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Abstract20

Testing for genetic association with multiple traits has become increasingly important, not only21

because of its potential to boost statistical power, but also for its direct relevance to applications.22

For example, there is accumulating evidence showing that some complex neurodegenerative and23

psychiatric diseases like Alzheimer’s are due to disrupted brain networks, for which it would be24

natural to identify genetic variants associated with a disrupted brain network, represented as a25

set of multiple traits, one for each of multiple brain regions of interest (ROIs). In spite of its26

promise, testing for multivariate trait associations is challenging: if not appropriately used, its27

power can be much lower than testing on each univariate trait separately (with a proper control for28

multiple testing). Furthermore, differing from most existing methods for single SNP-multiple trait29

associations, we consider SNP set-based association testing to decipher complicated joint effects of30

multiple SNPs on multiple traits. Because the power of a test critically depends on several unknown31

factors such as the proportions of associated SNPs and of traits, we propose a highly adaptive test32

at both the SNP and trait levels, giving higher weights to those likely associated SNPs and traits,33

to yield high power across a wide spectrum of situations. We illuminate on relationships among34

the proposed and some existing tests, showing that the proposed test covers several existing tests35

as special cases. We compare the performance of the new test with several existing tests using both36

simulated and real data. The methods were applied to structural MRI data drawn from Alzheimer’s37

Disease Neuroimaging Initiative (ADNI) to identify genes associated with grey matter atrophy in38

the human brain default mode network (DMN). For GWAS, genes AMOTL1 on chromosome 1139

and APOE on chromosome 19 were discovered by the new test to be significantly associated with40

DMN. Notably, gene AMOTL1 was not detected by single SNP-based analyses. To our knowledge,41

AMOTL1 has not been highlighted in other AD studies before, though it was indicated to be related42

to cognitive impairment. The proposed method is also applicable to rare variants in sequencing43

data and can be extended to pathway analysis.44

Keywords: adaptive association test; ADNI; default mode network; gene-based test; imaging45

genetics; multiple traits46
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Introduction47

Alzheimer’s disease (AD) (MIM 104300) is the most common neurodegenerative disease, and every48

67 seconds, someone in U.S develops AD (Alzheimer’s Association 2015a). Currently there is no cure49

for AD, and most cases are diagnosed in the late stage of the disease. It is projected that the number50

of Americans of age 65 and older with AD will increase from 5.1 million in 2015 to 13.5 million51

in 2050, an growth from an estimated 11% of the US senior population in 2015 to 16% in 2050,52

costing over $1.1 trillion in 2050 (Alzheimer’s Association 2015b). To advance our understanding53

of the initiation, progression and etiology of AD, Alzheimer’s Disease Neuroimaging Initiative54

(ADNI) was started in 2004 and is being continued since, collecting extensive clinical, genomic and55

multi-modal imaging data (Shen et al. 2014). Many other genetic studies have been conducted,56

identifying multiple common and rare variants, shedding light on pathogenic mechanisms of AD57

(Marei et al. 2015; Saykin et al. 2015). In particular, the APOEε4 allele has been consistently58

shown to be associated with AD. However, only 50% of AD patients carry an APOEε4 allele,59

suggesting the existence of other genetic variants contributing to risk for the disease (Karch et60

al. 2014). A recent study indicates that 33% of total AD phenotypic variance is explained by61

common variants; APOE alone explains 6% and other known markers 2%, meaning more than62

25% of phenotypic variance remains unexplained by known common variants (Ridge et al. 2013).63

Hence, as for other common and complex diseases and traits, many more genetic factors underlying64

late onset AD are waiting to be discovered. One obvious but costly approach is to have a larger65

sample size. Alternatively, more powerful analysis methods are urgently needed. For example, in66

contrast to the popular single SNP-based analysis, novel gene- and pathway-based analyses may be67

more powerful in discovering additional causal variants. As demonstrated by Jones et al. (2010),68

jointly analyzing functionally related SNPs sheds new light on the relatedness of immune regulation,69

energy metabolism and protein degradation to the etiology of AD. The reason is due to the well-70

known genetic heterogeneity and small effect sizes of individual common variants, as observed from71

published GWAS results (Manolio et al. 2009). To boost power in identifying aggregate effects of72

multiple SNPs, it may be promising to conduct association analysis at the SNP-set (or gene) level,73

rather than at the individual SNP level.74

Another strategy is to use multiple endophenotypes, intermediate between genetics and the75
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disease, for their potential to have stronger associations with genetic variants. In addition to76

boosting power, the use of intermediate phenotypes may provide important clues about causal77

pathways to the disease (Schifano et al. 2013; Maity et al. 2012). A recent GWAS demonstrated78

the effectiveness of the strategy: some risk genes such as FRMD6, were first identified to be79

associated with some neuroimaging intermediate phenotypes (e.g. hippocampal atrophy) (Shen80

et al. 2014), then were later validated to be associated with AD (Hong et al. 2012; Sherva et81

al. 2014). A possibly useful but under-utilized intermediate phenotype is the brain default mode82

network (DMN), consisting of several brain regions of interest (ROIs) remaining active in the resting83

state. Brain activity in DMN may explain the etiology of AD (Metin et al. 2015), and is a plausible84

indicator for incipient AD (Damoiseaux et al 2013; Greicius et al. 2004; He et al. 2009; Jones et85

al. 2011; Balthazar et al. 2014). Since there is growing evidence that genetic factors play a role in86

aberrant default mode connectivity (Glahn et al. 2009), it may be substantially more powerful to87

detect genetic variants associated with DMN, a set of multiple intermediate phenotypes, than with88

AD.89

Here we discuss gene-based multi-trait analysis, aiming at discovering genes associated with90

multiple traits such as DMN. To date, several but not many methods have been proposed for gene-91

based multi-trait analysis (Guo et al. 2013; Van der Sluis et al. 2015; Maity et al. 2014; Wang92

et al. 2015). The simplest way is to use the minimum p-value (minP) test based on the most93

significant single SNP–single trait association, which however may lose power in the presence of94

multiple weak associations between multiple SNPs and multiple traits. Some methods, such as Van95

der Sluis et al. (2015) and M-TopQ25Stat (Guo et al. 2013), only utilize a few top association96

signals among the pairwise single SNP-single trait associations. Some methods based on principal97

components analysis (PCA) or principal components of heritability (PCH), originally proposed for98

multiple SNPs and a single trait (Wang and Abbott 2007; Klei et al. 2008), may be also applied.99

However, these methods and canonical correlation analysis (CCA) (Tang and Ferreira, 2012) make100

use of only one or few top components, thus they share the same weakness of power loss in the101

presence of multiple associations; furthermore, the number of PCs may be difficult to determine102

(Aschard et al. 2014; Huang et al. 2014). Another extreme is the burden test (Shen et al. 2010;103

Guo et al. 2013; Mukherjee et al. 2014), which is powerful in the presence of a dense association104

pattern, in which most SNP-trait pairs are associated with almost equal effect sizes and directions;105
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otherwise, e.g. when the association directions of some SNP-trait pairs are different, it does not106

perform well (as well known for analysis of rare variants). A compromise between the above two107

extremes is a variance-component test (Maity et al. 2012; Wang et al. 2013), which is more robust108

to association density/sparsity and varying association directions. Nevertheless, as shown in the109

context for multiple rare variants and a single trait (Pan et al 2014), it may still suffer from power110

loss in the presence of more sparse association patterns (i.e. when there are a fewer associated111

SNP-trait pairs). A fundamental challenge in multivariate analysis is the lack of a uniformly most112

powerful test: any test may be powerful in some situations, but not in others. Nevertheless, we113

aim to construct an adaptive test such that it can maintain high power, not necessarily highest114

power, across a wide range of scenarios. In particular, the proposed test is adaptive at both the115

SNP and trait levels. Its key feature is the use of a weighting scheme to yield robust statistical116

power no matter whether the true and unknown association pattern is dense or sparse (or in117

whatever directions), and the weight is determined data-adaptively. In addition, some chosen118

weights correspond to several existing tests, including a burden test and a variance-component119

test. Therefore, the high power range of the proposed test covers those of the burden test and120

the variance-component test. Moreover, the proposed test is based on the general framework of121

the generalized estimating equations (GEE), hence it is flexible with the capability to incorporate122

covariates and various types of traits (Liang and Zeger, 1986). It also avoids a difficulty in correctly123

specifying a joint multivariate distribution or likelihood for a set of multiple traits. Furthermore,124

we extend the proposed method to pathway analysis, in which it is adaptive to possibly varying125

gene-level associations.126

We will compare the performance of the new test with several existing tests using both simulated127

and real data. The methods were applied to structural MRI data drawn from the ADNI to identify128

genes associated with DMN. In the GWAS, 277,527 SNPs were mapped to 17,557 genes, among129

which genes AMOTL1 on chromosome 11 and APOE on chromosome 19 were discovered by the130

new test to be significantly associated with DMN. Notably, gene AMOTL1 was not detected by131

single SNP-based analyses. We also illustrate the application of the methods to the ADNI whole-132

genome sequencing (WGS) data, though none significant genes were identified, presumably due to133

a relatively small sample size.134

In the following, we briefly review GEE and an existing method before introducing the new test135

4



in Materials and Methods. In Results, the new and several existing methods are compared with136

applications to the ADNI data and simulated data mimicking the ADNI data. We end with a short137

summary of the conclusions.138

Materials and Methods139

Review140

Generalized estimating equations141

Suppose for each individual i = 1, ..., n, we observe k traits Yi = (yi1, ..., yik)
′, q covariates zi =142

(zi1, ..., ziq)
′ and a set of single nucleotide polymorphisms (SNPs) xi = (xi1, ..., xip)

′, with xij ∈143

{0, 1, 2}. Denote Xi = I ⊗ x
′
i and Zi = I ⊗ (1, z

′
i), where I is a k × k identity matrix, and ⊗144

represents the Kronecker product. We model the mean of the phenotypes E(Yi|Xi, Zi) = µi, using145

a marginal generalized linear model146

g(µi) = Ziϕ+Xiβ = Hiθ (1)

with Hi =
(
Zi Xi

)
, parameters θ = (ϕ

′
, β

′
)
′
, and a link function g(.). The regression coefficients147

β = (β11, ..., βp1, ..., β1k, ..., βpk)
′ is a pk × 1 vector, in which βjt represents the effect of the jth148

SNP on the tth trait, while the element ϕst of ϕ = (ϕ11, ..., ϕ(q+1)1, ..., ϕ1k, ..., ϕ(q+1)k)
′ is the effect149

size of the sth covariate on the tth trait. Liang and Zeger (1986) proposed estimating ϕ and β by150

solving the generalized estimating equations (GEE):151

Uθ =
n∑
i=1

D
′
iV
−1
i (Yi − µi) = 0 (2)

withDi = ∂µi/∂θ
′
and Vi = φA

1/2
i Rw(α)A

1/2
i , where φ is a dispersion parameter, Ai = diag{v(µi1), ..., v(µik)}152

models the variances with a variance function v(µi), and Rw(α) is a working correlation matrix with153

possibly some unknown parameters α. Specifically, for quantitative traits (Yi) with the identity154

link function (or more generally, for any generalized linear model with a canonical link function),155
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the score vector Uθ and its variance-covariance matrix Cov(Uθ) are156

Uθ = (U
′
ϕ, U

′
β)

′
=

n∑
i=1

(Zi Xi)
′
R−1
w (Yi − µi),

Cov(Uθ) =
n∑
i=1

(Zi Xi)
′
R−1
w (Yi − µi)(Yi − µi)′R−1

w (Zi Xi).

The covariance matrix can be partitioned according to the score components for ϕ and β: Cov(Uθ) =157 (
V11 V12
V21 V22

)
. For convenience, the working independence model is often used with Rw being as an158

identity matrix Ik×k, as done in this paper unless specified otherwise.159

Our primary concern is to test for overall genetic effects with H0: β = 0, while treating ϕ as160

nuisance parameters. To perform the score test, we evaluate the equation (1) under H0. Under H0,161

we have g(µi) = Ziϕ, and the estimate of ϕ, denoted as ϕ̂, is the solution to the generalized score162

equation Uϕ,β=0 =
∑n

i=1 Z
′
i(Yi − µi) = 0. The marginal mean is estimated by µ̂i = g(Ziϕ̂)−1.163

For testing SNP-set effects, one considers the sub-components of the score vector for β:164

Uβ =

n∑
i=1

X
′
i(Yi − µ̂i). (3)

Uβ asymptotically follows a multivariate normal distribution MN (0, Σ̃β) under H0, where Σ̃β =165

V22 − V21V
−1

11 V12. Uβ can be written as Uβ = (U11, ..., Up1, ..., U1k, ..., Upk)
′. Each element Ujt166

measures the association strength between SNP j and trait k for j = 1, ..., p and t = 1, ..., k, and is167

asymptotically proportional to βjt in equation (1). βjt = 0 implies there is no association between168

SNP j and trait k; similarly Ujt = 0 (or small) indicates no (or weak) association between SNP j169

and trait k.170

For testing H0, the GEE-Score test statistic is defined by171

GEE-Score = U
′
βΣ̃−1

β Uβ.

Under H0, the GEE-Score statistic asymptotically follows a central chi-squared distribution with172

pk degrees of freedom. When pk is large, this standard score test loses power for large degrees173

of freedom. Another way to draw inference, especially convenient when combining the score test174

with other tests as to be discussed later, is to simulate U
(b)
β ∼ MN (0, Σ̃β) for b = 1, ..., B and175
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obtain the null statistics GEE-Score(b) = U
(b)
β

′
Σ̃−1
β U

(b)
β . The p-value can be calculated as PScore =176 ∑B

b=1 I(GEE-Score ≤ GEE-Score(b))/(B + 1), where I(·) denotes the indicator function.177

For ease of notation, we suppress β and take U = Uβ and V = Σ̃β hereafter.178

An adaptive association test for a single SNP179

Zhang et al. (2014) proposed a class of sum of powered score (SPU) tests for testing association180

between an individual SNP and multiple traits, along with its data-adaptive version (aSPU). The181

SPU tests are a family of association tests based on the (generalized) score vector in the GEE182

framework, aiming for at least one of them to be powerful in any given situation. With only a183

single SNP j, then the score vector reduces to U = (Uj1, ..., Ujk)
′. The association between the184

SNP and k traits can be quantified with a test statistic185

SPU(γ) =
k∑
t=1

(Ujt)
γ

where a candidate integer γ ≥ 1 is to be chosen from a pre-selected parameter set Γ; e.g. Γ =186

{1, 2, ..., 8,∞}. The statistical power of an SPU(γ) test depends on the choice of γ ∈ Γ. When γ is187

an odd integer, the SPU(γ) test sums up the association signals across all the traits, retaining high188

power if all or most of the multiple traits have an almost equal effect size in the same association189

direction. A special case is γ = 1, giving a burden test commonly used for rare variants. With190

an even γ, the SPU(γ) test will be more powerful when some traits have different association191

directions. In particular, the SPU(2) test is the same as the sum of squared score (SSU) test (Pan192

2011), closely related to MDMR (McArdle and Anderson 2001), kernel machine regression (KMR)193

(Liu et al. 2007) and variance-component tests (Tzeng et al. 2011). Furthermore, as γ increases, the194

SPU test upweights the more strongly associated traits, while reducing the weights on other ones.195

In particular, when γ →∞ (as an even integer), only the maximum component of the score vector196

is used and the test statistic is defined as SPU(∞) = maxkt=1 |Ujt|. The SPU(∞) test is similar197

to the UminP test (when the variances of the score components are almost equal). To compute198

the significance of an SPU test, Monte Carlo (MC) simulations (or alternatively, permutations) are199

used; for b = 1, ..., B, the null score U (b) = (U
(b)
j1 , ..., U

(b)
jk )′ is generated fromMN (0, V ), from which200

the null statistics SPU(γ)(b) =
∑k

t=1(U
(b)
jt )γ can be obtained for each γ. Then the p-value can be201
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calculated as pγ = [
∑B

b=1 I(SPU(γ) ≤ SPU(γ)(b)) + 1]/(B + 1).202

However, it is not clear how to choose an optimal γ a priori for given data. Hence, Zhang et al.203

(2014) proposed an adaptive SPU (aSPU) test to extract association evidence from multiple SPU(γ)204

tests. The statistic of the aSPU test is the minimum p-value of SPU(γ)’s for some candidate values205

of γ:206

aSPU = min
γ∈Γ

pγ ,

where pγ is p-value of SPU(γ). By MC simulations (or permutations), the p-value of aSPU, along207

with those of all SPU(γ) tests, can be efficiently calculated based on the same set of the null208

statistics in a single layer.209

Existing gene-based tests210

We will compare the proposed test with several existing gene-based tests for multiple traits, includ-211

ing multivariate analysis of variance (MANOVA), multivariate distance matrix regression (MDMR)212

with the Euclidean distance (McArdle and Anderson 2001), multivariate kernel machine regres-213

sion (KMR) under linear kernel (Maity et al. 2012) and a multivariate functional linear model214

(MFLM) (Wang et al. 2015). We would note that KMR can be derived based on a ramdom-215

effects model while MFLM is built on a fixed effect model. For implementation, R package vegan216

was used for MDMR; R code for KMR and MFLM was downloaded from the authors’ web-217

sites, http://www4.stat.ncsu.edu/~maity/software.html and https://www.nichd.nih.gov/218

about/org/diphr/bbb/software/fan/Pages/default.aspx respectively. Since KMR (Maity et219

al. 2012) was computationally slow, and excluded from the simulation studies.220

New Methods221

An adaptive test222

We introduce a novel gene-based adaptive sum of powered score test for a set of multiple traits,223

denoted as aSPUset, by extending the single SNP-based test of Zhang et al. (2014). Suppose that224

there are p SNPs in a gene and k traits of interests. Recall that U = (U11, ..., Up1, ..., U1k, ..., Upk)
′

225

is the generalized score vector of length pk in GEE, and V is the pk × pk covariance matrix of the226

score vector; each element of the score, Ujt quantifies the association between SNP j and trait t.227
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In practice, the true and unknown association patterns across multiple SNPs and multiple traits228

are complex: some SNPs may be associated with some traits, but not with other traits; different229

SNPs may be associated with different subsets of the traits with varying association strengths and230

directions. Since the use of non-associated SNPs and traits in a test statistic could reduce the231

power of the test, we may want to give higher weights to more likely associated SNPs and traits.232

However, how much to optimally overweight these likely associated SNPs and traits depends on233

the true association pattern, which is unknown. The aSPUset test employs two positive integer234

parameters, γ1 and γ2, to control the degrees of weighting over the SNPs and over the traits235

respectively, and the two parameters are chosen data-adaptively. A larger γ1 puts more weights236

on the SNPs more likely to be associated with a given trait, while a larger γ2 upweights the traits237

more strongly associated with the SNPs.238

We build the test statistic as follows. For each trait t, S(γ1; t) quantifies the association between239

the single trait and multiple SNPs, then SPU(γ1, γ2) combines the single trait-based statistics:240

S(γ1; t) =
( p∑
j=1

(Ujt)
γ1
)1/γ1 , SPU(γ1, γ2) =

k∑
t=1

(
S(γ1; t)

)γ2 . (4)

Here candidate integers γ1 ≥ 1 and γ2 ≥ 1 are to be chosen from two pre-selected parameter sets Γ1241

and Γ2. We used Γ1 = Γ2 = {1, 2, ..., 8,∞}, due to the good performance in our numerical studies.242

In S(γ1; t), (Ujt)
γ1 can be re-written by an alternative form (Ujt)

γ1 = Uγ1−1
jt Ujt = wjtUjt. wjt =243

Uγ1−1
jt is a weight for each score element, which reflects the association strength (and direction)244

between SNP j and trait t of the given data. With γ1 = 1, SPU test weights each SNP equally, and245

yields the highest power if all the SNPs are associated with the trait t with similar effect sizes and246

association direction (i.e. all positive or all negative). When the subset of SNPs are associated with247

the trait t, or their association directions are different, SPU(γ1 = 2, γ2) is often more powerful. As248

γ1 increases, SPU(γ1, γ2) puts heavier weights on the SNPs which are more strongly associated with249

the trait t. At the end, as the parameter approaches to ∞ (as an even integer), it only considers250

the most significant SNP, i.e. SPU(γ1 =∞, γ2) =
∑k

t=1

( p
max
j=1
|Ujt|

)γ2 .251

Similarly, γ2 controls how much to up-weight the traits that are more likely to be associated252

with SNPs. SPU(γ1, γ2 = 1) weights all traits equally and performs best when each trait is equally253

associated with the SNPs. Similarly, as γ2 increases, the SPU test over-weights larger trait-based254
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statistics S(.; t); in an extreme case, as γ2 → ∞, we define SPU(γ1, γ2 = ∞) =
k

max
t=1

∣∣S(γ1; t)
∣∣. If255

one is more interested in the most significantly associated single SNP-single trait pair, SPU(γ1 =256

∞, γ2 = ∞) = max
j,t
|Ujt| can be considered. Using various combinations of γ1 and γ2, one can257

target and fit different association patterns across multiple SNPs and multiple traits, including258

their varying sparsity levels. As a result, the SPU(γ1, γ2) tests cover several existing tests as259

special cases as to be shown.260

The aSPUset test chooses (γ1, γ2) data-adaptively by taking the minimum p-value of SPU(γ1, γ2)’s261

as the test statistic for candidates γ1 ∈ Γ1 and γ2 ∈ Γ2,262

aSPUset = min
γ1,γ2

pγ1,γ2 .

To assess the significance of all the SPU(γ1, γ2) and aSPUset test, we use either permutations263

or MC simulations in a single layer to obtain their p-values. The permutation-based method is264

useful when the covariance matrix (V ) is not easy to estimate (e.g. in a high dimensional setting)265

or when the usual Normal asymptotics may not hold (e.g. n is not large compared to pk); in con-266

trast, the simulation-based method is more restrictive but computationally more efficient. For the267

permutation-based method, residual terms resi = Yi − µ̂i in equation (3) are permuted to generate268

res
(b)
i for b = 1, ...B, from which the null score vector U (b) is computed as U (b) =

∑n
i=1X

′
ires

(b)
i .269

Alternatively, for the simulation method, we simulate the null score vectors independently from the270

null distribution: U (b) ∼MN (0, V ) for b = 1, ...B.271

In either case, the null statistics SPU(γ1, γ2)(b) can be calculated from the null score vectors272

U (b) for b = 1, ..., B. Because all SPU(γ1, γ2) tests are based on the same null score vectors U (b), we273

just need to simulate one set of null scores and efficiently compute the null statistics, SPU(γ1, γ2)(b)
274

tests simultaneously for candidate γ1, γ2’s. Then the p-value of SPU(γ1, γ2) is275

pγ1,γ2 =
1 +

∑B
b=1(I(|SPU(γ1, γ2)(b)| ≥ |SPU(γ1, γ2)|)

B + 1
.

We can also simultaneously and efficiently compute the p-value of the aSPUset test based on276

the same set of the null statistics being used for the SPU tests. Note that for each SPU(γ1, γ2)(b),277

we can calculate its p-value as p
(b)
γ1,γ2 = [

∑
l 6=b(I(|SPU(γ1, γ2)l| ≥ |SPU(γ1, γ2)(b)|) + 1]/B. Denote278
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its minimum as p(b) = min
γ1,γ2

p
(b)
γ1,γ2 . Then the significance of aSPUset test is obtained as279

PaSPUset =

∑B
b=1 I(|p(b)| ≤ |aSPUset|) + 1

B + 1
.

Extensions280

As shown by Zhang et al. (2014), in some but not all situations, the GEE-Score test may perform281

better than the aSPU test for a single SNP and multiple traits; the opposite is true too. Hence,282

to take advantage of both tests, we combine them by taking their minimum p-value to form a new283

test statistic,284

aSPUset-Score = min
(
PaSPUset, PScore

)
. (5)

Its p-value can be calculated using simulations or permutations as for aSPUset. The null statistic285

GEE-Score(b) is obtained from the same score U (b) which is used for SPU(γ1, γ2)(b). Hence the null286

statistics for SPU(γ1, γ2)(b) and GEE-Score(b) can be computed simultaneously.287

We can also consider a variance-weighted version of the SPU and aSPUset tests, called the288

SPUw and aSPUw-set respectively. Each diagonal element of covariance matrix (V ) corresponds289

to the variance of the individual score element Ujt; denote the variance of Ujt as Vjt. The SPUw290

test is defined with statistic291

SPUw(γ1, γ2) =
k∑
t=1


 p∑
j=1

(Ujt/
√
Vjt)

γ1

1/γ1

γ2

.

The aSPUw-set test statistic is defined as the one taking the minimum p-value of the multiple292

SPUw(γ1, γ2) tests in the same way as that for aSPUset and SPU(γ1, γ2). The SPUw and aSPUw-293

set tests are invariant to the scale of each trait, and hence may be useful when it is unclear how to294

standardize multiple traits that are in different scales. However, standardizing the traits (such that295

their sample variances are all equal to one) may or may not be beneficial; often, the power of the296

unweighted SPU tests and that of the weighted ones are similar as shown before in other contexts297

(Pan et al 2014; Zhang et al 2014).298
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Relationships with other methods299

The SPU tests are closely related to some existing tests, covering some as special cases. Guo et al.300

(2013) proposed a set of nonparametric methods for gene-based multiple trait association analysis,301

called M-MeanStat, M-MaxStat, and M-TopQ25Stat. Each of the methods of Guo et al. (2013) is302

built on a generalized Kendall’s tau (τ), which quantifies the pairwise association between a single303

SNP and a single trait. Comparing two sets of statistics: M-MeanStat versus SPUw(2, 2), and304

M-Max versus SPUw(∞, 1), we see their equivalence as described in Appendix A.305

It is obvious that the SPU(1, 1) test is a burden test, which is optimal if its implicit assumption306

that each SNP-trait pair is equally associated (with the same association direction) holds. The307

SPU(2,2) test has connections to several other tests. Zhang et al. (2014) showed that when testing308

on a single SNP, the SPU(2,2) test under the GEE working independence model is equivalent to309

MDMR with the Euclidean distance. However, for testing multiple SNPs, the equivalence does310

not hold (Appendix B). KMR with the linear kernel has the same test statistic as SPU(2,2) if the311

working correlation matrix Rw of the latter in GEE is correctly specified as the true correlation312

matrix of Yi (i.e. Rw = Corr(Yi|H0)); see Appendix C for derivation. This illustrates the flexibility313

of our proposed test under GEE, in contrast to the stronger modeling assumption in KMR. Since314

KMR can be derived based on a random-effects model while the burden test is formulated based on315

a fixed-effects model, our proposed method can be regarded as combining results from both fixed-316

and random-effects models.317

As to be shown in our numerical studies, the GEE-Score test and MANOVA performed similarly;318

we establish the equivalence between the GEE-Score test and MANOVA with the Pillai-Bartlett319

trace (Appendix D). Muller and Peterson (1984) discussed the close relationships among four ver-320

sions of MANOVA (i.e. with the Pillai-Bartlett trace, Hotelling-Lawley’s trace, Wilk’s lambda,321

Roy’s largest root), each of which can be written as a function of generalized canonical correlations322

(CCA). Hence the GEE-Score test is directly related to MANOVA and CCA.323

Pathway analysis324

We extend the adaptive test for association analysis of a single trait and a pathway (i.e. a set325

of genes) (Pan et al 2015) to that of multiple traits and a pathway. The main idea is to allow326
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adaptive weighting at the gene-level, in addition to at the SNP- and trait-levels. Given a pathway327

S with |S| genes and a single trait t, we partition the score vector according to the genes in S as328

U = (U ′1t, ..., U
′
|S|,t)

′ with a subvector for gene g (with hg SNPs) as Ugt = (Ug,1,t, ..., Ug,hg ,t)
′. Denote329

SPU(γ1; g, t) and SPUpath(γ1, γ2; t) as the gene-specific SPU and the pathway-based SPU test330

statistics for single trait t, respectively. Define a new test statistic GEE-SPUpath(γ1, γ2, γ3) as the331

pathway analysis for multiple traits:332

SPU(γ1, w1; g, t) =

 hg∑
j=1

(w1,g,jUg,j,t)
γ1/hg

1/γ1

,

SPUpath(γ1, γ2, w1, w2; t) =

 |S|∑
g=1

(w2,gSPU(γ1, w1,g; g, t))
γ2

1/γ2

,

GEE-SPUpath(γ1, γ2, γ3, w1, w2) =
k∑
t=1

(SPUpath(γ1, γ2, w1, w2; t))γ3 ,

where the three scalars γ1, γ2, γ3 > 0 are specified to control the degrees of weighting the SNPs,333

genes and traits respectively, w1 = (w
′
1,1, ..., w

′

1,|S|)
′

gives gene-specific weights for the SNPs in gene334

g as w1,g = (w1,g,1, ..., w1,g,hg)
′
, and w2 = (w2,1, ..., w2,|S|)

′ gives gene-specific weights for each gene335

in the pathway S. These weights are specified based on some prior knowledge on the importance336

of the genes and SNPs; without prior knowledge, we can simply use an equal weight 1 on each337

gene and each SNP, as used in our later simulations. We employed γ1 ∈ Γ1 = {1, 2, ..., 8} and338

γ2, γ3 ∈ Γ2 = Γ3 = {1, 2, 4, 8} in later simulations.339

Finally, a new adaptive test for pathway analysis, denoted GEE-aSPUpath test, is defined as340

GEE-aSPUpath = min
γ1∈Γ1,γ2∈Γ2,γ3∈Γ3

pγ1,γ2,γ3 ,

where pγ1,γ2,γ3 is the p-value of the GEE-SPUpath(γ1, γ2, γ3) test. The simulation or permutation341

procedure for generating the null statistics and calculating p-values for all the GEE-SPUpath and342

GEE-aSPUpath tests are similar to that for the GEE-aSPUset test.343

Due to the limited space, we will not discuss the pathway-based tests in the sequel; some344

simulation results are presented in the Supplementary Materials (File S4).345
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Results346

Real Data Example347

ADNI data348

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-349

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by350

the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-351

neering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies352

and non-profit organizations, as a 60 million, 5-year public private partnership. The primary goal353

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission354

tomography (PET), other biological markers, and clinical and neuropsychological assessment can355

be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s356

disease (AD). Determination of sensitive and specific markers of very early AD progression is in-357

tended to aid researchers and clinicians to develop new treatments and monitor their effectiveness,358

as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is359

Michael W. Weiner, MD, VA Medical Center and University of California San Francisco. ADNI is360

the result of efforts of many co-investigators from a broad range of academic institutions and private361

corporations, and subjects have been recruited from over 50 sites across the U.S. and Canada. The362

initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and363

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate364

in the research, consisting of cognitively normal older individuals, people with early or late MCI,365

and people with early AD. The follow up duration of each group is specified in the protocols for366

ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the367

option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.368

GWAS with ADNI-1 data369

One objective of ADNI is to elucidate genetic susceptibility to AD. We conducted a gene-based370

multi-trait analysis for ADNI-1 data, by using grey matter volumes in the 12 ROIs corresponding to371

the default mode network (DMN) as intermediate phenotypes. DMN is a network of brain regions372
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that are active when an individual is at wakeful rest, which includes inferior temporal, medial373

orbitofrontal, parahippocampal, precuneus and posterior cingulate ROIs (Greicius et al. 2004).374

Importantly, DMN activity distinguishes cognitively impaired patients such as with Alzheimer’s,375

ADHD, or bipolar disorder from healthy controls (Metin et al. 2015; Meda et al. 2014; Buckner376

et al. 2008; Greicius et al. 2003, 2004). The grey matter volumetric measures related to the DMN377

were extracted from the ADNI-1 baseline data.378

We included all SNPs with minor allele frequency (MAF) ≥ 0.05, genotyping rate more than379

90%, and surviving the Hardy-Weinberg equilibrium test at a significance threshold 0.001. After380

all rounds of quality control, 519,286 SNPs remained, among which 277,527 SNPs were mapped381

to 17,557 genes. To consider SNPs in promoter or regulatory regions for each gene, we included382

SNPs upstream and downstream within 20Kb of each gene. Subjects with more than 10% missing383

genotypes were excluded, and only non-Hispanic Caucasians whose twelve grey matter volumes in384

DMN were all measured at baseline were included, resulting in 144 AD patients, 311 MCI subjects,385

and 180 healthy elderly controls. For covariates, gender, years of education, handedness, age, and386

intracranial volume (ICV) measured at baseline were included.387

To demonstrate the applicability and power of our approach, we applied MANOVA, MDMR388

(McArdle and Anderson 2001), KMR (Maity et al. 2012), MFLM (Wang et al. 2015) and GEE-389

based tests, GEE-Score, aSPUset and aSPUset-Score tests. The number of MC simulations or390

permutations for each method was set B = 103 at beginning, but was increased up to B = 108
391

if an obtained p-value was less than 5/B, which ensured the identification of the genes at the392

genome-wide significance level (p-value < 2.8 × 10−6 with a Bonferroni adjustment). When any393

obtained p-value was less than 1.0e-8, we reported it as 1.0e-8. The p-values of permutation-based394

aSPUset and of simulation-based aSPUset agreed well (with a Pearson correlation 0.98), thus we395

reported only permutation-based results. For MFLM, we used beta-smooth basis functions with396

the Pillai-Bartlett trace as a representative.397

The aSPUset and MDMR tests uncovered two loci associated with DMN. Table 1 lists the398

genes with the highest significance levels. Genes AMOTL1 (on chromosome 11) and APOC1,399

APOE (on chromosome 19) were identified by both aSPUset and MDMR, but not by other tests,400

while TOMM40 (on chromosome 19) was only detected by aSPUset. AMOTL1 is known to be401

involved in cell adhesion and cell signaling (Hamatani et al. 2004). A recent study using a pathway-402
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enrichment strategy showed that the genes involved in neuronal cell adhesion, and cell signaling403

are overrepresented in schizophrenia and bipolar disorder (Meda et al. 2014). Anney et al. (2008)404

identified AMOTL1 as a gene associated with ADHD. The gene was also highly expressed in405

thalamus, a brain region implicated in the cognitive impairment of early stage Huntington’s disease406

(Schmouth et al. 2013). Three genes (APOC1, APOE, TOMM40 ) in chromosome 19 could not407

be readily discerned due to their physical closeness, though their gene sizes (i.e. the numbers of408

SNPs) varied. The p-values of MDMR became less significant as the gene size increased, while the409

aSPUset was robust to the number of SNPs. This locus containing APOE is well known to be410

related to Alzheimer’s disease and cognitive impairment disorder (Liu et al. 2014; Kamboh et al.411

2012; Seshadri et al. 2010).412

Table 2 lists the SNPs included in the significant genes. We applied several single SNP-based413

tests for association with the default mode network. For each method, the permutation or sim-414

ulation number was increased up to 108 to satisfy the genome-wise significance level. As shown415

in Table 2, none of the SNPs in gene AMOTL1 was significant, suggesting that a strong associa-416

tion signal was retained only in the gene-level, rather than in the SNP-level. On the other hand,417

SNP rs429358 contained in three genes (APOC1, APOE, TOMM40 ) was highly significant with418

p-value of 1.0e-8. These results lend support for the proposed aSPUset test’s potential of being able419

to recover both multiple weak effects and single strong effects, due to its adaptiveness.420

We explored each identified locus in details in Figures 1 and 2. In Figure 1, a LocusZoom plot421

(Pruim et al. 2010) illustrates local linkage disequilibrium (LD), recombination patterns and p-422

values obtained from the single SNP-based aSPU test for DMN. Figure 2 illustrates the association423

analyses for genes AMOTL1 and APOE respectively. First we obtained p-values from the univariate424

test between each SNP and each individual trait comprising DMN, then applied SNP-based test425

(aSPU) between each SNP and DMN (12 traits). Finally, we applied the aSPUset test at the426

gene level for DMN. The SNPs contained in AMOTL1 showed strong LD (Figure 1A), and their427

aggregate effects turned out to be significant at the gene level (Figure 2A). Among the SPU(γ1, γ2)428

tests applied with γ1, γ2 ∈ {1, ..., 8,∞}, SPU(3,2) showed the minimum p-value, implying that429

weak effects were aggregated for an overall association. In Figure 2B, only one variant (rs429358)430

in APOE was significant, but the significance level of aSPUset did not diminish in the gene level431

analysis. In testing APOE, the p-values of SPU(2,1), SPU(4,1), SPU(6,1), SPU(8,1), and SPU(∞,1)432
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were tied and the most significant; this suggested that one SNP (rs429358) dominated across in the433

gene level across all the traits.434

Since the proposed test is based on combining all possible single SNP-single trait association435

pairs, if one would like to identify which pairs contribute most to an overall association, one can436

simply examine the signifcance levels of the univariate single SNP-single trait association tests. For437

example, Figure 2 (left panels) illustrates the contribution of each SNP-trait pair for AMOTL1 and438

APOE. In the gene AMOTL1, the SNP-trait pairs, (rs1367505, R-InferiorTemporal), (rs2033367,439

R-InferiorTemporal) and (rs333027, L-InferiorParietal), were ranked highest; for APOE, the top440

3 significant pairs were (rs429358 , R-Precuneus), (rs2075650, L-Precuneus) and (rs429358, L-441

InferiorParietal).442

As shown in Supplementary Materials (File S1), we conducted a single SNP-based GWAS scan443

for the ADNI-1 data. Interestingly, no SNP was significant from univariate single SNP–single trait444

analyses as shown in Figures A and B. Furthermore, only one SNP, rs429358, was significant in445

single SNP-based multi-trait analyses as shown in Figures C and D. In contrast, two loci (AMOTL1446

and APOE) were uncovered by gene-based multi-trait analyses by our proposed new test (Figures447

E and F). In all analyses, covariates considered included gender, years of education, handedness,448

age, and intracranial volume (ICV) measured at baseline. Taken together, these results clearly449

demonstrated the advantage and power gain of our proposed gene-based multi-trait analysis.450

Validation with ADNI-GO/2 data451

Using the ADNI-1 data as the discovery sample, our GWAS identified two loci associated with452

DMN. To validate the results, each method was applied to the two genes AMOTL1 and APOE453

using the ADNI-GO/2 data as the validation sample (with n = 754). We applied the same SNP-454

filtering criteria as applied to ADNI-1. Table 3 presents the p-values obtained from each method; no455

significant association was identified. Due to different genotyping arrays, ADNI-GO/2 data contains456

different sets of SNPs from those of ADNI-1; we imputed missing SNPs which were originally457

included in the analysis of ADNI-1, based on the reference samples of HapMap 3 with MaCH (Liu458

et al. 2013), in order to apply each method to the identical SNP sets of ADNI-1. The aSPUset and459

aSPUset-Score tests identified gene APOE with p-values 0.019 and 0.024 respectively, which passed460

the significance threshold 0.05/2 as shown in Table 3, but gene AMOTL1 was not significant by461
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any test. Figure A in Supplementary Materials (File S2) illustrates p-values from single SNP-based462

testing after adjusting for covariates; SNP rs429358 was associated with DMN (p-value 1.9e-3) by463

passing the Bonferroni adjusted significance level 0.05/12. Figure B in Supplementary Materials464

(File S2) presents p-values for the two candidate gene regions based on the ADNI-GO/2 data; the465

methods include the univariate single SNP–single trait test, the single SNP-based multi-trait aSPU466

test, and the gene-based multi-trait aSPUset test.467

We would mention possible sample differences between ADNI-1 and ADNI-GO/2 cohorts. The468

ADNI-1 cohort includes three subject groups consisting of 25% AD patients, 50% subjects with469

MCI (Mild Cognitive Impairment) and 25% CN (Cognitively Normal) subjects; in contrast, the470

ADN-GO/2 study assigns 754 subjects into five groups: 20% CN , 12% SMC (Significant Memory471

Concern), 35% EMCI (Early Mild Cognitive Impairment), 17% LMCI (Late Mild Cognitive Im-472

pairment), and 16% AD. At least the proportions of the CN subjects and AD patients in the two473

cohorts are different, which might lead to different association results.474

Finally, we combined the two cohorts to form ADNI-1/GO/2 with a larger sample size (about475

1400 subjects) and obtained the p-values from the tests for the two candidate gene regions. The476

two genes were highly significantly associated with the default mode network as shown in Table 3.477

Gene-based rare variant analysis of the ADNI sequencing data478

The proposed method was applied to analysis of rare variants with the ADNI whole-genome sequenc-479

ing (WGS) data, consisting of 254 and 500 subjects from ADNI-1 and ADNI-GO/2 respectively.480

In total, 26,142 genes were included for analyses; all variants inside a gene and those located 25kb481

of upstream and downstream of the gene were mapped to the gene. Five covariates were adjusted:482

gender, years of education, handedness, age and ICV. Due to the low frequency of rare variants, the483

asymptotic assumption for some tests may not hold; we modified each method to avoid using asymp-484

totics. For MANOVA, rather using the usual F-distribution, we permuted residuals (under the null485

model) to estimate its null distribution; for aSPUset and MFLM, similarly the permutation-based486

method was applied. We included all rare variants within each gene region; the number of variants487

within each region ranged from 3 to 750. Sometimes permutation-based MANOVA suffered from488

rank deficiency when constructing the test statistic and could not be applied to about 600 genes;489

MFLM also failed for some genes due to rank deficiency.490
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First we included only rare variants (with MAF < 0.01), then both rare and low-frequency491

variants (with MAF < 0.05). No gene passed the genome-wide Bonferroni-adjusted significance492

threshold of 2.8× 10−6. The results for each set of rare variants are illustrated in Figures A and B493

in Supplementary Materials (File S3). MFLM was problematic with an inflation factor around 1.5494

in both analyses.495

Given that two gene regions were significantly associated with DMN in the previous GWAS496

analysis, it would be of interest to see whether the rare variants in the two genes were associated.497

Table 4 reports the p-values for the two candidate genes. No significant associations were detected.498

Figure C in Supplementary Materials (File S3) depicts the p-values from single trait-based tests,499

including SKAT, SKAT-O, T1 (a burden test for rare variants with MAF < 0.01), T5 (a burden500

test for rare and low-frequency variants with MAF < 0.05), minP, and aSPU tests (Wu et al. 2011;501

Pan et al 2014). T1 and T5 are equivalent to the SPU(1) test with MAF threshold 0.01 and 0.05502

respectively. The minP test is similar to the SPU(∞) test.503

Simulations504

Simulation set-ups505

We evaluated the performance of our method along with several existing methods in simulation506

studies. The simulated data mimicked the association structures for the two genes (AMOTL1 on507

chromosome 11 and TOMM40 on chromosome 19) and default mode network (DMN) in ADNI-1508

data. Two factors were considered: association effect size (Set-up 1) and sparsity of association509

patterns (Set-up 2). For Set-up 1, various effect sizes were created by scaling the regression co-510

efficient estimates obtained from a multivariate linear model (MLM) fitted to the original data.511

On each gene, an MLM was fitted to the ADNI-1 data, including the covariates (zi), SNPs (xi)512

and DMN (Yi). For covariates, we included gender, education, handedness, age, and ICV as in the513

original data analysis. Denote the parameter estimates in an MLM as follows: G0 is a vector for514

intercepts; G = (gjt) is a p × k matrix, in which gjt represents the effect size of SNP j on trait t;515

the element hqt in matrix H = (hqt) stands for the qth covariate effect on the tth trait; Σ is the516

covariance estimate for the multivariate error term. To maintain the true correlation structures517

among genotype scores xi = (xi1, ..., xip)
′ and five covariates zi = (zi1, ..., zi5)′, we sampled pairs518
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(xi, zi) from the ADNI-1 data in each simulation. The multiple traits for subject i were generated519

from a multivariate normal distribution:520

Yi ∼MN (G0 + φ ·G′xi +H ′zi, Σ). (6)

Here φ was a scaling parameter controlling the effect sizes of the SNPs (xi): with φ = 0, the null521

hypothesis held and Type I error rates were evaluated; at φ = 1, the effect sizes were set to be522

equal to the estimated ones from the ADNI-1 data.523

For Set-up 2, we varied the sparsity level of the association structure. At a fixed φ = 0.5,524

we increased the gene size by adding some null SNPs to gene AMOTL1. For the null SNPs, the525

genotype data adjacent to AMOTL1 were used. As before, (xi, zi) pairs were sampled from the526

ADNI-1 data. Throughout simulations, 10000 replicates were used for each set-up and the tests527

were conducted at the significance level α = 0.05.528

Type I error and power529

All the tests showed Type I error rates controlled under the nominal level 0.05 (Table 5). Of note,530

MDMR resulted in conservative Type I error rates. In Set-up 1 (Table 5), as the association effect531

size (φ) decreased, the aSPUset and aSPUset-Score tests were more powerful than other tests,532

suggesting the potential usefulness of the proposed tests in identifying causal SNPs with weak533

effects. Since MFLM was proposed to reduce the dimensionality of the SNP data, it might not be534

desirable to use MFLM here; it might perform better with larger numbers of SNPs.535

In Set-up 2 (Table 6), the aSPUset and aSPUset-Score yielded higher power than other tests536

as the proportion of the null SNPs in the SNP set increased. Throughout the simulations, the537

GEE-Score test performed similarly to MANOVA, confirming their equivalence.538

Computational time539

We reported computational requirement of each method in Table 7 by taking the average com-540

putation time for simulation Set-up 2. MANOVA was computationally most efficient, followed541

by MFLM. As the number of SNPs increased, GEE-Score test and aSPUset-Score test became542

computationally more demanding, but still feasible.543
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Conclusions544

We have presented a highly adaptive association test for multiple traits and multiple genetic vari-545

ants. From the GWAS analyses of the ADNI-1 data (File S1 in Supplementary Materials), we546

observed its potential power gains in identifying cumulative weak effects of multiple associated547

SNPs in gene AMOTL1 with multiple traits, which were undetectable by several other gene-based548

tests and single SNP-based tests. Given that most common variants have only weak effects for549

complex diseases and traits, developing testing strategies to improve power in identifying multiple550

SNPs with weak effects is very important. Our proposed method is developed along this direc-551

tion. Furthermore, due to its adaptiveness, it also retains power in the presence of only one or few552

associated SNPs (or traits), as shown for the APOE gene with the ADNI-1 data (while several553

existing gene-based tests failed to capture). Our proposed adaptive test is in contrast to most of554

the existing tests, which may be powerful in one or more situations, but not across a wide range of555

situations. In practice, since the true association pattern for a given gene and traits is unknown,556

it is unclear which non-adaptive test should be used; it will be convenient and promising to apply557

an adaptive test such as our proposed one.558

We emphasize the potential power gain with the use of multiple traits, especially of intermediate559

phenotypes for a complex disease such as AD (Chen et al. 2015; Mukherjee et al. 2014). However,560

since it is unknown how many of, and in what association patterns, the multiple traits are associated561

with a gene (or a set of SNPs), a straightforward use of any multivariate test may lose, not gain,562

power. Again, the availability of a powerful and adaptive test such as our proposed one will largely563

facilitate its easy and effective use in practice.564

Finally, we summarize the use of our proposed tests and make some recommendations. To565

assess an overall association between a set of SNPs and a set of traits, we would recommend the566

use of the p-value of the aSPUset test. If it is significant, one can check the individual p-values of567

the SPU(γ1, γ2) tests to shed some light on the underlying association pattern. If a larger γ1 (or568

γ2) leads to a more signifcant p-value of the SPU test, it would suggest a more sparse association569

pattern; that is, perhaps one a fewer number of the SNPs (or traits) are associated. Furthermore,570

one can examine the p-value from the univariate test for each SNP-trait pair to identify which571

SNP-trait pairs contribute most to the overall association. For choosing candidate values of γ1572
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and γ2, based on our limited experience, we suggest using Γ1 = Γ2 = {1, 2, ..., 8,∞} by default,573

though an optimal choice depends on the situation; using a too large or too small set Γ1 or Γ2 will574

lead to loss of power. A general guidance, taking Γ1 as an example (and similarly for Γ2), is to575

use Γ1 = {1, 2, ..., C1,∞} such that the SPU(C1, γ2) test gives a p-value almost equal to that of576

SPU(∞, γ2); a larger number of SNPs may require a larger value of C1. In addition, if some large577

univariate associations between various SNP-trait pairs are likely to be in opposite directions, only578

even integers are needed in Γ1 and Γ2; if it is known a priori that large univariate associations are579

mainly in one direction, then using only odd integers may be most powerful; otherwise, both even580

and odd integers should be used. Given the relationships among the tests, we recommend the use581

of our proposed aSPUset and aSPUset-Score tests, though MFLM may also perform well for large582

genes; further evaluations are needed.583

Supplementary Materials584

The R code for the proposed tests and simulations is available under the Paper Information link585

at the Genetics website. An R package GEEaSPU is to be uploaded to CRAN.586
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Appendix609

Without loss of generality we center both Yi = (yi1, yi2, ..., yik)
′ and xi = (xi1, xi2, ..., xip)

′ to have610

their sample means
∑n

i=1 Yi/n = 0 and
∑n

i=1 xi/n = 0. We consider the case without covariates,611

since several methods are only applicable to the case without covariates.612

We rewrite data format as a design matrix. Denote Λ as n×p matrix each row contains subject613

i’s genotype xi = (xi1, ..., xip)
′ and Θ as n× k matrix each row of which consists of multiple traits614

Yi = (yi1, ..., yik)
′. Multivariate analysis can be derived form partitioning of the total sum of squares615

and cross products (SSCP) matrix, the inner product Θ
′
Θ. According to the multivariate linear616

model, Θ = ΛB + E, where B is the matrix of model parameters, E is the matrix of errors, the617

fitted value matrix is defined as Θ̂ = ΛB̂ = Λ(Λ
′
Λ)−1Λ

′
Θ = HΘ and the matrix of residuals is618

R= Θ− Θ̂ = (I−H)Θ, where H is a hat matrix.619

We define each covariance estimate as follows. Sx = 1
nΛ′Λ is a p × p covariance estimate for620

genotype scores xi = (xi1, ..., xip)
′, and Sy = 1

nΘ′Θ is a k×k covariance estimate among k multiple621

traits Yi = (yi1, ..., yik)
′. Syx = 1

nΘ′Λ and Sxy = 1
nΛ′Θ are covariance estimate between two sets of622

variable xi and Yi.623

tr(A) stands for sum of diagonal elements of a matrix A. vec(A) represents a linear transforma-624

tion which converts the matrix (A) into a column vector.625
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Appendix A SPUw(2, 2) and M-MeanStat; SPUw(∞, 1) and M-Max626

For each trait t and SNP j, their pairwise association is quantified by τjt =
∑n

i=1 xij(yit −627

ȳt) =
∑n

1 xijyit, which follows a normal distribution asymptotically with mean zero and variance628

var(τjt|yt) =
∑n

i=1 var(xij)y
2
it under the null hypothesis. Guo et al. (2015) defined the generalized629

Kendall’s tau statistic, Tjt = τ2
jtvar(τjt|yt)−1 ∼ χ2

1. Based on this, Guo et al. (2013) proposed630

M-MeanStat and M-MaxStat;631

M-MeanStat =
1

p

k∑
t=1

p∑
j=1

Tjt ∝
k∑
t=1

p∑
j=1

(
∑n

i=1 xijyit)
2∑n

i=1 var(xij)y2
it

≈
k∑
t=1

p∑
j=1

 ∑n
i=1 xijyit√∑n
i=1 x

2
ijy

2
it

2

,

M-MaxStat =
k∑
t=1

p
max
j=1

Tjt =

k∑
t=1

p
max
j=1

(
∑n

i=1 xijyit)
2∑n

i=1 var(xij)y2
it

≈
k∑
t=1

p
max
j=1

 ∑n
i=1 xijyit√∑n
i=1 x

2
ijy

2
it

2

. (7)

If a canonical link function and a working independence model are used in GEE, the test632

statistics of SPUw(2, 2) and SPUw(∞, 1) are defined by633

SPUw(2, 2) ∝
k∑
t=1

p∑
j=1

 ∑n
i=1 xijyit√∑n

i=1 x
2
ijvar(yit)

2

≈
k∑
t=1

p∑
j=1

 ∑n
i=1 xijyit√∑n
i=1 x

2
ijy

2
it

2

,

SPUw(∞, 1) ∝
k∑
t=1

p
max
j=1

∣∣∣∣∣∣
∑n

i=1 xijyit√∑n
i=1 x

2
ijvar(yit)

∣∣∣∣∣∣ ≈
k∑
t=1

p
max
j=1

 ∑n
i=1 xijyit√∑n
i=1 x

2
ijy

2
it

2

. (8)

Comparing the two sets of statistics in (7) and (8), we see that M-MeanStat and SPUw(2, 2), and634

M-Max and SPUw(∞, 1) are approximately equivalent respectively.635

Appendix B SPU(2,2) and MDMR636

Under the working independence model, the test statistic of SPU(2,2) is stated as637

SPU(2, 2) =

k∑
t=1

p∑
j=1

( n∑
i=1

xijyit
)2

= tr
(
Λ

′
ΘΘ

′
Λ
)

(9)

MDMR (Multivariate Distance Matrix Regression) is a nonparametric modification of traditional638

Fisher’s MANOVA (McArdle and Anderson, 2001). Wessel and Schork (2006) and Zapala and639

Schork (2012) introduced the method to applications in genetics and genomics. For single trait, it640
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is closely related to kernel methods (Schaid et al. 2005; Pan 2011).641

Suppose dij represents the distance between subject i and j; let A = (aij) = (−1/2 d2
ij) and G642

its centered version. An F-statistic can be constructed to test the hypothesis that the p regressor643

variables have no relationship to variation in the distance or dissimilarity of the n subjects reflected644

in the n× n distance/dissimilarity matrix. The psuedo F-statistics of MDMR is defined by645

F =
tr(HGH)

tr(I−H)G(I−H)

If the Euclidean distance (i.e. L2-norm) is used to construct the distance matrix G= ΘΘ′, the646

MDMR test statistic is defined as647

MDMR ∝ tr(HΘΘ′H)

tr(I−H)ΘΘ′(I−H)
∝ 1

tr
(
R

′
R
)
/tr
(
Θ̂′Θ̂

) ∝ 1

[tr
(
Θ̂′Θ̂

)
+ tr

(
R

′
R
)
]/tr
(
Θ̂′Θ̂

) =
tr
(
Θ̂

′
Θ̂
)

tr
(
Θ′Θ

)
As usual, permutations are used to calculate p-values. Then tr

(
Θ

′
Θ
)

is invariant across all permu-648

tations and can be ignored (Pan, 2011). The test statistic arrives at649

MDMR ∝ tr
(
Θ̂

′
Θ̂
)

= tr
(
Θ

′
Λ(Λ

′
Λ)−1Λ

′
Θ
)

= tr((Λ
′
Λ)−1Λ

′
ΘΘ

′
Λ
)

(10)

If we have a single SNP to be tested, i.e. Λ is an n × 1 matrix; the test statistic (10) reduces650

to MDMR ∝ m−1tr(Λ
′
ΘΘ

′
Λ
)
∝ tr(Λ

′
ΘΘ

′
Λ
)

with Λ
′
Λ = m. Hence, SPU(2, 2) and MDMR are651

equivalent for a single SNP and multiple traits, as established by Zhang et al (2014). However, for652

multiple SNPs and multiple traits, by comparing (9) and (10), we see that in general they are not653

equivalent.654

Appendix C SPU(2,2) and KMR655

With a working correlation matrix Rw in GEE, the SPU(2,2) test can be rewritten as656

SPU(2, 2) = tr
(
Λ

′
ΘR−1

w R−1
w Θ

′
Λ
)

= tr(R−1
w Θ

′
ΛΛ

′
ΘR−1

w ). (11)

Maity et al. (2012) introduced multivariate phenotype association analysis by SNP set- or gene-657

based kernel machine regression (KMR). The authors assumed that the phenotypes are correlated658
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while the individuals are independent. Suppose Ψ = (ψpq) is the true correlation matrix for k traits659

with p = 1, ..., k, and q = 1, ..., k. Define V0 = Ψ ⊗ In×n, and a kernel matrix Knk×nk. The score660

test under the null for KMR (Maity et al. 2012) is defined by661

KMR = vec(Θ)
′
V −1

0 K V −1
0 vec(Θ) = vec(Θ)

′
V −1

0 diag(K1, ...,Kk) V
−1

0 vec(Θ)

where each K1, ...,Kk is an n×n kernel matrix for each trait. Applying a linear kernel K1 =, ...,=662

Kk = ΛΛ
′

yields663

KMR = vec(Θ)
′
V −1

0

(
Ik×k ⊗ ΛΛ

′)
V −1

0 vec(Θ) = vec(ΘΨ−1)
′(
I ⊗ ΛΛ

′)
vec(ΘΨ−1)

= vec(ΘΨ−1)
′
vec(ΛΛ

′
ΘΨ−1) = tr(Ψ−1Θ

′
ΛΛ

′
ΘΨ−1). (12)

KMR (12) has the same test statistic as the GEE-SPU(2) test (11) if the working correlation Rw664

is the true correlation structure of Yi (i.e. Ψ = Rw = Corr(Yi|H0)).665

Appendix D GEE-Score test and MANOVA666

The GEE-Score test statistic with a working independence model in GEE is667

GEE-Score = vec(Λ
′
Θ)

′(
Sy ⊗ nSx

)−1
vec(Λ

′
Θ) = n vec(Sxy)

′(
S−1
y ⊗ S−1

x

)
vec(Sxy)

= n tr
(
S−1
y SyxS

−1
x Sxy

)
.

In MANOVA, a measure of the strength of association between Θ (multiple traits) and Λ668

(genotype scores) for the multivariate model Θ = ΛB + E depends on a partition of matrix of669

total SSCP i.e. Θ
′
Θ = Θ̂

′
Θ̂ + R

′
R (Haase, 2011). Considering the Pillai-Bartlett (PB) trace, the670

MANOVA test statistic is stated as tr
(
Θ̂

′
Θ̂(Θ

′
Θ)−1

)
= tr

(
Θ

′
Λ(Λ

′
Λ)−1Λ

′
Θ(Θ

′
Θ)−1

)
, which can be671

written in an alternate form tr
(
SyxS

−1
x SxyS

−1
y

)
= tr

(
S−1
y SyxS

−1
x Sxy

)
. Hence, the GEE-Score test672

and MANOVA using the PB trace are equivalent.673
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Table 1: P-values of the gene-based association tests for DMN with the ADNI-1 data.

GEE
Gene-region #SNPs Chr Position Score aSPUset aSPUset-Score MANOVA MDMR KMR MFLM

AMOTL1 6 11 94121155 94269566 1.18e0-4 1.0e-08 1.0e-08 7.73e-05 3.48e-07 0.451 7.73e-05
APOC1 4 19 50089760 50134446 6.14e-04 1.0e-08 1.0e-08 3.45e-04 4.42e-08 0.342 2.30e-04
APOE 6 19 50080878 50124490 1.27e-03 1.0e-08 1.0e-08 7.93e-04 2.21e-07 0.268 5.97e-04
TOMM40 10 19 50066316 50118786 0.023 1.0e-08 1.0e-08 1.86e-02 6.99e-06 0.569 1.04e-03

Table 2: P-values of the single SNP-based association tests for DMN for the significant gene-regions
(±20kb) with the ADNI-1 data.

GEE
Gene Chr aSPUset SNP Position Score SPU(2) SPU(∞) aSPU MANOVA MDMR

AMOTL1 11 1.0e-08 rs1367505 94186285 8.0e-05 2.4e-07 2.8e-05 5.1e-07 5.1e-05 2.1e-07
rs10501816 94187396 0.417 0.151 0.237 0.158 0.432 0.186
rs2033367 94195356 1.2e-04 8.0e-07 6.5e-05 1.6e-06 9.1e-05 3.01e-07
rs2241667 94203379 8.0e-04 1.6e-06 1.3e-04 3.9e-06 1.8e-04 8.0e-06
rs333027 94225561 5.0e-04 1.6e-05 9.5e-05 3.1e-05 4.6e-04 6.9e-05
rs333025 94227040 0.02 0.025 0.030 0.045 0.015 0.022

APOC1 19 1.0e-08 rs8106922 50093506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50100676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50106291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50103781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08

APOE 19 1.0e-08 rs157580 50087106 3.1e-03 1.4e-04 8.8e-04 9.0e-05 3.1e-03 3.9e-4
rs2075650 50087459 9.0e-04 3.8e-06 2.2e-03 1.2e-06 2.9e-04 1.5e-05
rs8106922 50093506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50100676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50106291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50103781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08

TOMM40 19 1.0e-08 rs2075642 50069307 0.842 0.711 0.471 0.629 0.840 0.662
rs387976 50070900 0.073 0.031 0.036 0.040 0.068 0.067
rs11667640 50071631 0.262 0.034 0.012 0.021 0.265 0.035
rs6859 50073874 0.728 0.076 0.299 0.057 0.729 0.072
rs157580 50087106 3.1e-03 1.4e-04 8.8e-04 9.0e-05 3.1e-03 3.9e-4
rs2075650 50087459 9.0e-04 3.8e-06 2.2e-03 1.2e-06 2.9e-04 1.5e-05
rs8106922 50093506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50100676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50106291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50103781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08
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Table 3: P-values of the gene-based association tests with the ADNI-GO/2 and ADNI-1/GO/2
data.

GEE
Data Gene-region #SNPs Chr Position Score aSPUset aSPUset-Score MANOVA MDMR MFLM

ADNI-GO/2 AMOTL1 13 11 94481507 94629918 0.723 0.896 0.940 0.698 0.716 0.638
APOE 13 19 45389277 45432652 0.083 0.042 0.056 0.097 0.366 0.974

ADNI-GO/2 with AMOTL1 6 11 - 0.639 0.552 0.576 0.638 0.918 0.638
identical SNP sets of ADNI-1 APOE 6 19 - 0.308 0.019 0.024 0.292 0.065 0.292

ADNI-1/GO/2 with AMOTL1 6 11 - 1.0e-08 1.0e-08 1.0e-08 1.0e-08 1.0e-08 1.0e-08
identical SNP sets of ADNI-1 APOE 6 19 - 1.0e-08 1.0e-08 4.45e-06 1.0e-08 1.0e-08 4.45e-06

Table 4: P-values of the gene-based tests for rare variant–DMN association with the ADNI se-
quencing data.

Filtering
criteria Gene-region # SNPs Chr Position aSPUset MANOVA MFLM

MAF< 0.05 AMOTL1 536 11 94481507 94629918 0.298 0.176 0.148
APOE 153 19 45389277 45432652 0.104 0.837 0.476

MAF< 0.01 AMOTL1 265 11 94481507 94629918 0.835 0.193 0.151
APOE 84 19 45389277 45432652 0.874 0.833 0.189
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Table 5: Simulation setup 1: Type I errors (φ = 0) and power (φ 6= 0) under varying genetic effect
sizes.

AMOTL1 (6 SNPs)

GEE
φ Score SPU(2,2) aSPUset aSPUset-Score MANOVA MDMR MFLM

0 0.0479 0.0528 0.0530 0.0522 0.0490 0.0353 0.0490
0.2 0.1078 0.1837 0.1659 0.1654 0.1128 0.0964 0.1128
0.3 0.2325 0.3494 0.3159 0.3328 0.2394 0.2135 0.2394
0.4 0.4657 0.5571 0.5079 0.5559 0.4764 0.4130 0.4764
0.5 0.7436 0.7614 0.7156 0.7967 0.7528 0.6607 0.7528
0.6 0.9288 0.9008 0.8722 0.9452 0.9341 0.8608 0.9341
0.7 0.9913 0.9677 0.9550 0.9926 0.9921 0.9611 0.9921

TOMM40 (10 SNPs)

GEE
φ Score SPU(2,2) aSPUset aSPUset-Score MANOVA MDMR MFLM

0 0.0488 0.0483 0.0482 0.0495 0.0505 0.0323 0.0532
0.2 0.1051 0.1719 0.1347 0.1369 0.1110 0.0903 0.1116
0.3 0.2177 0.3643 0.2763 0.2889 0.2262 0.2053 0.2169
0.4 0.4429 0.6121 0.5018 0.5330 0.4605 0.4246 0.4256
0.5 0.5800 0.7304 0.6231 0.6673 0.5958 0.5593 0.5664
0.6 0.7196 0.8271 0.7369 0.7904 0.7346 0.6885 0.7036
0.7 0.8405 0.8983 0.8293 0.8856 0.8489 0.8015 0.8231

Table 6: Simulation setup 2: power under varying sparsity levels of association pattern.

AMOTL1+ Null SNPs

# total # causal # null GEE
SNPs SNPs SNPs Score aSPUset aSPUset-Score MANOVA MDMR MFLM

6 6 0 0.7436 0.7156 0.7967 0.7528 0.6607 0.7528
12 6 6 0.5332 0.6495 0.6923 0.5427 0.4904 0.5228
18 6 12 0.4160 0.6149 0.6336 0.4291 0.3884 0.3882
30 6 24 0.2950 0.4495 0.4617 0.3055 0.2819 0.2872
60 6 54 0.1813 0.3120 0.3150 0.1981 0.1756 0.2124
80 6 74 0.1442 0.2912 0.2912 0.1661 0.1434 0.1697

Table 7: Mean computing times (in seconds) for simulation setup 2.

# total GEE
SNPs Score aSPUset aSPUset-Score MANOVA MDMR MFLM

12 1.1597 1.2472 1.6261 0.0149 24.2924 0.0354
18 1.3398 1.5062 2.2552 0.0156 22.2903 0.0385
30 2.2541 1.8766 3.7482 0.0172 21.5940 0.0449
60 6.5183 2.8785 11.1315 0.0211 19.3995 0.0612
80 11.8868 3.5546 20.4237 0.0243 18.4600 0.0722
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Figure 1: LocusZoom for two loci identified by aSPUset and MDMR: LD structure in each locus
and p-values obtained from the single SNP-based aSPU test are presented.
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Figure 2: P-values of the association tests for DMN and SNPs for genes AMOTL1 and APOE:
(a) univariate test for single SNP–single trait association; (b) aSPU test for single SNP–multitrait
association; (c) aSPUset for gene–multitrait association.
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