the Rey
Auditory Verbal Learning Test (AVLT) [17] given its

richness of measures for various aspects of mnemonic
processing (e.g., immediate versus delayed recall ver-
sus delayed recognition); for assessment of cognitive
speed, sequencing, and executive function, the Trail
Making Test [18] (Trails A and Trails B) was used; for
language/semantics, category fluency [19] (Animals)
and the Boston Naming Test [20] were examined; and
as a measure of global cognition, the MMMSE was
utilized [21]. We examined several of the AVLT mea-
sures, which depend on differential aspects of episodic
and working memory [22]. The AVLT consists of five
learning trials in which a list of 15 words is read and the
subject is asked to immediately recall as many items as
possible. After an interference list of 15 novel words
is read and recalled, subjects are then asked to recall
words from the initial list (5-min delayed recall). A 30-
min delayed recall trial and recognition test follow. For
the recognition test, subjects are presented with a list
of the 15 studied words and 15 nonstudied foils and
are asked to circle all words previously studied. To
account for false alarms (FA) to nonstudied items, we
calculated a measure of discriminability, d-prime (d′),
in a standard fashion based on classic signal detection
theory [23]. Because d’ is undefined when either pro-
portion is 0 or 1, we used standard formulas to convert
these values: Hits = (no. of hits+0.5)/(no. of studied
items+1) and FA = (no. of FA+0.5)/(no. of unstudied
items+1). For the current study, we analyzed perfor-
mance on the fifth immediate memory trial (AVLT Trial
5 Recall), 5- and 30-min delayed recall (AVLT 5-min
Recall, AVLT 30-min Recall), and recognition memory
discrimination (AVLT Recognition Discrimination). In
addition, we calculated a retention score, which is the
number of items remembered after a 30-min delay
(AVLT 30-min Recall) divided by the number of items
remembered during the last immediate memory trial
(AVLT Trial 5 Recall).

Determination of amyloid and ApoE status

CSF-based molecular biomarkers were processed
by the University of Pennsylvania/ADNI Biomarker
Core Laboratory as previously described [10, 24].
An A�1-42 value of less than or equal to 191 pg/ml
was considered to be “positive” for the presence of
amyloid pathology based on a prior autopsy-based
study performed at the University of Pennsylvania
[10]. For analyses involving ApoE status, subjects
were dichotomized into ApoE �4 positive and negative
groups. ApoE �4 positive status is defined as having at
least one ApoE �4 allele.

http://adni.loni.usc.edu/about/centers-cores/study-sites/
http://www.adni-info.org
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Neuroimaging measures

Processing of neuroimaging data included both anal-
yses made publicly available by ADNI and in-house
image processing. The following analyses were based
on preprocessed data downloaded from the ADNI web-
site: FDG-PET scans were acquired and analyzed in
accordance with a standard protocol [16]. Mean FDG
uptake was averaged over 5 ROIs that are sensitive
to AD-related changes in metabolism, including right
and left angular gyri, right and left inferior tempo-
ral regions, and bilateral posterior cingulate. These
regions were averaged into a meta-ROI and normalized
to an ROI focused on the pons and cerebellar vermis to
give a summary FDG PET measure. Cortical thickness
and hippocampal measurement of the MRI scans were
performed according to the standard ADNI Freesurfer
[25] processing pipeline, and downloaded from the
ADNI website. Only images that passed ADNI quality
control for the temporal, occipital, temporal, and pari-
etal lobe were included. Cortical thickness in the caudal
portion of the middle frontal gyrus, medial portion of
the orbital frontal cortex, inferior parietal lobule, lat-
eral portion of the occipital cortex, inferior temporal
gyrus, entorhinal cortex, temporal pole, and the isth-
mus of the cingulate cortex were averaged to form a
meta-ROI thought sensitive to early AD related neu-
rodegeneration, as previously suggested [26].

Image analysis

In addition to the image analysis performed by var-
ious ADNI investigators, we ran additional analyses
of MR images to supplement standard approaches
with a state of the art multivariate analysis tech-
nique. 1.5T and 3T non-accelerated T1-weighted
MPRAGE and SPGR MRI scans of all MCI subjects
from ADNI1 and ADNI2/GO were downloaded from
http://adni.loni.usc.edu. We computed an alternative
measure of cortical thickness using DiReCT [12, 13],
and used the AAL label set [27] to define medial tem-
poral and precuneal ROIs, as these areas are known to
atrophy in early AD. We performed a singular value
decomposition (SVD) analysis of the whole-brain cor-
tical thickness data, as this analysis has proven useful in
differentiating AD from frontotemporal dementia and
predicting CSF-based biomarkers in this population
[28, 29]. The SVD was performed using the princomp
function in R, and we retained the top 10 components.
A grid search strategy using bootstrapping with 100
repetitions, with half the subjects left out for a valida-
tion cohort, was used to determine the optimal number
of components to retain.

Statistical analysis

All statistical analysis was performed using the R
programming language, version 3.1.0. For predictive
studies, we randomly split the subjects 5 times into
training and testing cohorts, retaining half the subjects
for training and using the other half for testing in a
5 × 2 cross-validation scheme [30]. All area under the
curve (AUC), odds ratios, and positive and negative
predictive values are on the testing cohorts. Two-tail
t-tests were used to compare AUC values between
testing cohorts of different models to calculate a
p-value for differences in mean AUC; false discovery
rate (FDR) correction was applied to correct for multi-
ple comparisons. For all analyses, patient age, gender,
and education were used as additional predictors; for
all MR-based imaging analyses, magnet field strength
(1.5 or 3T) was included as a covariate. In addition to
univariate predictions of A� status from psychometrics
and imaging modalities, we performed principal com-
ponent regression, using three principal components,
on all the psychometric scores, as well as the psycho-
metric and imaging values combined. AUC analysis
was performed using the ROCR package in R [31].

RESULTS

Subject demographics

Subject data was collected between January 2006
and January 2013. A total of 622 MCI subjects with
CSF-derived A� values were identified, and 407 of
those were A� positive. Of these, 547 (350 A� pos-
itive) had FDG scans; 450 (286 A� positive) had
complete Freesurfer segmentations without failures;
433 (273 A� positive) had intracranial volume avail-
able; and 408 subjects (257 A� positive) had complete
psychometric scores available. There was a mean dif-
ference of 15 days between the psychometric tests
and imaging studies, with 95% of subjects having
the imaging and psychometric tests done within 55
days of each other. The maximum time difference
was 138 days. A total of 62 adverse events were
reported from the lumbar punctures, most of which
were headaches (25 cases) or pain (23 cases), with
two subjects reporting nausea and a few reporting a
variety of other effects, including bruising, tenderness,
and swelling. One adverse event, transient procedural
anxiety, occurred during the imaging.

A summary of the demographics of the study
population, including the psychometric and imag-
ing information, is given in Table 1. We computed

http://adni.loni.usc.edu
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Table 1
Summary of demographics, psychometric scores, and imaging data for subjects

All subjects (mean ± standard deviation) A�+ A�−
Number of subjects 408 257 151
Number of males 232 151 81
Number of ApoE �4+ 207 178 29
Age 71.61 ± 7.16 72.66 ± 6.76 69.79 ± 7.47
Education 16.24 ± 2.71 16.14 ± 2.79 16.41 ± 2.59
Mini-Mental Status Examination 28.0 ± 1.74 27.7 ± 1.80 28.4 ± 1.54
AVLT Trial 5 Recall 9.03 ± 3.00 8.35 ± 2.85 10.19 ± 2.90
AVLT 5-min Recall 5.65 ± 3.74 4.82 ± 3.42 7.05 ± 3.87
AVLT 30-min Recall 4.27 ± 3.92 3.30 ± 3.33 5.92 ± 4.29
AVLT Recognition Discrimination 2.31 ± 1.21 2.07 ± 1.18 2.72 ± 1.14
Retention 0.41 ± 0.31 0.34 ± 0.29 0.53 ± 0.31
Trail Making Test A 39.00 ± 16.71 41.64 ± 18.21 34.50 ± 12.63
Trail Making Test B 105.70 ± 57.60 116.30 ± 62.47 87.66 ± 42.69
Boston Naming Test 26.92 ± 3.28 26.73 ± 3.20 27.26 ± 3.39
Category fluency (animals) 18.05 ± 4.93 17.44 ± 4.88 19.08 ± 4.84
Hippocampal volume 3497.62 ± 577.07 3386.02 ± 537.17 3687.56 ± 537.17
Medial Temporal Thickness 3.83 ± 0.60 3.78 ± 0.61 3.93 ± 0.57
Precuneus Thickness 1.54 ± 0.39 1.52 ± 0.39 1.58 ± 0.37
Mean Cortical Thickness of AD Meta-ROI 2.64 ± 0.17 2.61 ± 0.17 2.68 ± 0.16
Mean FDG-PET SUVR of AD Meta-ROI 1.26 ± 0.14 1.23 ± 0.15 1.31 ± 0.11

Table 2
Summary of univariate logistic regressions predicting A� status from each psychometric test and imaging biomarker. Age, gender, and education

level (in years) were included as covariates. All data were scaled before regression to facilitate inspection of regression coefficients

� Estimate Std. Error Zval p val

Mini-Mental State Examination −0.36 0.12 −3.11 1.9E-3
AVLT Trial 5 Recall −0.57 0.12 −4.946 7.6E-7
AVLT 5-min Recall −0.55 0.11 −4.83 1.3E-6
AVLT 30-min Recall −0.63 0.11 −5.47 4.4E-8
Trail Making Test A 0.44 0.14 3.18 1.5E-3
AVLT Recognition Discrimination −0.50 0.11 −4.45 8.7E-6
Retention −0.59 0.11 −5.25 1.5E-7
Trail Making Test B 0.52 0.15 3.57 3.6E-4
Boston Naming Test −0.08 0.11 −0.76 4.5E-1
Category fluency (animals −0.26 0.11 −2.39 1.7E-2
Hippocampal volume −0.43 0.13 −3.44 5.9E-4
Medial Temporal Thickness −0.12 0.11 −1.01 3.1E-1
Precuneal Thickness −0.01 0.12 −0.05 9.6E-1
Mean Cortical Thickness of AD Meta-ROI −0.23 0.12 −1.88 6.1E-2
Mean FDG-PET SUVR of AD Meta-ROI −0.54 0.12 −4.57 4.9E-6

a logistic regression relating each psychometric
test and modality with A� status, while covary-
ing for age, gender, and education (Table 2). The
logistic regression results indicated that the psycho-
metric tests and imaging modalities were predictive
of A� status, even when included in a univariate
model.

Predictive models

The associations between the various psychometric
scores and A� status were strong enough to predict
A� status when the data used to train the model was
separate from the data used for evaluation. While

many of the psychometric measures displayed pre-
dictive value, varying in range of AUCs from 0.59
to 0.67, immediate and delayed recall measures per-
formed particularly well, reaching an AUC of 0.65 and
0.67 respectively, corresponding to odds ratios of 3.0
and 2.5 (Fig. 1, Table 3). The 30-min delayed recall
test was significantly better than both Trails tests, the
Boston Naming Test, category fluency, and MMSE.
The standard imaging modalities were similar to each
other and the individual psychometric tests in predic-
tion of A� status with FDG-PET displaying the highest
AUC at 0.67, followed by hippocampal volume at 0.64.
Delayed recall performed significantly better than all of
the cortical thickness-based measurements and trended
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Fig. 1. ROC curves for predicting A� status from psychometric
scores, imaging biomarkers, and principal components analysis of
a collection of psychometric scores, and principal components of
psychometric and imaging biomarkers.

better, but was not statistically significantly better, than
hippocampal volume. Delayed recall performed simi-
larly to FDG-PET. Despite the prior evidence of SVD
analysis of the whole-brain cortical thickness data in
prediction of CSF A� measures in a cohort of AD
and FTD patients, this approach did not appear to
enhance prediction (AUC = 0.59) versus more standard
structural MRI measures. Performing a principal com-
ponents analysis on the psychometric scores and using
the resulting components boosted the AUC slightly to

0.68 with an odds ratio of 3.38; adding the imaging
modalities to that model increased the AUC to 0.69,
but the increase was not significant (Table 4). The mul-
tivariate analysis of the cognitive tests, however, was
statistically significantly better than hippocampal vol-
ume, which was not true for any individual cognitive
test. Repeating the analysis using only subjects with
3T MR scans did not significantly change the results.

Effect of ApoE allele

Because of the tight link between ApoE �4 and A�
pathology, we sought to determine, as a secondary
analysis, whether the observed effects are modulated
by �4 status. We divided the subjects into �4 positive
and �4 negative groups and performed the analyses in
the same way as before (Table 5). The results were
broadly the same in that imaging did not significantly
improve diagnostic accuracy over psychometric tests.
Nearly all psychometric and neuroimaging biomark-
ers were more predictive of A� status in �4 negative as
compared to �4 positive subjects. This trend was highly
statistically significant (p < 0.001 using a paired t-test).

DISCUSSION

Impact

The results shown here indicate that a psycho-
metric evaluation can be as useful as FDG-PET or
quantitative MR imaging in predicting whether or not
a given amnestic MCI patient likely has underlying

Table 3
Area under the curve (AUC), odds ratios, and positive (PPV) and negative predictive values (NPV) predicting A� status from biomarkers

AUC Odds Ratio PPV NPV

Mini-Mental Status Examination 0.61 ± 0.03 1.94 ± 0.60 0.71 ± 0.05 0.43 ± 0.05
AVLT Trial 5 Recall 0.65 ± 0.03 3.01 ± 0.36 0.75 ± 0.04 0.50 ± 0.05
AVLT 5-min Recall 0.65 ± 0.02 2.50 ± 0.44 0.73 ± 0.05 0.47 ± 0.04
AVLT 30-min Recall 0.67 ± 0.02 2.46 ± 0.52 0.73 ± 0.05 0.48 ± 0.06
AVLT Recognition Discrimination 0.64 ± 0.03 2.44 ± 0.55 0.73 ± 0.02 0.48 ± 0.07
Retention 0.67 ± 0.03 2.48 ± 0.48 0.73 ± 0.03 0.47 ± 0.06
Trail Making Test A 0.62 ± 0.02 2.13 ± 0.46 0.73 ± 0.04 0.44 ± 0.05
Trail Making Test B 0.63 ± 0.02 2.49 ± 0.48 0.75 ± 0.05 0.45 ± 0.05
Boston Naming Test 0.59 ± 0.02 1.66 ± 0.17 0.70 ± 0.03 0.42 ± 0.04
Category fluency (animals) 0.60 ± 0.02 1.88 ± 0.43 0.71 ± 0.05 0.42 ± 0.03
Hippocampal volume 0.64 ± 0.02 2.41 ± 0.34 0.74 ± 0.04 0.46 ± 0.04
Medial Temporal Thickness 0.59 ± 0.01 1.67 ± 0.07 0.70 ± 0.04 0.42 ± 0.04
Precuneal Thickness 0.59 ± 0.02 1.83 ± 0.25 0.71 ± 0.03 0.43 ± 0.05
Mean Cortical Thickness of AD Meta-ROI 0.61 ± 0.02 1.90 ± 0.31 0.71 ± 0.04 0.43 ± 0.04
Mean FDG-PET SUVR of AD Meta-ROI 0.67 ± 0.03 3.19 ± 1.22 0.76 ± 0.05 0.49 ± 0.08
PCA of psychometric scores 0.68 ± 0.02 3.38 ± 1.16 0.71 ± 0.03 0.56 ± 0.10
PCA of psychometric scores and imaging biomarkers 0.69 ± 0.02 3.18 ± 0.76 0.71 ± 0.03 0.55 ± 0.08
PCA of cortex-wide cortical thickness 0.59 ± 0.03 1.57 ± 0.21 0.67 ± 0.04 0.43 ± 0.02

PCA, principal components analysis.
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Table 5
AUC values for prediction of A� status from cognitive tests when
stratifying patients by ApoE �4 status. Cognitive tests were overall
more predictive of A� status in �4 negative subjects than �4 positive

subjects.

AUC
�4+ �4−

AVLT Trial 5 recall 0.72 ± 0.03 0.71 ± 0.04
AVLT 5-min recall 0.70 ± 0.04 0.72 ± 0.04
AVLT 30-min recall 0.70 ± 0.03 0.74 ± 0.03
Trails A 0.68 ± 0.03 0.75 ± 0.03
Trails B 0.67 ± 0.02 0.76 ± 0.03
Boston Naming Test 0.67 ± 0.02 0.72 ± 0.06
Category Fluency (animals) 0.70 ± 0.03 0.72 ± 0.05
MMSE 0.68 ± 0.03 0.73 ± 0.02
Discrimination 0.69 ± 0.04 0.72 ± 0.02
Retention 0.70 ± 0.03 0.73 ± 0.03
Medial Temporal Thickness 0.68 ± 0.03 0.72 ± 0.04
Precuneus Thickness 0.68 ± 0.03 0.70 ± 0.05
Mean FDG 0.70 ± 0.02 0.75 ± 0.03
Hippocampal Volume 0.70 ± 0.04 0.74 ± 0.04
Thickness of Meta-ROI 0.67 ± 0.03 0.69 ± 0.03
PCA of psychometrics 0.69 ± 0.03 0.74 ± 0.03
PCA of psychometrics and imaging 0.69 ± 0.03 0.73 ± 0.04

PCA, principal components analysis.

AD pathology. The low cost and ready availability of
psychometric batteries as compared to imaging stud-
ies makes them an attractive and useful alternative
to specialized imaging techniques in clinical eval-
uation. Although the psychometric batteries do not
approach perfect classification between A�-positive
and A�-negative subjects, they can be useful in clini-
cal practice to broadly estimate risk of prodromal AD
and, perhaps, guide the process of obtaining additional
studies, including molecular biomarkers. For situa-
tions in which obtaining an accurate measure of A�
is paramount, such as evaluating appropriateness of a
future anti-amyloid therapy, direct molecular imaging
or CSF measurement of A� is still necessary, perhaps
after initial screening with psychometrics to enrich
with amyloid positive patients.

One intriguing finding of this study is that multi-
variate analysis using principal components analysis
of the psychometric scores only marginally improved
on the single best psychometric test, and the differ-
ence in AUC was not statistically significant at the
p < 0.05 level. At the same time, the modest boost in
AUC achieved by a multivariate analysis was suffi-
cient to give a statistically significant improvement
over hippocampal volume, but not over FDG-PET.
These results suggest that improvements in diagnos-
tic capability by using a multivariate cognitive profile
as opposed to a single test offer only marginal improve-
ments while at the same time suffering from less
interpretability than a single test. Adding the imaging

biomarkers to the multivariate analysis did not sig-
nificantly improve the AUC, suggesting that imaging
offers little added value over a cognitive profile when
screening for underlying AD pathology.

Further, the fact that even the “standard” cognitive
measures examined here displayed some success in
determining the likelihood of AD pathology suggests
that more research is warranted on designing and eval-
uating psychometric tests optimized for detection of
early AD-related cognitive decline. In particular, mea-
sures guided by the cognitive neuroscience literature
may be particularly useful in this regard [32]. Finally,
the results here indicate that the ability of psychomet-
ric scores to identify patients who will progress to AD
is not due solely to the fact that those same scores are
used to establish presence of probable AD. Instead, it
appears that the predictive value of psychometric tests
are due, at least in part, to their ability to separate MCI
patients into sub-populations with higher and lower
prevalence of AD pathology.

Limitations

Although this study does indicate that a psychome-
tric battery should be an important component of the
evaluation of MCI subjects beyond initial categoriza-
tion to the MCI designation, there are several factors
that may influence the relative ability of imaging to
predict AD pathology. First, this study focused exclu-
sively on cross-sectional imaging studies. Longitudinal
imaging may provide a more reliable representation of
disease progression. Nevertheless, longitudinal imag-
ing may not be feasible for many care settings, so
evaluating the diagnostic power of cross-sectional
imaging is also important. It is worth noting that this
study is meant to help guide providers caring for
patients with MCI, not to detect AD pathology in
presymptomatic patients. By the time cognitive scores
become clearly abnormal, significant neurodegenera-
tion has likely already occurred while this may be more
variable in the preclinical phase. Thus, it is unclear
whether the same relative predictive value of cognitive
versus neuroimaging methods would hold in that con-
text. The patient selection criteria also may limit the
applicability of the findings presented here to a broader
range of patients. This study focused on amnestic MCI
subjects. It is possible that in a broader selection of
MCI subjects, the memory tests proposed may provide
even greater capability in prediction of amyloid status.
On the other hand, in non-amnestic MCI populations,
these tests may be less predictive due to differences
in the loci of neurodegenerative change in amnestic
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versus non-amnestic prodromal AD. In addition, the
ADNI study population is enriched in AD or AD-like
pathology. In a more general clinical setting, providers
must also consider the possibility of other sources of
cognitive impairment, such as depression or stroke. It is
uncertain how this greater heterogeneity would impact
the predictive value of both cognitive and neuroimag-
ing measures. Another drawback to the current study is
the sampling procedure. We excluded subjects who did
not have all the biomarkers examined here, including
those for whom the automated hippocampal segmen-
tation failed. As such, the subset in this study would, if
anything, overestimate the ability of hippocampal seg-
mentation to track AD pathology; had we not excluded
patients with unreliable segmentations, the predictive
ability of hippocampal volumes would likely be lower.

It is also possible that advances in image processing
techniques may improve the diagnostic capability of
neuroimaging data. Although it is impossible to rule
out such advances, the variety of imaging modalities
and image processing techniques used here make it less
likely that new analytic approaches would improve the
predictive power of imaging data enough to supplant
psychometric measures as a key method for characteri-
zation of MCI patients. Indeed, the current work did use
a promising analytic approach involving singular value
decomposition across the entire cortical mantle, which
had previously demonstrated good predictive value of
CSF t-tau/A� in patients with AD and frontotempo-
ral dementia [28]. Nonetheless, this approach did not
display significant advantages over more traditional
measures (e.g., hippocampal volume) or psychometric
tests. In any case, psychometric tests are more acces-
sible than sophisticated image processing techniques,
especially to physicians who do not work in academic
medical centers.

An obvious limitation of this study is the use of
CSF-derived A� status as a gold standard in the pre-
diction models, as CSF A� does not perfectly reflect
brain AD pathology. While we took this approach to
avoid the circularity of longitudinal studies of conver-
sion, a better design would have autopsy-confirmed
AD pathology for comparison with the other biomark-
ers. Nonetheless, CSF A�, along with amyloid PET,
are the closest surrogates to histopathologic evaluation
presently available and have displayed high sensitivity
in autopsy studies [10, 11].

Finally, the limited accuracy for prediction of amy-
loid status of even the most accurate models indicates
that caution should be exercised when using values
from these models to guide clinical decision-making
and, at most, they should be considered another piece

in the overall assessment of risk in MCI patients. Fun-
damentally, the main conclusion of this study is that
psychometric scores provide as much information as
neurodegenerative imaging biomarkers in prediction
of underlying amyloid pathology, not that either imag-
ing or cognitive biomarkers should be regarded as
having perfect diagnostic accuracy. This conclusion
strengthens the argument made in previous studies that
cognitive tests are a crucial component in multivariate
predictive models for conversion from MCI to AD by
demonstrating that cognitive scores predict molecular
AD pathology, not just cognition-based diagnoses of
AD. Therefore, cognitive tests should be considered
just as important a biomarker for AD pathology as other
neurodegenerative biomarkers, which have already
been recognized by the National Institute on Aging
– Alzheimer’s Association (NIA-AA) work group for
MCI diagnosis. While the AUC values are relatively
modest, the odds ratios suggest that poorer perfor-
mance on the best cognitive predictors are associated
with approximately a three-fold risk of underlying
AD pathology, which may influence counseling of
patients.

Effect of ApoE

One intriguing result in this study is the marked
difference in prediction accuracy in ApoE �4 positive
versus �4 negative subjects. This finding is consistent
with previous work showing that cognitive function is
more closely linked to A� status within �4 negative
than within �4 positive subjects [33, 34]. The mecha-
nism behind this effect is not clear, but may be that the
effects of A� on cognitive function are modulated by
ApoE isoforms. However, an important confounding
factor is the highly unbalanced nature of the samples:
The �4 negative group had 79 A�+ and 120 A�− sub-
jects, whereas the �4 positive group had 178 A�+ and
only 29 A�− subjects. The relative paucity of �4 pos-
itive but A�− subjects may contribute to the lower
performance of the predictive model in the �4 positive
group. Thus, it is possible that the strong association
of A� with �4 status obscures the association with
cognitive measures.

Psychometric scores as functional biomarkers

It is worth pointing out that the current algorithm
for determining the likelihood of “MCI due to AD” in
the recently proposed criteria treats neurodegenerative
and molecular markers as dissociable modalities of evi-
dence. In a sense, psychometric tests can be considered
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another type of downstream neurodegenerative mea-
sure. Thus, it may seem somewhat odd to use one type
of biomarker (neurodegenerative) to predict another
(molecular) in this context if these measures provide
orthogonal information. However, these measures are
obviously related and multiple studies have demon-
strated the significant predictive value for conversion
to clinical AD in patients either with “positive” CSF
or PET amyloid studies or neurodegenerative markers
[1, 35, 36].

Nonetheless, one reason for the modest ability of
cognitive measures to predict amyloid status is that
MCI A�+ likely is associated with variable levels
of impairment. This is almost certainly an issue for
any neurodegenerative biomarker given the range of
disease severity within the MCI category. Indeed, neu-
rodegenerative biomarkers, in addition to providing
some currency on the underlying pathology (e.g., cere-
bral amyloid), also are informative on disease stage
and enhance prediction of the timing of transitions
to dementia, as has been suggested in the literature
[37–39]. Thus, relatively poor performance on cog-
nitive measures within the MCI category increases
both the likelihood that the underlying process is AD
and that progression to dementia is more likely to
occur in the near future, which may help provide addi-
tional context for clinicians in their assessment of these
patients.

The choice of CSF A� as the proxy or standard
for AD pathology in the present analysis also reflects
the notion that it is a more specific measure of AD
pathology than neurodegenerative markers given the
defining nature of cerebral amyloid in the pathologic
criteria for AD. Indeed, more and more therapeutic
trials, including in MCI, are using a positive amyloid
study as inclusion criteria [40]. Thus, examination of
psychometric measures within the MCI category may
contribute to increasing the likelihood that a given
patient may qualify for such a study on that basis.

CONCULSION

In an MCI population, psychometric scores predict
presence of CSF-based amyloid pathology that over-
laps with predictions obtainable from FDG-PET and
structural MR images. Thus, psychometric measures
may be preferable in the cross-sectional context to
provide initial screening on the likelihood of prodro-
mal AD. The ability of cognitive scores to predict the
existence of underlying AD pathology indicates that
in addition to using cognitive test cutoffs to establish

the existence of MCI, the severity of the test scores is
as reliable an indicator as imaging biomarkers of neu-
rodegeneration that the cognitive impairment is due to
AD pathology. Thus, these measures could be included
in the MCI algorithm as a type of neurodegenerative
marker that could further help clinicians prognosticate
in the clinical setting.
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