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Abstract. Manually annotating images for multi-atlas segmentation
is an expensive and often limiting factor in reliable automated
segmentation of large databases. Segmentation methods requiring only
a proportion of each atlas image to be labelled could potentially reduce
the workload on expert raters tasked with labelling images. However,
exploiting such a database of partially labelled atlases is not possible
with state-of-the-art multi-atlas segmentation methods. In this paper we
revisit the problem of multi-atlas segmentation and formulate its solu-
tion in terms of graph-labelling. Our graphical approach uses a Markov
Random Field (MRF) formulation of the problem and constructs a graph
connecting atlases and the target image. This provides a unifying frame-
work for label propagation. More importantly, the proposed method can
be used for segmentation using only partially labelled atlases. We further-
more provide an extension to an existing continuous MRF optimisation
method to solve the proposed problem formulation. We show that the
proposed method, applied to hippocampal segmentation of 202 subjects
from the ADNI database, remains robust and accurate even when the
proportion of manually labelled slices in the atlases is reduced to 20 %.

1 Introduction

In recent years, major efforts have been undertaken towards building large med-
ical image databases, e.g. in population studies. As the wealth of data increases,
automated segmentation of images becomes crucial while manually annotating
them becomes prohibitive. In particular, robust and accurate segmentation tech-
niques relying on minimal manual input become increasingly desirable.

Atlas-based segmentation has proven to be a successful and robust tool for
a number of applications. Many of these techniques [1,2,7] rely on label prop-
agation from multiple suitable atlases after non-linear registration to a target
image. The target segmentation can be formed by label fusion of the propagated
labels, for example by applying a majority vote rule [1,7] or another combination
strategy such as a weighted average based on global or local similarity measures
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between the target and atlas images [2]. Other combination strategies include
STAPLE [20], where label fusion weights are estimated with an Expectation-
Minimisation algorithm, or Joint Label Fusion [19], where correlations among
atlases are taken into account. To account for high local anatomical variability
between images, patch-based segmentation [5,17] has been introduced, where the
label fusion step employs a non-local weighted average of voxel labels in a small
neighbourhood of the atlas images, with weights based on the similarities of
patches centred on the compared voxels. Considerable improvements to results
obtained with label propagation can be achieved by using the label propagation
results as prior probabilities in subsequent refinement steps, combining them
with regularisation terms and an intensity model in a Markov Random Field
(MRF) formulation [11–13]. It has been shown that in general, segmentation
accuracy decreases when fewer [7] or less suitable [1] atlases are used.

All of the above methods rely on the availability of fully annotated atlas data.
However, segmentation methods requiring only a proportion of each atlas image
to be labelled (while no knowledge is necessary about the remaining voxels) could
reduce the workload of raters who manually label these atlases. [9] proposed an
extension to STAPLE [20] which, to our knowledge, is the only existing multi-
atlas segmentation method that uses partially annotated atlas data. However,
partial annotations have been used in the context of interactive segmentation.
In [4], regions of an image were manually labelled to enable automated segmen-
tation of the remaining image. In particular, an MRF energy function [10] was
formulated on a graph constructed on the regular image grid in which annotated
voxels are connected to virtual terminal nodes with infinite weights. The MRF
energy minimisation problem was efficiently solved by finding a min-cut/max-
flow on the graph with graph-cuts [4]. An iterative graph-cuts approach [16] has
been proposed to reduce user interaction compared to [4].

Some applications of graph-cuts employ MRF energy functions that have
been formulated for labelling on graphs connecting more than one image.
Recently, [6] applied graph-cuts for tumor segmentation based on PET and CT
image pairs by minimising an MRF energy function which penalises segmenta-
tion differences between a PET and CT image of the same subject. [15] proposed
a prostate segmentation algorithm in which multiple 2D slices were extracted
from a 3D image at different angles. Exploiting axial symmetry, the 2D slices
were simultaneously segmented using a max-flow algorithm which penalised
segmentation differences between slices at similar angles. The max-flow algo-
rithm they used is an extension of the recently proposed Continuous Max-Flow
(CMF), which solves a continuous counterpart to the discrete min-cut/max-
flow problem [21]. CMF can be computed using a reliable, highly parallelisable
multiplier-based algorithm with guaranteed convergence, making it suitable for
the optimisation of large labelling problems in parallel computing environments.

Combining aspects of multi-atlas segmentation with recent developments in
min-cut/max-flow methods [15,21], and with the goal of successfully exploiting
partially labelled images for segmentation, we propose a segmentation framework
incorporating three novel contributions:
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1. We revisit the labelling problem in existing multi-atlas segmentation methods
and express the solution in terms of labelling a graph which connects the
target and atlas images. We formulate an MRF energy function on this graph
and show analytically that its solution is equivalent to existing multi-atlas
segmentation methods [2,7]. We then show how spatial regularisation and
intensity models [11] can be readily incorporated in the proposed formulation.

2. We provide a generalisation of the Continuous Max-Flow algorithm which can
efficiently minimise energy functions on graphs connecting multiple images.
The proposed generalised CMF is applied to the graph labelling problem
formulated here. However, as it is highly parallelisable, its scalability to large
graphs could make it useful for solving large-scale MRF frameworks beyond
the scope of this work.

3. We show that the proposed method can provide automated segmentations
using partially annotated atlas data. To evaluate the method, we apply it to
hippocampal segmentation in 202 Magnetic Resonance (MR) images of the
ADNI database and investigate its performance under varying proportions of
labelled voxels per atlas image.

2 Method

In the following sections, we revisit multi-atlas segmentation (Sect. 2.1) and show
how it can be viewed as a labelling problem on a graph connecting atlases and
the target image (Sect. 2.2). In Sect. 2.3 we discuss extensions to the proposed
MRF energy function to integrate label propagation, regularisation, as well as
intensity models into a single comprehensive framework. Furthermore, we show
how the proposed methodology can be applied to segmentation problems where
only partially annotated atlas data are available (Sect. 2.4). The optimisation of
the proposed energy function is discussed in Sect. 2.5.

2.1 Multi-atlas Label Propagation

For multi-atlas segmentation [2,7] using R images, all atlas images j ∈ {1, . . . , R}
are registered to the target image i. For convenience we assume i = R + 1. The
label maps lj associated with the atlas images j are then propagated to the
target. Figure 1a shows an example atlas set with corresponding label maps, and
an unlabelled target image. Each voxel x ∈ Ω in the target image i is labelled
using some combination strategy, e.g. a weighted average of atlas labels lj(x):

li(x) = arg max
L

R∑

j=1

βij(x)δ(lj(x) = L) (1)

Here δ(.) is an indicator function. The weights βij(x) can be uniform (which is
equivalent to a majority vote rule) or based on global or local similarity measures
between images i and j. Suitable measures were investigated in [2].
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(a) Images and label maps (b) Multi-atlas segmentation (MAS)

Fig. 1. (a) An example dataset with an unlabelled target image on the left, atlas
images and corresponding manual annotations (blue and red depict different labels) on
the right. (b) In MAS, each voxel x in target image i is labelled by label propagation
from atlases j ∈ {1, . . . , R} with fusion weights βij(x). This can also be interpreted as
a graph labelling problem, where atlas voxels are connected to the terminal nodes with
infinitely weighted edges (Color figure online).

2.2 Reformulation as a Graph Labelling Problem

As an alternative perspective, we can construct a graph to model the relation-
ship of shared information between the atlases and the target. According to the
above labelling scenario, this graph connects each voxel x in the target image
i to the corresponding voxels in the atlas images j with an edge weighted by
βij(x). Figure 1b visualises this configuration. To find a labelling on the graph,
we can formulate a potential function V that penalises conflicting labels in voxels
connected by a high weight βij(x), e.g.

V (li(x), lj(x)) = βij(x)δ(lj(x) �= li(x)) (2)

This assigns a high penalty when the target and atlas labels differ and the atlas
is considered similar to the target i, as defined by the similarity measure βij(x).
In the case of a majority vote, the weights are uniform, e.g. βij(x) = 1. The cost
for labelling an individual voxel x in image i can then be calculated as follows:

Epropagation (li(x)) =
R∑

j=1

V (li(x), lj(x)) (3)

=
R∑

j=1

βij(x)δ(lj(x) �= li(x)) (4)

=
R∑

j=1

βij(x) −
R∑

j=1

βij(x)δ(lj(x) = li(x)) (5)
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In this formulation the labels in the atlases are fixed. This is achieved by assign-
ing infinite unary potentials to the atlas voxels (visualised as infinitely weighted
edges to the terminal nodes in Fig. 1b for the binary case). Voxels in the target
image are assumed to be conditionally independent since spatially neighbouring
voxels in the target image are not connected in the graph (in contrast to the
setting for regularisation in many vision problems [10]). The optimal label can
therefore be found by minimising Epropagation (li(x)) independently for all voxels:

li(x) = arg min
L

Epropagation (li(x) = L) (6)

= arg min
L

−
R∑

j=1

βij(x)δ(lj(x) = L) (7)

= arg max
L

R∑

j=1

βij(x)δ(lj(x) = L), (8)

which leads to the same result as the vote rule in Eq. 1. This demonstrates
that multi-atlas segmentation can be expressed in terms of a graph optimisation
problem. It is important to note that patch-based segmentation (PBS [5,17]) can
also be expressed in this framework. In this case we can use a slightly different
graph structure as the label fusion step in PBS takes into account multiple voxels
in a neighbourhood of x in each atlas instead of just one voxel at location x.

While this alternative problem formulation does not provide any immediate
benefits over traditional multi-atlas segmentation in itself (because it is equiv-
alent), it has two advantages: (1) it allows easy integration of additional com-
ponents and therefore provides a unifying reformulation for existing multi-atlas
segmentation methods, as shown in Sect. 2.3 and (2) the graphical approach
extends to segmentation using partially annotated atlases (Sect. 2.4).

2.3 Unified Label Propagation Framework

As we are interpreting the whole dataset, comprising target and atlas images,
as one graph satisfying Markov properties, we can assign unary potentials (data
terms) to each voxel in all images, and pairwise potentials to each pair of vox-
els [10]. In the previous section, we proposed assigning pairwise potentials between
target and atlas voxels for label propagation. In addition, we assigned infinite
unary potentials to the atlas voxels since their labels are fixed. It is important
to note that a data term can be specified for the target image as well, using prior
probabilities, intensity models of the data, or a combination of both. Lastly, we
can incorporate spatial regularisation with pairwise potentials between adjacent
voxels within an image. The propagation, data, and regularisation terms can be
combined to a comprehensive labelling energy function on the whole graph:

E(l) = Edata(l) + Eregularisation(l) + Epropagation(l) (9)

As mentioned in the introduction, many existing multi-atlas segmentation meth-
ods (e.g. [11,13]) use an MRF formulation to improve label propagation results
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(a) Graph configuration A (b) Graph configuration B

Fig. 2. Graph connections with partially annotated atlas data (blue and red depict
different labels), based on the example dataset of Fig. 1a. Voxels with missing labels
(white) are disconnected from terminal nodes. Spatial regularisation is enabled in all
images. (a) Voxels at each location x in the target image are connected to voxels in
atlases j. (b) Additionally, atlas voxels are connected to voxels in other atlases (Color
figure online).

with the benefits of regularisation and intensity data models. However, these
approaches use probabilistic label propagation results as prior probabilities (i.e.
unary potentials) in a subsequent refinement step, therefore adding the MRF
optimisation as a separate post-processing step. The above comprehensive formu-
lation treats label propagation as part of the optimisation process, and therefore
unifies all the components within a single framework. Using the above general
formulation, it is possible to open-up a new field of applications, namely seg-
mentation using partially annotated atlas data.

2.4 Segmentation Using Partially Annotated Atlas Data

In the graph setting proposed in the previous sections, an atlas label is charac-
terised by an infinitely weighted connection to a terminal node. For a partially
annotated atlas image, unlabelled voxels may simply be disconnected from the
terminal nodes. In a multi-atlas segmentation problem as described by Fig. 1b,
this translates to a segmentation based only on the available labels. In this case,
however, there is no guarantee that each location in the target image can be seg-
mented (depending on the extent of missing labels in the atlases at specific voxel
locations), and performance is degraded for low proportions of labelled voxels.
We therefore propose the following two graph configurations (Fig. 2): (A) Labels
are propagated from atlases to the target, i.e. label propagation edges βij(x) are
used as in the multi-atlas segmentation case. Additionally, spatial regularisation
is used in all images so that labels may be shared between similar regions with
labelled and unlabelled voxels, and which can then be propagated to the tar-
get image. (B) Instead of only propagating labels between target and atlases,
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atlas images are also interconnected. This serves to facilitate the propagation,
especially when manual labels are very scarce.

2.5 Optimisation

It has been shown that MRF energy functions consisting of unary and pair-
wise terms can be minimised using min-cut/max-flow approaches if the pair-
wise terms are metric or semi-metric [3], yielding globally optimal results for
binary labelling problems and approximately globally optimal results for multi-
ple labels [3]. Recently, [21] proposed a continuous max-flow (CMF) algorithm
in the 2D or 3D domain (i.e. a single image) which is highly parallelisable in
contrast to discrete graph-based methods [21]. As the proposed energy function
can be optimised for a large graph consisting of voxels in all images and their
interactions, this approach was used and extended for graphs between multiple
images.

Analogous to discrete max-flow approaches, the energy function on the graph
can be minimised by maximising a source flow ps through the network, subject
to flow conservation and capacity constraints on the edges. In the original CMF
algorithm [21], spatial flows p = [px, py, pz]T exist between adjacent voxels in the
image domain Ω (for regularisation) and source and sink flows ps,t between voxels
and terminal nodes. The optimisation is performed with a variational approach
by introducing a Lagrange multiplier u(x) to incorporate the constraints [21].
It has been shown that the resulting u(x) corresponds to the globally optimal
labelling [21]. While CMF has been extended to multi-label segmentation prob-
lems [22], we restrict the scope of this paper to binary labelling problems.

In the following, we propose a generalisation of CMF from a single image
to an arbitrary configuration of interconnected images to account for any user-
defined choice of inter-image relationships βij(x). Figure 3 shows the capacity
constraints and introduces the notation for inter-image flows rij(x) (for label
propagation), spatial flows pi(x) (for regularisation) and terminal flows ps,t

i (x)
(for unary priors). The notation is similar to [15], where inter-image constraints
were used in a different context. To satisfy flow conservation, the sum of all in-

Fig. 3. Notation for flow constraints βij(x), Cs,t
i (x), αi(x) for propagation, data term

and regularisation, and corresponding inter-image flows rij(x), source and sink flows
ps,t
i (x) and spatial flows pi(x) at location x in image i.
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and outgoing flows ρi(x) at each node must be zero, i.e.

ρi(x) = div pi(x) − ps
i (x) + pt

i(x) +
n∑

j=1,j �=i

rij(x) = 0, (10)

where rij(x) = −rji(x) and n is the number of images in the graph. This leads
to the Lagrangian function

L(u, ps, pt,p, r) =
n∑

i=1

(∫

Ω

ps
i dx+ < ui, ρi > − c

2
‖ρi‖2

)
, (11)

which can be solved iteratively by optimising each variable u, ps, pt,p, r sepa-
rately [15,21]. The novel component compared to [15,21] is the use of inter-image
flows rij(x) between any pair of images i, j. We therefore show in particular the
optimisation step at iteration k for rij(x) while fixing all other variables:

rk+1
ij = arg max

|rij |≤βij

L(u, ps, pt,p, r) (12)

= arg max
|rij |≤βij

uk
i rk

ij + uk
j rk

ji (13)

− c

2

∥∥∥∥∥∥
(div pi − ps

i + pt
i)

k +
n∑

l=1,l �=i,j

rk
il + rk

ij

∥∥∥∥∥∥

2

− c

2

∥∥∥∥∥∥
(div pj − ps

j + pt
j)

k +
n∑

l=1,l �=j,i

rk
jl + rk

ji

∥∥∥∥∥∥

2

= arg max
|rij |≤βij

− c

2

∥∥∥∥∥∥
(div pi − ps

i + pt
i)

k +
n∑

l=1,l �=i,j

rk
il − uk

i

c
+ rk

ij

∥∥∥∥∥∥

2

(14)

− c

2

∥∥∥∥∥∥
(div pj − ps

j + pt
j)

k +
n∑

l=1,l �=j,i

rk
jl − uk

j

c
− rk

ij

∥∥∥∥∥∥

2

= arg max
|rij |≤βij

− c

2

∥∥Jk
i + rk

ij

∥∥2 − c

2

∥∥Jk
j − rk

ij

∥∥2
(15)

where

Jk
i = (div pi − ps

i + pt
i)

k +
n∑

l=1,l �=i,j

rk
il − uk

i

c
(16)

This leads to

rk+1
ij =

⎧
⎨

⎩

−βij ,
1
2 (Jk

j − Jk
i ) ≤ −βij ,

1
2 (Jk

j − Jk
i ), |12 (Jk

j − Jk
i )| ≤ βij ,

βij otherwise.
(17)

After convergence, a binary segmentation can be found by thresholding the
resulting solution for u, e.g. at 0.5.
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3 Application to Segmentation of Partially Labelled
Hippocampus Data

Manually annotating medical images is very time consuming, placing a major
burden on clinical experts tasked with labelling large datasets. The images are
typically manually annotated slice-by-slice, therefore reducing the proportion of
annotated slices while retaining robust and accurate segmentation is an impor-
tant goal. With the following experiments we investigate the potential of the
proposed method to provide accurate hippocampal segmentation using partially
annotated atlas data. While demonstrating a scenario where a proportion of atlas
slices are annotated, the framework proposed in this paper could be applied to
different configurations of partial labels, for example to datasets where different
regions are annotated in different images.

Data and Experiment Setup. The proposed method was applied to 202
images from the ADNI database [8] for which reference segmentations of the
hippocampus were available through ADNI. All images were affinely aligned to
the MNI152 template space and intensity-normalised [14]. A leave-one-out pro-
cedure was performed for evaluation where, for each target subject, the 10 most
similar subjects were selected as atlases using normalised mutual information in a
region of interest around the hippocampus. The selected atlases were non-rigidly
registered to the target subject [18] with a control-point spacing of 5 mm.

Partially Annotated Atlases. Manual labels of a proportion q of slices in the
atlas images were used for segmentation of the target image, while source and
sink connections were removed in the remaining slices (as shown in Fig. 2). The
selected slice positions were evenly distributed but varied in different atlases.
For the spatial regularisation constraints (Fig. 3), we chose

αi(x) = c exp
(

−‖∇I(x)‖2
2σ2

)
, (18)

which is a continuous equivalent of the regularisation term used in [11]. The
parameters c = 0.1 and σ = 50 were heuristically tuned for the comparison
methods introduced below. We report results for two graph configurations pro-
posed in Sect. 2.4: Graph labelling using (a) connections between target and
atlases (GLa) and (b) connections between all pairs of images (GLb). The simi-
larity measure βij(x) was chosen as a function of the local mean squared distance
(LMSD) as recommended by [2] for hippocampus segmentation. The LMSD was
evaluated in a cubic neighbourhood of radius 5 around each location [2].

Fully Annotated Atlases. We compared the proposed method to locally
weighted multi-atlas segmentation (MAS [2]) with different numbers of atlases.
The propagated atlas labels were fused with a weighted average as in Eq. 1.
The label fusion was implemented using the proposed framework (since we have
shown in Eq. 8 that this formulation is equivalent to MAS). We also compared
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Fig. 4. (a) Best, median, and worst segmentation results (red) obtained with GLa
using 20 % of available atlas slices, compared to the reference segmentation (yellow)
(b) Median DSC and interquartile range for the proposed (blue) and comparison (green)
methods using different proportions of atlas labels. The proposed methods use a pro-
portion of slices, whereas the comparison methods use a proportion of images for seg-
mentation (Color figure online).

against a variation of MAS using regularisation in the target image (MASr). Reg-
ularisation parameters (for MASr) and βij(x) were chosen as in the proposed
method to guarantee fair comparisons.

Results. Experiments were run for q = {1, 0.8, 0.6, 0.4, 0.2}, where q = 1 means
that the 10 selected atlases were fully labelled. To measure the effect of partial
annotations compared to full annotations, for proportion q, exactly the same
number of labelled voxels were available to both the proposed methods and the
comparison methods: either as a proportion of slices in each image (labelled
voxels were distributed amongst all atlases), or as a proportion of the complete
atlas set. This means that for the comparison methods MAS and MASr, fewer
(but fully labelled) atlas images were used. Segmentation accuracy is reported
with the median Dice Similarity Coefficient (DSC) and interquartile range. As
the results were not normally distributed, statistical significance is measured
using the two-sided Wilcoxon signed-rank test and is reported for p < 10−4.

As expected, segmentation accuracy decreased when less atlases were used [7].
This was observed most strongly in MAS, while spatial regularisation (MASr)
increased segmentation accuracy considerably, particularly when fewer atlases
were used. The proposed methods GLa and GLb are identical to MASr for q = 1
where all atlas voxels are labelled. As the proportion of labelled voxels decreased,
GLa was significantly more accurate than MASr for q = 0.6, q = 0.4 and q = 0.2.
In GLb, where atlas images were densely interconnected, improvements over
MAS and MASr could only be found for q = 0.2. The most distinct differences
between the methods could be observed when only 20 % of the atlas voxels were
labelled. Median DSC values are 0.823(0.03) and 0.819(0.03) for GLa and GLb
compared to 0.764(0.04) and 0.810(0.04) for MAS and MASr. Figure 4a shows
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example segmentations for GLa, for which the runtime per subject on a single
CPU was 5 min when computation was limited to the hippocampal region.

4 Discussion and Conclusion

The experiments show that with the proposed method and graph configuration A
(Fig. 2a), segmentation accuracy remained stable when reducing the proportion
of labelled atlas voxels down to 40 %. The segmentation results were still rela-
tively accurate at 20 %, so the required user input could be reduced considerably.
In particular, the proposed method significantly outperformed multi-atlas seg-
mentation using fewer, but fully labelled atlases. This suggests that it could be
worthwhile to allocate resources for partially annotating more images instead
of fully annotating few images. More generally, we demonstrated that partially
annotated images, a resource that is not usually exploited, can be utilised for
multi-atlas segmentation.

In order to provide a framework for multi-atlas segmentation using partially
annotated atlases, we make two key methodological contributions: We take a new
perspective on the well-studied problem of multi-atlas segmentation and formu-
late it as a graph-labelling problem on a graph between target and atlas images.
The proposed framework unifies a number of existing atlas-based segmentation
methods (e.g. [2,7,11]) and can incorporate label propagation, regularisation,
and intensity models in a single and comprehensive optimisation problem. In
the scope of this paper, we have limited ourselves to label propagation and reg-
ularisation. In future work, these components will be further developed, and
suitable intensity models will be investigated.

Furthermore, we have proposed a generalisation of the Continuous Max-
Flow [21] algorithm for parallelisable optimisation of energy functions on graphs
between interconnected images of any configuration. In this work, graphs were
constructed between target and atlas images to establish an analogy to multi-
atlas segmentation scenarios. However, the proposed method could be used for
segmenting large-scale, partially labelled datasets.
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