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Fractal analysis methods are used to quantify the complexity of the human cerebral cortex. Many recent
studies have focused on high resolution three-dimensional reconstructions of either the outer (pial) surface
of the brain or the junction between the gray and white matter, but ignore the structure between these
surfaces. This study uses a new method to incorporate the entire cortical thickness. Data were obtained from
the Alzheimer's Disease (AD) Neuroimaging Initiative database (Control N=35, Mild AD N=35). Image
segmentation was performed using a semi-automated analysis program. The fractal dimension of three
cortical models (the pial surface, gray/white surface and entire cortical ribbon) were calculated using a
custom cube-counting triangle-intersection algorithm. The fractal dimension of the cortical ribbon showed
highly significant differences between control and AD subjects (pb0.001). The inner surface analysis also
found smaller but significant differences (pb0.05). The pial surface dimensionality was not significantly
different between the two groups. All three models had a significant positive correlation with the cortical
gyrification index (rN0.55, pb0.001). Only the cortical ribbon had a significant correlation with cortical
thickness (r=0.832, pb0.001) and the Alzheimer's Disease Assessment Scale cognitive battery (r=−0.513,
p=0.002). The cortical ribbon dimensionality showed a larger effect size (d=1.12) in separating control and
mild AD subjects than cortical thickness (d=1.01) or gyrification index (d=0.84). The methodological
change shown in this paper may allow for further clinical application of cortical fractal dimension as a
biomarker for structural changes that accrue with neurodegenerative diseases.
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Introduction

Neuroimaging studies in recent years have highlighted the numer-
ous important properties of the human cerebral cortex. One of themore
interesting characteristics of the cortex is that it displays fractal
properties (i.e. statistical similarity in shape) over a range of spatial
scales (Bullmore et al., 1994; Free et al., 1996; Im et al., 2006; Jiang et al.,
2008; Kiselev et al., 2003; Lee et al., 2004;Majumdar and Prasad, 1988).
These fractal properties arise secondary to the folding of the cortex
(Hofman, 1991). The complexity of the brain can be quantified by a
numerical value known as fractal dimension (Mandelbrot, 1977, 1982).
The underlying cerebral white matter, as well as the cerebellum and
supporting white matter tracts, are amenable to study using fractal
approaches (Esteban et al., 2007; Liu et al., 2003;Wu et al., 2010; Zhang
et al., 2006a; Zhang et al., 2006b). This approach has been used to study
gender differences (Luders et al., 2004), epilepsy (Cook et al., 1995),
schizophrenia (Casanova et al., 1989; Casanova et al., 1990; Ha et al.,
2005; Narr et al., 2004; Sandu et al., 2008), stroke (Zhang et al., 2008),
multiple sclerosis (Esteban et al., 2009), cortical development (Blanton
et al., 2001; Thompson et al., 2005; Wu et al., 2009), cerebellar
degeneration (Wu et al., 2010) and Alzheimer's disease (King et al.,
2009).

There are many methods for computing the fractal dimension of
the cerebral cortex. Initial studies used discontinuous voxel-based
images as the basis for the fractal analysis. With the advancement of
surface-based reconstructions over the past 10 years, it is now
possible to semi-automatically generate three-dimensional continu-
ous tessellated polygon models of the inner and outer cortical surface.
These surface reconstructions offer sub-millimeter resolution, and are
ideal targets for shape analysis (Im et al., 2006; Jiang et al., 2008;
Luders et al., 2004).

Two recent studies using three-dimensional cortical surface
reconstructions have documented the correlation between fractal
dimension and other features of shape including folding area, sulcal
depth, cortical thickness, and curvature (Im et al., 2006; Jiang et al.,
2008). These studies found a strong positive correlation with the
folding measures, but a weak negative correlation with cortical
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Fig. 1. Example source data and resulting 3D surface models. (Left column) MP-RAGE
image from a control subject in the ADNI database. The upper image is an axial section
through the mid-thalamus. The lower panel shows a 3D reconstruction of the MP-RAGE
generated using the Osirix 3D viewer (Rosset et al., 2004). (Right Column) The
corresponding 3D surface models are shown. The outer edge of the pial surface is
colored red, and the inside edge of the gray/white surface is colored blue. The edges
between the pial and gray/white surface are both shown in gray. The slab shown in the
upper panel is ∼5 mm thick. The ribbon appears wavy because the cortex has a high
degree of curvature. The lower panel shows an oblique slice of both 3D surface models.
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thickness. In these studies, an infinitely thin surface model (the pial
surface of the cortex) was used as the basis for the complexity
measurement. The thickness of the cortex was not felt to have a
significant influence on the fractal assessment of the cortical shape.
However, other work using two-dimensional profiles of the cortical
ribbon derived from the three-dimensional surface reconstructions
demonstrated a strong positive correlation between fractal dimension
and cortical thickness as well as gyrification index (King et al., 2009).
Thus, neurodegenerative changes that decrease both cortical thick-
ness and gyrification index have complementary effects. Methods that
directly incorporate cortical thickness into the fractal complexity
measure may be more sensitive for detecting shape changes that
result from neurodegeneration.

The purpose of this paper is to describe a robust method for
computing the fractal dimension of the cortical ribbon (e.g. the cortical
surfaces and the structure between them). The fractal properties of the
cortical ribbon will be compared with that of the pial surface as well as
the surface reconstruction of the interface between the graymatter and
the white matter (gray/white junction). We will compare the clinical
utility of the cortical ribbon to the pial and gray/white surfaces in terms
of capturing atrophic changes that occur with Alzheimer's disease. We
then compare the cortical ribbon directly to cortical thickness and
gyrification index measures. We hypothesize that fractal analysis of the
cortical ribbon will be superior to analysis of either the pial or gray/
white surfaces because this analyses will directly incorporate cortical
thickness, which is known to be strongly affected by Alzheimer's
disease. Furthermore, the fractal dimension of the cortical ribbon will
have a greater distinction (as measured by effect size) between normal
controls and mild Alzheimer's disease patients compared to cortical
thickness or gyrification index measures.

Methods and materials

Source data

The data used in this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.
edu/ADNI). The ADNI project was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
by private pharmaceutical companies, and by non-profit organiza-
tions, as a $60 million, 5 year public–private partnership. The primary
goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD). Anatomic data was
obtained using the MP RAGE sequence (magnetization-prepared
180° radio-frequency pulses and rapid gradient-echo). The para-
meters are: axial orientation, 6.4 ms TR, 4.4 ms TE, 12o FA, 49.9 kHz
BW (195 Hz/px), 24×19.2 cm FOV, 256×192 matrix, 124 contiguous
partitions, each 1.2 mm in thickness. The inversion time (TI) and the
delay time (TD) are 1000 and 500 ms respectively. For up-to-date
information see www.adni-info.org.

MP-RAGE Images from 70 patients (39 males, 31 females)
were selected from the on-line database. There were 35 control subjects
(75.0±5.0 years old, Clinical Dementia Rating score=0) and35 subjects
with mild Alzheimer's disease (75.4±7.1 years old, Clinical Dementia
Rating score=1–2). The ages were not statistically different between
groups (p=0.798). Two patients in the mild Alzheimer's disease group
weremissing data from the ADAS-cog test at the time of data download.

Segmentation procedure

Images segmentation was performed using FreeSurfer. This semi-
automated software suite has been described in detail in prior
publications (Dale et al., 1999; Fischl et al., 2001; Fischl et al., 2002;
Fischl et al., 1999; Fischl et al., 2004; Han et al., 2006; Jovicich et al.,
2006; Segonne et al., 2007). Please refer to these publications for full
details of the parameters used in the segmentation process. Briefly,
processing the images occurred in several steps automatically through
the FreeSurfer suite. The original images were converted from the
DICOM format into a single file with all images from a particular scan
protocol. Following motion correction and intensity normalization,
extracerebral voxels were removed, using a “skull-stripping” proce-
dure. Head position was normalized along the commissural axis, and
then cortical regions were labeled using an automated procedure. A
preliminary segmentation of the gray matter from the white matter
was generated based on intensity differences and geometric structure
differences in the gray/white junction (Fischl and Dale, 2000). The
pial surface was generated using outward deformation of the gray/
white surface with a second-order smoothness constraint (Dale et al.,
1999; Fischl and Dale, 2000). The smoothness constraint allowed the
pial surface to be extended into otherwise ambiguous areas. The
resulting surfaces have sub-voxel accuracy. Examples of the 3D
surface reconstruction of the pial and gray/white surfaces are shown
in Fig. 1. Cortical thickness measurements are generated during the
segmentation and surface generation process. FreeSurfer was also
used to calculate the gyrification index of each hemisphere.
Computing the fractal dimension of the cortical surfaces

The fractal dimension (f3D) of the cortical surfaces was computed
using a 3D cube-counting algorithm. This algorithm has been used by
several previous investigators (Im et al., 2006; Jiang et al., 2008), and
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has been found to be a robust and accurate method of computing
cortical complexity (Jiang et al., 2008). The implementation of this
algorithm is very similar to Jiang et al. (2008). In brief, each 3D surface
is composed of tessellated triangles (∼200,000 per hemisphere). The
intersection of each triangle (including the edges) with a cube matrix
covering the entire brain is computed using standard geometry. Each
cube is counted only once, resulting in a cube count of the total
number of intersections. This process is shown in Fig. 2. The cube size
is then changed, and the intersection computation is repeated. f3D is
computed as the change in the log of the cube count divided by the
change in the log of the cube size (see Eq. (1)).

f3D = −Δ logðcubecountÞ
Δ logðcubesizeÞ ð1Þ

Natural objects, such as the cerebral cortex, only possess fractal
properties over a limited spatial scale. The range over which the fractal
analysis is valid can be determined by measuring the consistency (scale
invariance) in the cube count/size slope (Zhang et al., 2006b). Using a
point-to-point slope cutoff of 0.1, theminimum spatial scale for all three
cortical models (cortical ribbon, pial surface, and gray/white surface)
was 0.5 mm. The upper range for all three cortical models was set to
15 mm, as this was the value identified in the vast majority of subjects.
There was no difference in the spatial ranges determined for the three
cortical models. Although still highly linear, both the pial surface and
gray/white surface were less stable in terms of point-to-point slope
compared to the cortical ribbon. The coefficient of determination (R2) for
the resulting regression lines were as follows: cortical ribbonN0.9999,
pial surfaceN0.9984, gray/white surfaceN0.9979. Please see King et al.
(2009) for a graphical representation of this process.

This algorithm was implemented using a custom built software
program called the Cortical Complexity Calculator (C3). C3 was written
on Mac OS X (10.5) using the XCode environment in Objective C with
graphic implementation using OpenGL. The software directly reads the
FreeSurfer surface files and performs the cube counting and regression
calculations from native-space image data.
Fig. 2. 3D cube/surface intersections. A. The upper panel shows the left hemisphere pial su
displayed. B. Example of the intersection of a triangle with a lattice of cubes. Intersections ar
side or a vertex). C. An example tiling of cubes over the pial surface.
Analyzing the cortical ribbon by generating intermediate surfaces

While the inner and outer cortical surfaces are represented by
physical models, there is no actual model of the space between these
surfaces generated by FreeSurfer. Without an extra step, many cubes
between the surfaces would go uncounted. The number of intersect-
ing cubes contained between the pial and gray/white surfaces
increases exponentially as the cube size decreases. While it is possible
to compute these intersections using vectors normal to each surface,
there is no way to assure every box is counted. Instead, we solve this
intersection problem by generating dynamic intermediate surfaces.
We take advantage of the fact that the pial surface is itself a derivative
of the initial gray/white segmentation. There is an exact 1:1
correspondence of vertices between these two surfaces. Note that
the distance between the two surfaces is not uniform, but is in fact
determined by the cortical thickness. The cortical thickness can range
from 0 (in non-cortical sections of the surface, such as arbitrary
triangles generated in the midline; these triangles are removed prior
to fractal analysis) to a maximum thickness ∼5 mm.

An intermediate surface can be generated by moving each vertex
of gray/white surface a predetermined percent distance along a
vector between the corresponding vertices of the pial and gray/white
surfaces. In regions of higher cortical thickness, this distance is larger
than in thinner regions. The number of surfaces needed to assure that
no fractal counting cubes are missed can be computed exactly as the
maximum cortical thickness divided by the cube size. The intersection
of these intermediate surfaces and the counting cubes can be
computed using the same algorithm with the pial and gray/white
surfaces. See Fig. 3 for a graphic representation of this process.
Statistical analysis

Group differences were computed using two sided t-tests and
effect sizes were computed using Cohen's d statistic. Regression
coefficients were computed using the least squares method. All
analyses were performed using statistical functions within Microsoft
Excel 2008 for Mac Version 12.2.4.
rface from a healthy control subject. A section is magnified with the triangular mesh
e computed for each side of the triangle (which will count cubes that intersect either a
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Fig. 3. Intermediate surfaces capture cubes between the pial and gray/white surfaces. A–C. Simplified 2D projections are shown for the pial (red solid line), gray/white (blue dashed
line) and intermediate (dash-dot line) surfaces. The cubes that intersect the surfaces are filled in gray, while non-intersecting cubes are left unfilled. B. When the cubes are large, no
intermediate surfaces are needed. C. As the cube size decreases, more intermediate surfaces are needed to capture all the cubes located between the pial and gray/white surfaces. The
left column shows the cube–cortex intersections without the intermediate surface, while the right column shows the intersections with intermediate surfaces. D. Intermediate
surfaces can be generated dynamically as needed. Each point in the intermediate surface lies on a vector between corresponding vertices in the pial and gray/white surfaces. The
percent distance along the vector determines the image. The pial surface is shown in red, and the gray/white surface is blue. The gray surfaces represent intermediate surfaces 25%,
50%, and 75% of the way between the bounding surfaces.
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Approach

In this study, the f3D of the pial surface, gray/white surface, and
cortical ribbon were calculated, and the ability to distinguish control
subjects from those with ADwere computed. The three cortical models
were then regressed against the cortical thickness, gyrification index,
and ADAS-cog scores. The cortical thickness values and gyrification
index valueswere also regressed against the ADAS-cog scores aswell as
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Table 1
Summary of clinical data and computed values. This table shows the values of age, gender, cortical ribbon f3D, pial surface f3D, gray/white surface f3D, average cortical thickness,
gyrification index and ADAS-cog score. Two subjects in the mild AD group did not have ADAS-cog scores available at the time of data download. Age and gender are not significantly
different between the two groups.

Age Sex Cortical ribbon f3d Pial surface f3d Gray/white surface f3d Cortical thickness Gyrification index ADAS-cog score

Control group 63 M 2.644 2.215 2.233 2.489 2.828 8.0
66 M 2.611 2.207 2.234 2.215 2.616 14.3
70 M 2.609 2.208 2.215 2.292 2.626 5.3
70 M 2.583 2.213 2.234 1.987 2.715 1.0
70 F 2.631 2.215 2.216 2.445 2.683 3.0
70 M 2.634 2.231 2.228 2.305 2.917 15.0
71 F 2.645 2.229 2.226 2.431 2.835 4.7
71 M 2.590 2.212 2.221 2.072 2.630 10.3
71 M 2.629 2.215 2.215 2.411 2.767 7.3
72 F 2.648 2.214 2.228 2.547 2.701 13.0
72 F 2.631 2.210 2.224 2.412 2.763 19.7
73 F 2.630 2.221 2.211 2.415 2.718 2.7
73 M 2.628 2.217 2.228 2.350 2.792 7.0
73 M 2.606 2.208 2.227 2.205 2.667 15.0
73 M 2.617 2.206 2.203 2.413 2.628 12.0
74 M 2.619 2.212 2.216 2.313 2.683 14.7
74 F 2.604 2.208 2.219 2.183 2.743 3.3
74 M 2.629 2.215 2.216 2.419 2.737 10.3
75 M 2.615 2.202 2.213 2.356 2.640 13.0
76 F 2.626 2.220 2.231 2.311 2.716 9.3
77 M 2.617 2.213 2.214 2.337 2.769 7.3
77 M 2.612 2.226 2.226 2.160 2.803 14.3
78 M 2.627 2.217 2.227 2.375 2.730 5.3
78 M 2.628 2.221 2.216 2.387 2.760 11.0
78 F 2.603 2.220 2.235 2.083 2.681 10.3
78 M 2.601 2.197 2.210 2.277 2.670 8.0
78 M 2.625 2.206 2.215 2.428 2.778 8.0
79 M 2.595 2.210 2.208 2.210 2.605 7.0
80 M 2.614 2.232 2.233 2.106 2.866 11.0
80 F 2.619 2.217 2.215 2.321 2.686 10.7
80 F 2.614 2.205 2.204 2.395 2.555 5.3
81 F 2.623 2.226 2.228 2.261 2.670 7.3
81 F 2.628 2.209 2.223 2.433 2.621 7.0
85 M 2.572 2.197 2.205 2.050 2.564 6.7
85 M 2.625 2.198 2.181 2.615 2.533 14.7

Mild AD group 59 F 2.621 2.226 2.226 2.251 2.715 21.3
60 M 2.603 2.209 2.204 2.315 2.544 *
64 M 2.559 2.199 2.211 1.945 2.691 45.3
66 M 2.616 2.214 2.210 2.328 2.685 29.3
68 M 2.607 2.216 2.206 2.251 2.757 35.0
69 F 2.615 2.219 2.215 2.268 2.580 34.0
70 F 2.586 2.214 2.217 2.040 2.583 33.3
71 F 2.599 2.202 2.204 2.266 2.516 36.0
71 F 2.573 2.198 2.195 2.218 2.432 34.0
72 M 2.590 2.228 2.229 1.949 2.797 25.3
72 F 2.607 2.220 2.221 2.167 2.701 29.3
72 F 2.606 2.231 2.238 2.030 2.670 35.0
73 F 2.592 2.206 2.209 2.182 2.552 22.7
73 F 2.593 2.205 2.218 2.127 2.479 22.3
74 F 2.621 2.220 2.226 2.265 2.747 24.3
75 M 2.608 2.215 2.218 2.189 2.554 40.7
75 M 2.565 2.206 2.205 1.929 2.524 50.0
76 F 2.590 2.222 2.207 2.049 2.628 16.7
76 M 2.605 2.213 2.207 2.279 2.758 *
76 F 2.581 2.202 2.212 2.081 2.565 30.7
77 M 2.596 2.205 2.210 2.197 2.704 29.7
78 M 2.605 2.205 2.212 2.248 2.621 30.0
78 F 2.594 2.214 2.234 2.068 2.597 21.7
78 F 2.618 2.205 2.204 2.426 2.547 23.7
79 F 2.603 2.218 2.213 2.137 2.588 29.0
80 F 2.586 2.221 2.235 1.933 2.761 24.7
80 F 2.602 2.200 2.226 2.200 2.657 29.3
81 M 2.590 2.206 2.195 2.182 2.600 31.0
81 M 2.604 2.215 2.224 2.160 2.689 29.0
84 M 2.595 2.211 2.210 2.141 2.694 25.7
85 M 2.604 2.225 2.217 2.122 2.725 23.3
86 M 2.568 2.194 2.190 2.087 2.513 22.7
86 M 2.569 2.194 2.208 2.072 2.474 25.0
86 F 2.607 2.210 2.197 2.330 2.574 48.0
87 F 2.594 2.197 2.209 2.196 2.512 34.7
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each other (Table 1). Finally, the ability of the cortical ribbon to
distinguish control subjects from mild AD was compared to cortical
thickness and gyrification index measures.
Results

Comparing the three cortical models

There was no significant difference between the cortical f3D of men
and women in either the control group (p=0.56) or the mild
Alzheimer's disease group (p=0.72), although the women trended
slightly higher on average. Comparison of the f3D for control and AD
subjects using the three cortical models are shown in Fig. 4. For the
pial surface, there was no significant difference between the f3D of
control subjects and those with Alzheimer's disease (p=0.27, effect
size d=0.26). Fractal analysis of the gray/white junction did show a
group difference that reached statistical significance (pb0.05, effect
size d=0.53). When the cortical ribbon was used as the basis for the
f3D calculation, the group differences are highly significant (pb0.001,
effect size d=1.12).

For comparison to previous studies (Im et al., 2006; Jiang et al.,
2008), the correlation between f3D and both cortical thickness and
gyrification index (a measure of cortical folding) are shown in
Figs. 5A–B. As in the previous studies, the pial surface f3D showed a
strong positive correlation with gyrification index (r=0.679,
pb0.001) and essentially no correlation with cortical thickness (r=
−0.024, p=0.844). The f3D of the gray/white surface, which was not
assessed in the previous papers referenced above, showed a strong
positive correlation with gyrification index (r=0.586, pb0.001) and a
weak negative correlation with cortical thickness (r=−0.169,
p=0.168). The f3D of the cortical ribbon had a significant positive
correlation with both gyrification index (r=0.555, pb0.001) and
cortical thickness (r=0.832, pb0.001). Cortical thickness and
gyrification index are poorly correlated with each other (r=0.184,
p=0.128, data not shown).

In Fig. 5C, the correlation between cortical f3D and the Alzheimer's
Disease Assessment Scale-Cognitive (ADAS-cog) is shown. The ADAS-
cog is the most commonly used neuropsychiatric assessment battery
in clinical trials in Alzheimer's disease. The f3D of neither the pial
surface (r=−0.185, p=0.286) nor the gray/white surface (r=
−0.284, p=0.098) were significantly correlated to the ADAS-cog. The
Cortical Ribbon
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Fig. 4. Differences in fractal dimension between groups of normal subjects and patients
with mild Alzheimer's disease (AD) as measured on the pial surface, gray/white surface
and the cortical ribbon. The boxes show the median value as the thick black line, and
the upper and lower boundaries are the upper and lower quartile, respectively. Normal
subjects are in blue, while AD subjects are in red checkerboard. The pial and gray–white
surfaces use the left axis (range 2.20–2.25). Using the cortical ribbon results in a higher
value for the fractal dimension, as shown on the right axis (2.58–2.63). Analysis of the
cortical ribbon resulted in a much better separation between the two clinical groups.
f3D of the cortical ribbon did show a significant correlation with the
ADAS-cog (r=−0.513, p=0.002).

Comparing the cortical ribbon to cortical thickness and gyrification
index

There is a statistically significant difference in the value of both
cortical thickness (pb0.001, d=1.01) and gyrification index
(pb0.001, d=0.84) between the control group and the mild AD
group (see Fig. 6). Note that the effect sizes are larger for the cortical
ribbon f3D (pb0.001, effect size d=1.12). Just like the cortical ribbon
f3D (r=−0.513, p=0.002), the values of cortical thickness (r=
−0.441, p=0.008) and gyrification index (r=−0.418, p=0.012) are
negatively correlated with performance on the ADAS-cog (see Fig. 7).
ROCs for all the measures used in this paper are shown in Fig. 8. The
area-under-the-curve values are as follows: cortical ribbon f3D 0.837,
pial surface f3D 0.572, gray/white surface f3D 0.671, Cortical thickness
0.798, and Gyrification index 0.734.

Discussion

While all three cortical models have a significant correlation with
cortical folding (as measured by gyrification index), only the cortical
ribbon has a strong correlation with cortical thickness measurements.
Hence, known changes that occur in cortical thickness in Alzheimer's
disease would be missed by the pial and gray/white cortical models.
This likely accounts for much of the improved ability to discriminate
between clinical groups used in this paper. It also may explain why
the cortical ribbonwas the onlymodel to have a significant correlation
with the ADAS-cog. All three cortical measures we have analyzed
(cortical thickness, gyrification index and f3D of the cortical ribbon)
provided a significant difference between normal subjects and
patients, even though the greatest effect size was obtained using the
f3D of the cortical ribbon. In terms of separating controls frommild AD
patients, the area under the ROC analysis suggests that cortical ribbon
f3D is a “good” test, cortical thickness and gyrification index are “fair”
tests, gray/white surface f3D is a “poor” test, and pial surface f3D is a
“worthless” test.

Atrophic changes that occur on the pial surface could either increase
or decrease the complexity, depending on how the atrophy occurs. For
example, a change in the pial surface that decreased the folding area
would decrease complexity; conversely, if the change increased sulcal
depth, then the complexity would increase. Both types of changes are
noted on the brains used in this study. By using the cortical ribbon, the
conflicting effects on the pial surface are overcome by adding the
complementary effects of the cortical thickness changes while also
incorporating the structural changes occurring at the gray/white
junction.

Our results also corroborated the well established observation that
there are significant differences in the average cortical thickness of
control subjects compared to patients with mild Alzheimer's disease.
We also found that the gyrification index is also significantly different
between control and mild AD patients. To the best of our knowledge,
this effect has not been clearly documented in Alzheimer's disease.

The effect size using the cortical ribbon f3D was larger than either
using cortical thickness or using the gyrification index. Moreover, the
fractal analysis technique using the cortical ribbon is able to account
for more of the variance in the ADAS-cog scores than either the
cortical thickness or gyrification index measures. This improved
discrimination will likely be needed to correctly categorize less
clinically distinct cases (i.e. normal vs. mild cognitive impairment).

There are many other structural factors that likely influence the
cortical ribbon f3D. Atrophic changes that occur at the gray/white
junction are likely to be affected by volume change occurring in the sub-
corticalwhitematter, basal ganglia, and lateral ventricles. These changes
could be an important source of cortical fractal dimensionality change,

image of Fig.�4


Fig. 5. Correlations between the fractal dimension of the three cortical models and gyrification index, cortical thickness, and the ADAS-cog. A. Gyrification Index: All three models
have a significant correlation with the gyrification index, with the pial surface having the highest correlation. B. Cortical Thickness: The pial surface is uncorrelated, and the gray/
white surface has a trend towards a negative correlation. The ribbon has a strong positive correlation. C. ADAS-cog: Only the cortical ribbon shows a significant correlation with this
cognitive neuropsychologic battery of the Alzheimer's Disease Assessment Scale.
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and thus should not be removed in the context of this paper (e.g.
transforming images into a Talairach space, covariance). Further
exploration of the specific effects of changes in these volumetric factors,
along with other measures including normalized brain volume, age, or
normalized cortical surface area, on cortical f3D is needed.

The methods used in this paper take advantage of high-contrast
magnetic resonance imaging to generate high-resolution three-
dimensional continuous models of the cerebral cortex. This approach
has been used in several other recent studies of high resolution
models of the pial surface (Blanton et al., 2001; Im et al., 2006; Jiang
et al., 2008; Luders et al., 2004; Narr et al., 2004; Sandu et al., 2008;
Thompson et al., 2005) and gray/white junction surfaces (Sandu et al.,
2008). These surface based methods provide higher resolution data
than voxel-based masking methods. Consequently, using intermedi-
ate surfaces to generate fractal data from the entire cortical ribbon
generates a continuous 3D volume model that is more topologically
accurate than a gray matter voxel mask. Note that this limitation in
using the gray matter voxel-mask may eventually be overcome using
very high field (i.e. N7 T) high resolution images.

While this whole-brain fractal measure is quite promising, there are
several limitations to this analysis technique. First, the whole-brain
approach is generating an aggregate measure across the entire cerebral
cortex. However, the atrophic changes that occur in Alzheimer's disease
do not occur in all regions of the brain equally. There are also significant
regional variations in cortical f3D values (Jiang et al., 2008; King et al.,
2009). This technique could be improved by performing a more
localized analysis. This would be beneficial for several reasons. By
focusing on regions of interest, the discriminative power could be



Fig. 6. Differences in fractal dimension between groups of normal subjects and patients
with mild Alzheimer's disease (AD) as measured on by cortical thickness, gyrification
index, and the cortical ribbon fractal dimension. This figure uses the same conventions
as Fig. 4. All three measures generated a significant difference between the two groups
(pb0.001). The greatest effect size was generated using the cortical ribbon fractal
dimension.
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significantly increased. Furthermore, different neurodegenerative dis-
eases, such as Frontotemporal dementia and Dementia with Lewy
Bodies, have very different asymmetric patterns of cortical involvement.
Obtaining statistically normalized spatial maps will likely be needed to
perform a prospective categorization. Moreover, the significant global
atrophic changes associatedwith normal aging are not accounted for. In
this paper, age was averaged within the two groups. A better method
may utilize regression models to generate a map showing Z-scaled
significant deviations comparing subjects to age-matched controls.
These two methodological improvements are likely to greatly increase
the sensitivity and specificity of the fractal analysis technique.

Finally, it is likely that no single imaging biomarker will have
enough specificity and sensitivity for prospective diagnosis. Therefore,
having as many complementary biomarkers as possible will aid in
prospective categorization. Cortical f3D could serve as an important
adjunct to currently used imaging markers such as volumetric
assessments (i.e. hippocampal volume, lateral ventricle volume),
functional measures (i.e. Fluoro-deoxyglucose Positron emission
tomography, functional magnetic resonance imaging), and direct
amyloid binding agents (i.e. Pittsburg Compound B, AV45).
Fig. 7. Correlations between the ADAS-cog and cortical thickness, gyrification index, and the
have a significant negative correlation with the ADAS-cog scores. The correlation coefficien
Conclusion

This study demonstrates the potential of using the f3D of the
cerebral cortical ribbon as a quantitative marker of cerebral cortex
structure in mild Alzheimer's disease. The results of this paper suggest
that studies of cerebral cortex f3D may benefit from adapting their
techniques to include analysis of the entire cortical ribbon. It is our
hope that with continued development, fractal analysis methods will
find a place alongside currently used morphometric and functional
measures to help us provide better care for our patients suffering with
neurodegenerative diseases.
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Fig. 8. Receiver Operator Curve (ROC) characteristics. ROCs indicating sensitivity and specificity separating control subject from AD subjects for each of the measures are shown.
Areas under the curve values are included in the figure legend. Left—Cortical Models: The curves for cortical ribbon f3D, pial surface f3D and gray/white surface f3D. Right—Cortical
Metrics: The curves for cortical ribbon f3D, cortical thickness, and gyrification index. The cortical ribbon f3D has the highest AUC of all measures used in this paper.
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