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Abstract

Machine learning methods pool diverse information to perform computer-assisted diagnosis and predict future clinical decline. We
introduce a machine learning method to boost power in clinical trials. We created a Support Vector Machine algorithm that combines brain
imaging and other biomarkers to classify 737 Alzheimer’s disease Neuroimaging initiative (ADNI) subjects as having Alzheimer’s disease
(AD), mild cognitive impairment (MCI), or normal controls. We trained our classifiers based on example data including: MRI measures of
hippocampal, ventricular, and temporal lobe volumes, a PET-FDG numerical summary, CSF biomarkers (t-tau, p-tau, and A�42), ApoE
genotype, age, sex, and body mass index. MRI measures contributed most to Alzheimer’s disease (AD) classification; PET-FDG and CSF
biomarkers, particularly A�42, contributed more to MCI classification. Using all biomarkers jointly, we used our classifier to select the
one-third of the subjects most likely to decline. In this subsample, fewer than 40 AD and MCI subjects would be needed to detect a 25%
slowing in temporal lobe atrophy rates with 80% power—a substantial boosting of power relative to standard imaging measures.
© 2010 Elsevier Inc. All rights reserved.
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Alzheimer’s disease (AD), the most common form of
dementia, affects approximately 5.3 million people in the
USA alone, and its prevalence continues to rise (Alzhei-
mer’s Association, 2009). Research and therapeutic efforts
also focus on subjects with Mild Cognitive Impairment
(MCI) – an intermediate condition between healthy aging
and AD – as they convert to AD at a heightened rate of
10–15% per year (Petersen et al., 1999). Multiple imaging
biomarkers have been used for quantifying disease progres-
sion and measuring various aspects of AD pathology, such
as amyloid and tau deposition, measured by Positron Emis-
sion Tomography (PET) and radiotracers that bind to the
plaques and tangles in the brain (Klunk et al., 2004; Protas
et al., 2010), metabolic decline or perfusion deficits assessed
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by fluoro-deoxyglucose PET (PET-FDG), brain atrophy on
MRI, and risk factors that influence these measures (e.g.
ApoE, cardiovascular risks, etc.) (Frisoni et al., 2010; Jack
et al., 2010; Petersen, 2010).

Although the disease can be tracked in many ways,
methods are also needed to integrate these multiple mea-
sures to achieve greater power in diagnosis and prognosis.
Machine learning algorithms such as linear discriminant
analysis, support vector machines, and boosting have re-
cently been proposed to combine multiple AD features
derived from brain imaging and other biomarkers, for AD
and MCI classification. Several studies have performed di-
agnostic classification based on MRI scans, using measures
such as whole-brain patterns of atrophy (Davatzikos et al.,
2009; Mesrob et al., 2008), tissue densities from voxel-
based morphometry (Vemuri et al., 2008), and cortical
thickness (Lerch et al., 2008). Vemuri et al. (2008) assigned
overall “scores” for each subject’s MRI – called the Struc-
tural Abnormality Index (STAND) � based on gray and
white matter voxels that best differentiated AD patients
from controls. In related work, Davatzikos et al. (2009)
assigned “scores” to each subject’s MRI scan based on a
minimal set of brain regions that best discriminated AD
from normal controls in a training sample; their approach is
termed Spatial Pattern of Abnormality for Recognition of
Early Alzheimer’s disease, or SPARE-ED.

Researchers have also explored adding other predictors
to improve the accuracy of MRI for computer-assisted di-
agnosis of AD and MCI, and for predicting whether a
person will convert from MCI to AD soon. PET, for exam-
ple, offers metabolic or perfusion-based information that
complements measures of structural atrophy on MRI (Fan et
al., 2008; Hinrichs et al., 2009). Vemuri et al. (2009) ad-
justed their STAND scores by incorporating demographic
variables such as age, sex, and ApoE genotype, and this
improved their classification accuracy. Additionally, MRI-
based STAND scores were shown to improve the accuracy
of CSF biomarkers for predicting cognitive decline, includ-
ing total tau (t-tau), phosphorylated tau (p-tau) and the
beta-amyloid isoform, A�42 (Vemuri et al., 2009).

It is worth noting that MRI-based machine learning has
been used widely for classification not only for AD, but also
for predicting changes in patients with brain tumors (Lukas
et al., 2004), aphasia (Wilson et al., 2009), autism (Ecker et
al., 2010), psychosis (Koutsouleris et al., 2009), and even
for classifying patterns of brain activation in functional MRI
(Mourão-Miranda et al., 2005). Similar algorithms have
been implemented to distinguish AD from other types of
dementia such as frontotemporal dementia (Davatzikos et
al., 2008; Klöppel et al., 2008). Support vector machines
(SVMs) are one of the most widely used and effective tools
for classification of AD and other neurological disorders,
and are used in many of the reports listed above. We
therefore set out to test how well SVMs would perform for
classifying patients as having AD and MCI based on mul-

tiple imaging and biological measures in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), as well as for
predicting imminent cognitive decline.

A second goal of this paper was to make a conceptual
connection between sample size requirements for clinical
trials and the power of classifiers to predict future decline.
Using our classifiers to predict those most likely to decline,
we tested the hypothesis that this subset might experience
atrophic rates with greater effect sizes. This concept is
termed clinical trial enrichment, as it seeks out a subsample
of subjects who might be better candidates for demonstrat-
ing therapeutic effects, at least from a statistical standpoint
(see Discussion for assumptions of this approach).

We found that regional numerical summaries derived
from tensor-based morphometry of longitudinal MRI (over
a 1 year interval) can reduce the estimated sample size
requirements to 48 AD and 88 MCI subjects per arm of a
hypothetical clinical trial (treatment v. placebo), for detect-
ing a 25% reduction in the mean annual temporal lobe
atrophy rate with 80% power (Hua et al., 2009). Power was
similar when 3 Tesla or 1.5 Tesla MRI scans were used (Ho
et al., 2009); still higher power was possible for trials with
longer follow-up intervals (Hua et al., 2010b). Other groups
report comparable power for measures based on hippocam-
pal volumes (Schuff et al., 2009). Through the use of mul-
timodality classifiers, these and other similar sample size
estimates can presumably be reduced still further.

In this report, our goals were (1) to statistically combine
baseline MRI measures of hippocampal, temporal and ven-
tricular volumes with age, sex, ApoE genotype, and body
mass index (BMI) for AD and MCI classification; (2) to
examine how the best-performing predictors would be fur-
ther enhanced by using information on CSF biomarkers and
PET-FDG; (3) to evaluate this multimodality approach for
predicting cognitive decline in MCI and, most importantly;
(4) to assess whether we could expect to reduce clinical trial
sample size estimates by using our classifiers to target those
most likely to decline. Numerous structural MRI-based
measures, including hippocampal and ventricular volumes,
as well as other temporal lobe summaries, have already been
validated as indicators of AD progression, particularly after
the MCI stage (Frisoni et al., 2010). We hypothesized that
using multiple MRI summaries (rather than choosing one)
might offer complementary information to classify patients
into the correct diagnostic categories and predict cognitive
decline, thereby providing a new way to boost the power of
clinical trials.

1. Methods

1.1. Subjects

Baseline neuroimaging and biomarker data were down-
loaded from the ADNI public database (www.loni.ucla.edu/
ADNI/Data/) on or before 20 November 2009 and reflect
the status of the database at that point; as data collection is
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ongoing. ADNI is a large 5 year study launched in 2004
with the primary goal of testing whether serial MRI, PET,
other biological markers, and clinical and neuropsycholog-
ical assessments at multiple sites (as in a typical clinical
trial), can replicate results from smaller single site studies
measuring the progression of MCI and early AD. More
sensitive and specific markers of early AD progression will
help monitor the effectiveness of new treatments, and lessen
the time and cost of clinical trials.

1.1.1. Available data for baseline subjects
In what follows, sample sizes for analyses using different

predictors are slightly different, as the study is ongoing and
not all measures could be collected from all ADNI subjects.
For our classification study based on baseline MRI numer-
ical summaries, ApoE, age, sex, and BMI, data were avail-
able from 737 ADNI subjects (158 AD: 75.4 � 7.4 years of
age, 366 MCI: 74.8 � 7.3 years of age, and 213 controls:
76.0 � 5.1 years of age). To equalize the sex distribution,
we reduced the MCI subject set to a group of 264 sex-
matched subjects. As there were 102 more men than women
in the MCI group, we ranked the MCI males based on
numbers assigned to them via a computerized random num-
ber generator and removed the first 102 to ensure that the
elimination process was random and unbiased. For our next
classification study, we were limited by the availability of
PET-FDG and CSF data, so our studies included subsets of
the subjects considered above (328 subjects after adding
only CSF, 364 subjects after adding only PET-FDG, and
166 subjects after adding both CSF and PET-FDG). For the
first part of the cognitive decline prediction study, we con-
sidered 64 sex-matched MCI subjects, of whom 12 con-
verted to AD in 12 months. Sixty-four subjects remained
after selecting MCI subjects who had all biomarker infor-
mation and equalizing the distribution of sex. The fraction
of converters here (18.75%) is a slightly higher than the
previously estimated rate of conversion in ADNI (13%
according to Petersen, 2010); the rate is marginally higher
as a subgroup of male nonconverters was excluded to allow
sex matching. A larger sample of 129 sex matched MCI
subjects with a reduced number of biomarkers was consid-
ered for the second part of the same study, 22 of whom

(17.05%) converted to AD within 12 months. Sex matching
was performed through a random elimination process as
described above. The subjects and biomarkers included in
each study are summarized in Table 1.

1.2. Biomarkers

For each subject, the biomarkers we considered included
three MRI-derived numerical summaries, a PET-FDG nu-
merical summary, and three CSF biomarkers (t-tau, p-tau
and A�42). In addition to MRI, PET-FDG and CSF can
provide important functional and pathological information
on AD progression (Jack et al., 2010). We also considered
ApoE genotype (coded as 0, 1, or 2 for the number of �4
alleles), age, sex and BMI, as each can influence AD risk
(Azad et al., 2007; Buchman et al., 2005; Corder et al.,
1993; Lindsay et al., 2002). BMI was included as several
recent studies found that higher BMI is associated with
greater brain atrophy in normal elderly subjects (Raji et al.,
2010), and in MCI and AD (Ho et al., 2010b). This effect
still holds true after accounting for the effects of hyperten-
sion, diabetes, and the level of white matter hyperintensities
(Ho et al., 2010b) on the brain. In addition, a commonly
carried risk gene for obesity, FTO, was recently reported to
be associated with the level of brain atrophy in the ADNI
cohort (Ho et al., 2010a), so we included BMI as it is a
cardiovascular risk factor associated with brain atrophy.
Clinical biomarkers that were used in ADNI to determine
diagnosis, such as the sum-of-boxes Clinical Dementia Rat-
ing (CDR-SB) and other similar measures are used by
physicians for making diagnoses and were therefore not
used as features for classification to avoid circular inference.
In fact, using CDR-SB alone for classification led to almost
perfect classification accuracy, as accuracy here is judged in
terms of agreement with clinical diagnosis, the best avail-
able proxy when post mortem neuropathological data are
not yet available. Instead, the annual rate of change in
CDR-SB was used as an outcome measure of cognitive
decline to help define conversion from MCI to AD.

The MRI features included numerical summaries from
the hippocampus, lateral ventricles and a tensor-based mor-
phometry (TBM)-derived measure of atrophy in the tempo-

Table 1
ADNI subjects and biomarkers included in each study Here we outline the subject samples analyzed for different classification tests

Study Biomarkers Number of subjects (training � testing)

AD MCI CN

1 MRI, age, ApoE, sex, BMI 158 (118 � 40) 264 (184 � 80) 213 (163 � 50)
2a MRI, age, ApoE, CSF 77 (57 � 20) 158 (118 � 40) 93 (68 � 25)
2b MRI, age, ApoE, PET-FDG 79 (59 � 20) 191 (146 � 45) 94 (74 � 20)
2c MRI, age, ApoE, CSF, PET-FDG 40 (20 � 20) 83 (43 � 40) 43 (23 � 20)
3a MRI, age, ApoE, CSF, PET-FDG — 64 (41 � 23) —
3b MRI, ApoE, PET-FDG — 129 (67 � 62) —

Here we outline the subject samples analyzed for different classification tests. Subjects are split into independent training and testing samples approximately
in a 3 :1 ratio, except for the smaller studies, to ensure correct evaluation of classifier performance. The 3 : 1 ratio is used in several machine learning studies
such as Vemuri et al. (2008a). MRI denotes that a 1.5 T MRI scan was available; BMI denotes body mass index. CSF denotes that CSF-derived biomarkers
were available.
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ral lobes. The hippocampal summaries were volumes gen-
erated from an automatic segmentation method that we
developed based on machine learning; we recently validated
this method against manual gold standards (Morra et al.,
2008; Morra et al., 2009; Morra et al., 2010). The ventric-
ular summaries were volumes acquired from a semiauto-
mated, multiatlas segmentation technique that we developed
(multiatlas fluid image alignment or MAFIA; (Chou et al.,
2008)). The temporal lobe summaries were obtained from
an anatomically defined region-of-interest (ROI) on three-
dimensional atrophy maps generated with tensor-based
morphometry (Hua et al., 2008a; Hua et al., 2008b). PET-
FDG numerical summaries were based on a predefined
temporal lobe ROI (Landau et al., 2009). All imaging sum-
maries were averaged for the lobes in the left and right brain
hemispheres.

CSF samples were obtained through lumbar puncture,
after an overnight fast. Samples from various sites were
transferred, on dry ice, to the ADNI Biomarker Core Lab-
oratory at the University of Pennsylvania Medical Center,
where the levels of t-tau, p-tau and A�42 are measured with
a multiplex immunoassay platform under the direction of
Drs Leslie Shaw and John Trojanowski. ApoE genotyping
was performed on DNA samples from subjects’ blood.
Genomic DNA samples were analyzed using the Human610-
Quad BeadChip (Illumina, Inc, San Diego, CA) at the Uni-
versity of Pennsylvania. Demographic data were obtained
from https://www.loni.ucla.edu/ADNI/Data/. It should be
emphasized that only baseline values of the biomarkers
were used for prediction.

1.3. Support vector machines

SVMs are a type of machine learning or pattern recog-
nition method that can be used to classify a dataset into
different groups, based on multiple features, or measures,
available for each subject (see, e.g. Morra et al., 2009b). As
with linear discriminant analysis, some observations about a
subject (here the imaging and other measures) may be
assembled into a vector, with as many components as there
are measures. Then a mathematical function is estimated (or
“learned”) that best combines these features to give an
output that indicates, as accurately as possible, which group
the individual belongs to. For an introduction to SVM �
comparing it to simpler methods such as linear discriminant
analysis (LDA) � please see our tutorial (Morra et al.,
2009b). As mentioned in the introduction, SVM was chosen
as a machine learning algorithm for this report due to its
successful performance in the previous AD literature (Da-
vatzikos et al., 2009; Fan et al., 2008; Mesrob et al., 2008;
Vemuri et al., 2008), and for other neurobiological applica-
tions (Ecker et al., 2010; Koutsouleris et al., 2009; Wilson
et al., 2009). SVMs may be considered as generalizations of
linear regression, which use a supervised learning method to
fit a classification function to the data in a training set of
labeled observations. Other types of classifiers, such as

adaptive boosting (Freund and Schapire, 1999; Morra et al.,
2010), may also be useful for subject classification based on
multiple biomarker measures, as they optimally combine
predictors that perform weakly individually, but strongly in
combination.

SVM is formulated as an optimization problem. Given a
set of training data with corresponding class labels, a hy-
perplane is sought that maximizes the margin (a measure of
the ability to differentiate) between different classes. This
hyperplane, computed from a training set of example data,
can then be used to classify newly presented (independent)
testing datasets. Data consist of a set of vectors (x1 . . . xn)
where each vector contains several features and the class
labels are scalars (y1 . . . yn) where yi is either 1 or �1 in a
2-class problem. The optimization problem for a linear
SVM is written as:

min
1

2
�w�2 subject to yi �xi · w � b� � 1,

where w and b represent the normal vector to and the
intercept of the hyperplane respectively. For cases where a
linear surface (hyperplane) cannot effectively separate the
data, nonlinear kernels, such as radial basis functions
(RBFs), are incorporated into the optimization problem.
Additionally, “slack variables” may be introduced with a
tunable parameter, C, to allow a balance between misclas-
sifications and the width of the margin. With this modifi-
cation, the optimization problem may be restated as:

min
1

2
�w�2 � C�

i
�i subjected to yi �xi · w � b� � 1 � �i ,

where �i is the slack variable for each i (Burges, 1998;
Vapnik, 1995). SVMs may also be used for regression,
where instead of a binary output, it would predict a
continuous output for each subject’s input vector, x. We
performed our experiments using the LS-SVM package
for classification and regression (Suykens and Vande-
walle, 1999) in Matlab (MathWorks, Natick, MA).

1.4. Training and testing

We divided AD, MCI, and control subjects randomly
into training and testing sets as shown in Table 1. The
training sets were used for parameter optimization (regular-
ization parameter C for a linear kernel; C and kernel-spe-
cific parameter, �, for an RBF kernel) and for leave-one-out
cross-validation. The SVM models were tested on indepen-
dent testing sets to ensure generalizability. Receiver oper-
ating characteristic (ROC) curves were obtained to demon-
strate the trade-off between sensitivity and specificity. ROC
curves were compared, to evaluate different classifiers, us-
ing a statistical method developed for ROC analysis (Han-
ley and McNeil, 1983) in the MedCalc Statistical Software
(MedCalc, Mariakerke, Belgium). When SVM was imple-
mented for prediction instead of classification, mean
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squared errors were used for comparison, instead of mis-
classification errors.

1.5. Power analysis

A power analysis was defined by the ADNI biostatis-
tics Core to estimate the sample size required to detect a
25% reduction in the mean annual rate of atrophy, using
a two-sided test and standard significance level (	 �
0.05) for a hypothetical two-arm study (treatment v.
placebo), with 80% power (this number is referred to as
n80, and smaller numbers are better). The formula is:

n 

2�2�z1�	⁄2 � zpower�2

�0.25��2 ,

where � and � refer to the mean and standard deviation in
the atrophic rates respectively, 	 is set to be 0.05, and the
desired power is 80%. Atrophic rates were determined
based on a statistically defined ROI by training on 22 AD
subjects, as described more fully in (Hua et al., 2009). Brain
atrophy rates measured by MRI correlate with the progres-
sion of Alzheimer’s disease, and offer baseline and transi-
tional predictive power for diagnosis, making them clini-
cally relevant endpoints for power analysis (Duara et al.,
2008; Fox et al., 2000; Jack et al., 2004).

2. Results

2.1. AD and MCI classification based on MRI markers,
ApoE genotype and demographic information

We first used the three MRI-derived summaries, ApoE
genotype and demographic variables (age, sex and BMI) for
AD and MCI classification with 635 ADNI subjects. SVM
training was performed with all seven features using a linear
kernel with C � 1, and the contributions of the different
biomarkers were put into a rank order (best to worst) based
on their SVM weights, assessed by wi

2 in the notation of
SVM described in the methods. The rank orders are shown
in Table 2.

We then aimed to find the top N (N ranging from 1 to 7)
features that yielded the highest leave-one-out accuracy in
the training set, using an RBF kernel with parameter opti-
mization. Both linear and RBF kernels identified the same
set of top features, but the RBF kernel gave better perfor-
mance, so we only present those results here. For AD vs.
control, the best combination included the top four features
(baseline hippocampal and ventricular volumes, as well as
ApoE and age); this joint classifier yielded a leave-one-out
accuracy of 82.21% correct classification, with a corre-
sponding area under the ROC curve (AUC) of 0.945, which
is relatively high. For classifying MCI vs. control, the best
feature combination consisted of the top 3 (baseline hip-
pocampal volume, ApoE and age), which gave 70.89%
accurate classification, with a corresponding area under the
ROC curve of 0.860. As expected, MCI classification accu-

racy was slightly poorer than AD classification, as there is
substantial overlap on all known measures, between MCI
and normal aging. The best biomarker sets for each classi-
fication are highlighted in Table 2. Figure 1 shows the ROC
curves. In Table 2, only a subset of features was actually
used: the best classifiers did not include BMI, sex, and the
TBM-derived numeric summary. Also in Table 2, it is
interesting that ventricular volume was helpful for the AD
classification problem but not for distinguishing MCI from
controls. This is reasonable given past findings by ourselves
and others that ventricular expansion in MCI is relatively
mild; there is also substantial cross-subject variation in
ventricular volume, even in healthy subjects (Chou et al.,
2009b), and this may throw off a classifier’s accuracy unless
the disease effect outweighs this natural variation (Chou et
al., 2008; Chou et al., 2009a; Chou et al., 2009b).

In our next study, our goal was to compare the predictive
power from the best combination of features obtained
above, which included MRI, ApoE, and age, to that ob-
tained when also including the PET-FDG temporal sum-
mary and CSF biomarkers. This may seem like an artificial
distinction between two lists of biomarkers, but, from a
practical point of view, the first classifier could be applied to
a study that only used MRI, while the extended classifier
would also need PET scans and lumbar puncture to be

Table 2
Rank order list with relative SVM weights for MRI, ApoE, Age, Sex,
and BMI in AD and MCI classification

Rank Biomarker

AD v. control
(Weight/Wi

2)
MCI v. control
(Weight/Wi

2)

1 MRI hipa

0.1664
MRI hip
0.1045

2 ApoE
0.1063

ApoE
0.0938

3 Age
0.0369

Age
0.0188

4 MRI Ventb

0.0349
MRI Vent
0.0103

5 MRI Tempc

0.0210
MRI Temp
0.0045

6 BMI
0.0147

BMI
0.0019

7 Sex
0.0013

Sex
0.0009

Hippocampal volumes were the most influential feature for differentiating
AD from controls, closely followed by ApoE genotype, which outper-
formed all the other MRI-derived markers. For classifying subjects as
either MCI or controls, the exact same features were useful, in the same
order of priority. This is somewhat in line with expectation, as hippocam-
pal volume is so widely used and is perhaps the most well-validated MRI
measure in AD studies. This rank order refers to a situation in which all
measures are used jointly for classification. Also, the gray highlighted
measures are the ones that, when used jointly, gave the best classification
accuracy in our independent test datasets (see Figure 1 for ROC curves).

a Hippocampal volume summary.
b Ventricular volume summary.
c Temporal lobe summary from TBM.
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performed. Although using more features is almost certainly
better statistically, we wanted to assess how much differ-
ence it made, given the added expense, logistics, and pos-
sible attrition effects of performing multiple assessments.

Here, we considered three subsets of the ADNI subjects
(N � 328 when adding CSF alone, N � 364 when adding
PET-FDG alone, and N � 166 when adding both CSF and
PET-FDG) of the ADNI subjects, for whom the data from
these additional diagnostic modalities were available. We
applied the same ranking algorithm based on SVM weights
and obtained rank orders for the biomarkers, with CSF and
PET-FDG taken into account. We found the top set of
biomarkers yielding the highest leave-one-out accuracies on
the training set for each classification. The rank orders and
best sets of biomarkers are displayed in Table 3. CSF t-tau
and A�42 were included in the best set of biomarkers for
both AD and MCI classification. PET-FDG also contributed
substantially to AD and MCI classification. The remaining
top biomarkers were essentially the same as the ones iden-
tified in the above study.

It may seem paradoxical that when we list the biomark-
ers in order of priority (Table 3) some of them are listed
even though they are not ultimately used in the best-per-
forming classifier (only the lists of features in gray are used
in the best classifier). The reason this occurs is that when all
features are included, some features are given nonzero
weights, which means that they are useful for classifying the

training set. Even so, these features may give no detectable
improvement in classifying the test set, so they were
dropped from the final classifier. This does not mean that
they are not useful predictors under any circumstances; it
just means that in this sample, they did not improve classi-
fication accuracy on the independent evaluation data.

We then compared the performance of AD and MCI
classifiers trained with the top biomarkers from the previous
(N � 635) study to those trained with the top biomarkers
that included either CSF or the PET-FDG temporal sum-
mary or with both combined. Comparison of leave-one-out
accuracies on the training set improved classification, im-
plying that PET-FDG and CSF provide complementary in-
formation to MRI, ApoE and age. Leave-one-out accuracies
for AD vs. control improved by 6.4%, 3.8%, and 11.6% by
adding CSF alone, PET alone and both CSF and PET
respectively. The corresponding improvements for MCI vs.
control were 2.3%, 2.7%, and 4.6%.

When we compared the ROC curve AUCs, however, the
improvement obtained by adding CSF, PET-FDG or both
measures to the MRI measures was not statistically signif-
icant (p values � 0.05; Table 4). This lack of statistical
significance may be due to the small size of the testing sets.
If, however, this lack of significance is verified in even
larger studies, it could have considerable implications for
clinical trials in terms of total cost, efficiency and adverse
effects.

2.2. Boosting power for clinical trials

A novel use of classifiers is to identify subjects who are
more likely to decline. Under some reasonable assumptions
(see Discussion), this can lead to larger effect sizes for
detecting changes in biomarkers over time; this may also be
useful for reducing sample size requirements for clinical
trials of potential disease-modifying therapies. In the past,
several authors have suggested that people in the lowest
50% (or some other quantile) of hippocampal volume are
more likely to show future decline, both clinically (e.g.,
conversion from MCI to AD) and on imaging (see, e.g.,
Frisoni et al., 2010). Of course, this idea could be general-
ized to defining a sample based on the k% of subjects that a
classifier declares as most likely to decline clinically in the
future. Such a classifier could include not just MRI but any
biomarker relevant for improving prediction.

As such, we computed minimum sample size estimates
(n80) for the top k percent of subjects (for different values
of k noted below) classified as most likely to have AD with
our best AD classifier, using MRI hippocampal and ventric-
ular summaries, ApoE and age as features. This k% of
people are subjects in the independent test datasets (not used
to train the classifier) who are assigned by the classifier to
the AD class; they are those classified as AD who are
farthest from the “SVM classifier decision boundary”. We
did not include PET-FDG and CSF biomarkers here, since
adding these covariates limited our sample size and, as

Fig. 1. ROC curves for AD and MCI classification. These curves show the
trade-off between specificity and sensitivity for classifiers that best distin-
guished MCI from controls (red curve) and AD from controls (blue curve).
The AD classifier used four measures and the MCI classifier only used
three. These evaluations are based on finding the top set of features that
yielded the highest leave-one-out accuracies on the training set. The curves
gradually rise, meaning that there is a natural trade-off: the parameters of
the classifier’s decision boundary can be adjusted to be stricter or more
lenient. For stricter classification settings, false positive classifications will
decrease but so will the rate of true positives. Curves are slightly jagged
and not perfectly smooth as they are based on a finite set of test data; with
more data, they would be smoother.
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shown above, did not significantly improve classification in
our tests. The subjects were ranked based on the SVM
classifier output, the arithmetic sign of which determines the

class assigned to each subject. A few AD subjects were
excluded from the training and testing sets to avoid any
overlap with the training set used in our prior report (Hua et

Table 3
Rank order list with relative SVM weights for MRI, ApoE, Age, Sex, BMI, and either (a) CSF or (b) PET-FDG, for AD and MCI classification

Rank Biomarker

A. MRI � CSF B. MRI � PET-FDG

AD v. control
(Weight/Wi

2)
MCI v. control
(Weight/Wi

2)
AD v. control
(Weight/Wi

2)
MCI v. control
(Weight/Wi

2)

1 MRI hipa

0.0794
MRI hip
0.0519

ApoE
0.1529

ApoE
0.0929

2 CSF t-tau
0.0614

CSF A�42

0.0313
PET-FDG
0.1022

MRI hip
0.0354

3 CSF A�42

0.0505
Age
0.0308

MRI hip
0.0846

PET-FDG
0.0289

4 ApoE
0.0268

ApoE
0.0292

MRI Vent
0.0181

Age
0.0161

5 MRI Ventb

0.0238
CSF t-tau
0.0231

Age
0.0080

MRI Temp
0.0075

6 Age
0.0210

Sex
0.0157

MRI Temp
0.0057

Sex
0.0036

7 MRI Tempc

0.0163
MRI Temp
0.0085

BMI
0.0010

MRI Vent
0.0021

8 BMI
0.0077

BMI
0.0017

Sex
0.0004

BMI
0.0020

9 CSF p-tau
0.0003

CSF p-tau
0.0014

10 Sex
0.0001

MRI Vent
0.0013

Biomarkers are ranked according to their relative weights (contributions) in an SVM classifier that includes them all. A secondary question is which subset
of these gives best classification accuracy, and this sublist is shown in gray. In these sublists, some features are omitted as adding them does not improve
classification accuracy. Of the CSF markers, p-tau is relatively unhelpful but both t-tau and a�42 provide independent predictive value. PET-FDG is a useful feature;
whether it ranks above MRI hippocampal measures or not depends on whether the task is MCI or AD classification (hippocampal volume is slightly more useful than PET
for MCI). PET measures are also somewhat correlated with MRI measures, so that when they are both included, each absorbs some of the variance; this may explain
why ApoE genotype rises to the top of the predictors in terms of its independent contribution when MRI and PET are both included (last two columns).
Sets of biomarkers yielding the highest leave-one-out accuracy are highlighted.

a Hippocampal volume summary.
b Ventricular volume summary.
c Temporal lobe summary from TBM.

Table 4
Comparison of AD and MCI classification accuracy and false positive/false negative trade-offs (ROC analyses) for classifiers that use different types of
information: MRI, MRI� CSF, MRI� PET-FDG, and MRI� CSF� PET-FDG

Biomarkers AD v. control MCI v. control

LOOCV accuracy ROC AUC � SE � AUCa (p value) LOOCV accuracy ROC AUC � SE � AUC (p value)

Top MRIb 0.8160 0.8940 � 0.0499 — 0.8421 0.8350 � 0.0632 —
Top MRI�CSFc 0.8800 0.9560 � 0.0273 0.0620 (0.191) 0.8647 0.8125 � 0.0672 0.0225 (0.722)
Top MRIb 0.7634 0.7760 � 0.0585 — 0.7227 0.7067 � 0.0696 —
Top MRI�PET-FDGd 0.8011 0.7820 � 0.0580 0.0060 (0.906) 0.7500 0.7444 � 0.0672 0.0377 (0.382)
Top MRIb 0.7907 0.8850 � 0.0501 — 0.7121 0.7488 � 0.0649 —
Top MRI�CSF�PET-FDGe 0.9070 0.9175 � 0.0413 0.0325 (0.357) 0.7576 0.7688 � 0.0669 0.0200 (0.709)

Information for the top MRI classifier is listed twice, because MRI data were available for all ADNI subjects, but CSF and PET data were available only
for a subset of those who had MRI. So it is only fair to report the classification accuracy on the full sample of MRIs, as well as on the subsamples in which
head-to-head comparisons could be made with classifiers that also included the available CSF and PET data. The classifiers include ApoE and age, but not
sex or BMI as the latter two did not contribute to the classification accuracies.
LOOCV: leave-one-out cross-validation.

a AUC difference relative to using the top MRI-based classifier only.
b Top biomarkers identified in the N � 635 study with MRI.
c Top biomarkers identified in the N � 328 study with MRI and CSF.
d Top biomarkers identified in the N � 364 study with MRI and PET-FDG.
e Top biomarkers identified in the N � 166 study with MRI, CSF and PET-FDG.
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al., 2009) for creating the statistical ROIs. The results are
shown in Figure 2a. When k is less than about 33%, the
power estimates for AD subjects are improved compared
with the minimal sample size of AD 48 subjects reported by
Hua et al. (2009). There is a drop in the sample sizes needed
to show a specific slowing effect, as the more AD-like
subjects are selected. This has to be weighed against other
factors (see Discussion), but it is interesting that the changes
in these subjects have a greater effect size. It is also by no
means obvious in advance that these subjects would give
greater effect sizes. For the effect size to be greater, the
changes have to be large and their variance has to be small;
restricting the sample did not lead to an increase in the
variability of the change measures sufficient to deplete ef-
fect sizes.

We could use the classifiers in many different ways to
define a subsample – the diagnostic classifiers single out
those who are most likely, based on all their imaging mea-
sures, to fall into a specific diagnostic category (e.g. AD).
We also tested the benefit of defining a subsample of sub-
jects with a classifier trained to identify likely decliners,
based on all their imaging measures and other biomarkers,
all at baseline.

To obtain similar n80 estimates for MCI subjects pre-
dicted to undergo cognitive decline, we considered 64 MCI
subjects using MRI measures (three features), PET-FDG,
CSF biomarkers (three features), ApoE and age. Here, the
output of the SVM algorithm was set to be the 12-month
rate of change in CDR-SB, instead of a binary output for the
classification approach used in the studies above. Training
with all possible 29-1 feature combinations using a linear
kernel (parameter C � 1) revealed PET-FDG, MRI ventric-
ular and temporal summaries, and ApoE as the best set of
features, with the lowest mean squared error on the testing
set.

To increase our sample size for evaluating this classifier,
we considered a larger group of 129 MCI subjects with only
the four features identified above and trained a model that
predicted the rate of CDR-SB change in a novel testing set.
We ranked the testing MCI subjects in order of predicted

cognitive decline and computed n80 estimates for the top
k% percent (for different values of k) of MCI subjects who
the classifier predicted to be most likely to decline within a
year (Figure 2b). The n80 values were even lower than the
88 MCI individuals we reported before as the minimal
sample size for MCI (Hua et al., 2009). In addition to
sample size estimates reported by Hua et al. (2009), similar
estimates have also been made by other investigators such
as Fox et al. (2000); Jack et al. (2004) and Schuff et al.
(2009), and we were able to improve upon these too with
our approach.

In this report, we have considered AD and MCI classi-
fication as well as prediction of MCI conversion. Classifiers
can also be trained to distinguish MCI converters from
diagnostic groups other than MCI. For instance, when we
performed classification with a small group of 12 MCI
converters versus 12 healthy controls using all features in
our study, we obtained a reasonably promising 71% accu-
racy, as this discrimination is more challenging than sepa-
rating AD patients from controls.

In general, however, we do not want to discriminate MCI
decliners from groups other than MCI for the prediction of
later decline. We assumed here that MCI diagnosis was
given, and we aimed to predict who would decline within
that group. Predicting decline in a mixed group of controls
and MCIs is a little easier, as the knowledge that a person is
MCI is already fairly good evidence that future decline is
likely. Because of that, we wanted to assess the specific
additive value of neuroimaging markers once a person is
diagnosed as MCI (and it is reasonably helpful).

3. Discussion

We explored the power of several baseline biomarkers
for AD and MCI, used jointly for diagnostic classification
and for predicting future (1 year) cognitive decline in MCI.
We also showed how to apply the multimodality classifiers
to choose subsamples of subjects for boosting power in
clinical trials. We determined combinations of regional
MRI numerical summaries with demographic variables and

Fig. 2. n80 estimates (i.e., sample sizes required to detect a 25% slowing of the rate of atrophy with 80% power) as a function of restricting the sample to
likely decliners. (a) Samples are based on the top k% classified, based on all biomarkers, as most likely to have AD (lower k gives smaller samples). (b) Here
samples are based on the top k% of MCI subjects predicted by the classifier as most likely to decline (again lower values of k give dramatically lower samples).
If only one-third of the most likely decliners were kept, in a subanalysis based on the classifier’s predictions, then the sample size needed (n80) for an MCI
trial would only be around 30 subjects per arm (see Discussion for caveats of this approach).
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ApoE that best classified AD vs. control and MCI vs.
control. The top set of complementary biomarkers for AD
classification (when used together) were the MRI hip-
pocampal volume summary (measured with the method of
Morra et al., 2008), ApoE genotype, age and the MRI
ventricular summary (measured with the method of Chou et
al., 2009) in that order, resulting in an 82.21% accuracy, and
a ROC AUC of 0.945, which is quite strong. Biologically,
hippocampal atrophy and ventricular enlargement are estab-
lished manifestations of AD pathology, and the two struc-
tures are routinely monitored via MRI for AD clinical trials
(Frisoni et al., 2010). ApoE and advancing age are also
well-known risk factors for AD (Carlsson et al., 2009), and
age is associated with atrophic rates in ADNI (Hua et al.,
2010a). The best set of features identified agrees with the
AD literature. The one exception is the MRI temporal lobe
summary, which did not improve classification power. This
is not entirely surprising as it is quite highly correlated with
the other two measures of atrophy (hippocampal and ven-
tricular volume), so it may not add very much independent
information for diagnostic classification. As expected, MCI
classification was less accurate, and ventricular summaries
were not as helpful; the best MCI diagnostic classifier only
used hippocampal volume, ApoE genotype and age (Frisoni
et al., 2010; Petersen, 2010).

When compared with accuracy results reported by
groups such as Klöppel et al. (2008); Vemuri et al. (2008)
and Fan et al. (2008), our accuracies may seem a bit low.
Perhaps, the main reason the accuracy values are not so high
is that we are using numerical summary measures (single
values for each imaging modality) as opposed to voxel-wise
maps (which are implemented in papers that report higher
accuracies). Even so, it is difficult to compare the results
across papers as different subject samples are used. For
example, ADNI considers only AD patients with relatively
mild AD, and classification of AD is clearly easier in co-
horts with a greater proportion of more severely affected
patients. Nonetheless, if some future classifier performs
better, it could also be used to boost power using the same
subpopulation selection method shown here.

By separately adding CSF biomarkers and PET-FDG as
covariates for classification, where available, we obtained
new rank order lists. These demonstrated how much the
additional diagnostic measures contributed to AD and MCI
classification, at least with this type of classifier. Different
classes of AD biomarkers have dynamic trajectories that are
thought to be temporally ordered with respect to the pro-
gression of the disease; in general, markers of amyloid
deposition are thought to rise earlier than markers of neu-
rodegeneration detectable on MRI, and these in turn become
abnormal before tests of clinical function (Braskie et al.,
2008; Jack et al., 2010; Petersen, 2010; Protas et al., 2010).

It is therefore plausible to expect classifiers to perform
best with biomarkers that are maximally dynamic during the
stages of disease being considered; measurement reproduc-

ibility and precision are important. The top feature lists are
generally consistent with this hypothesis, as MRI contrib-
utes more strongly to AD classification, whereas PET-FDG
and CSF biomarkers, particularly A�42, play more impor-
tant roles in MCI classification. The observation that CSF
tau levels were more important for AD classification, and
CSF A�42 more contributory to MCI classification is also
consistent with Jack et al.’s model, in which the dynamic
range of A�42 precedes that of tau in the progression of AD.
ApoE is consistently included among the best biomarkers
for both AD and MCI classification, which agrees with
another component of the Jack et al. (2010) hypothesis,
stating that carrying �4 alleles may shift the sequence of
biomarker activities to earlier time points relative to the
onset of overtly detectable clinical symptoms.

Predicting future decline in MCI subjects is more chal-
lenging than AD and MCI classification, as differences
among MCI subjects are subtle. Instead of approaching this
problem with a binary classifier, we adapted the algorithm
to predict a continuous cognitive outcome, which is the
12-month change in CDR-SB. The baseline PET-FDG tem-
poral summary, MRI temporal and ventricular summaries,
and ApoE, were the best predictors of future cognitive
decline in MCI (assessed over a 1 year follow-up interval).
The combination of PET-FDG and ApoE genotype has been
previously shown to provide good accuracy for predicting
MCI conversion (Mosconi et al., 2004). MRI-based tempo-
ral and ventricular volumes have also been reported for their
predictive power in MCI subjects (Fleisher et al., 2008;
Korf et al., 2004). It is mechanistically reasonable for this
combination of structural, functional and genetic informa-
tion to supply complementary predictive power. By using a
multimodality regression approach to predicting cognitive
decline in ADNI subjects, a very recent study found that a
linear combination of MRI and PET-FDG was a better
predictor of cognitive decline than CSF biomarkers (Wal-
hovd et al., 2010), consistent with our best set of biomark-
ers. Unexpectedly, however, the MRI hippocampal summa-
ries were not incorporated into our predictive model, which
is surprising as hippocampal volume can be useful for
prediction of MCI progression to AD (Apostolova et al.,
2006a; Apostolova et al., 2006b; Apostolova et al., 2007;
Frisoni et al., 2010). The presence of detectable extra-
hippocampal atrophy (e.g. in the ventricles and white mat-
ter) may also be good predictors of whether an MCI patient
is deteriorating.

Our choice of brain regions and imaging measures to
analyze was based on discussions among the ADNI Clini-
cal, MRI and PET Cores. We chose imaging measures that
had been used successfully in the past for disease classifi-
cation or to monitor disease progression, preferring those
measures that could be derived efficiently from a large
dataset, without substantial manual interaction with the im-
ages. Clinical ratings were based on those widely used in
clinical trials – CDR and mini-mental status examination
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(MMSE) – and the CSF biomarker measures were those
found to be most promising in pilot studies (Shaw et al.,
2009). Needless to say, more brain regions or alternative
cognitive tests could be proposed, and could be added to
those analyzed here to boost performance even further.
Specifically, in conference abstracts, Alexander et al. (2008)
and Zhang et al. (2008) have advocated a multivariate
network analysis in which a very large number of regional
brain volumes are jointly used as predictors, in an SVM
model. Other groups have parcellated the brain into a large
number of subregions, but found that temporal lobe regions
showed the greatest disease-related changes and signifi-
cantly outperformed any of the clinical or cognitive mea-
sures examined for both AD and MCI (Holland et al., 2009).
To single out brain regions that are most promising for
analysis of disease-related brain change, we also focused on
preselecting voxels in maps of brain change that show
greatest effect sizes in independent samples. We and others
have found that a classifier can be given an entire brain
image, and from it can derive the voxels whose signals are
most promising for group classification (Sun et al., 2009).
By comparing different imaging measures (voxel-based,
ROI-based, or surface-based; Gutman et al., 2008), and
different classifiers (SVM v. others), future studies may be
able to gauge which aspects of the classifier (its mathemat-
ical design or the features used) are most relevant for boost-
ing performance.

In addition to scanning all the subjects with MRI at 1.5
T field strength, one quarter of ADNI’s subjects also re-
ceived 3-T scans. In prior work (Ho et al., 2009), we studied
110 ADNI subjects scanned longitudinally at both 3 and 1.5
T, across a 1-year interval. Our power analyses found that
37 AD and 108 MCI subjects would be needed at 1.5 T
versus 49 AD and 166 MCI subjects at 3 T, to detect a 25%
slowing of atrophy with 80% power, but these estimates did
not differ significantly with field strengths. At both field
strengths, temporal lobe atrophy rates were highly corre-
lated with interval decline in Alzheimer’s Disease Assess-
ment Scale-cognitive subscale (ADAS-cog), MMSE and
CDR-SB scores. To avoid modeling the effects of scanner
field strength as a confound, here we used the 1.5 T ADNI
data only. Some additional work may be needed to show that
3T scanners perform equally well for all biomarkers assessed
here. The few ADNI studies that have assessed the field
strength effect (Ho et al., 2009; Kruggel et al., 2010) suggest
that 1.5 and 3 T scanners did not significantly differ in their
power to detect neurodegenerative changes over a year.

Some clinical measures, such as CDR-SB, were not used
as features for classification to avoid circular inference.
Because these measures are used in making a diagnosis, it
would be circular to incorporate them into our diagnostic
classifiers and then test their empirical accuracy relative to
the diagnosis given by physicians in the clinic. Even so,
if used in practice to assist diagnosis, a classifier could
use more cognitive measures – including those conven-

tionally used for diagnosis and any other relevant infor-
mation. However, the diagnostic accuracy of such a clas-
sifier could not then be “independently” validated in the
same way as we did here. Doing so would require some
other form of independent diagnostic ground truth, not
used by the classifier, such as autopsy confirmation of
characteristic signs of AD neuropathology. This could in
principle be done, but neuropathology is not available in
large numbers for the ADNI cohort.

A major clinical application of disease classifiers is for
boosting power for clinical trials by reducing sample size
estimates required to observe therapeutic effects. The idea
of targeting a subgroup for analysis of treatment effects is
not new (Frisoni et al., 2010). In fact, a drug trial for
prodromal AD is currently recruiting subjects, with an in-
clusion criterion based on CSF A�42 and t-tau (clinicaltrials.
gov/ct2/show/NCT00890890?term�bms�alzheimer%27s&
rank�2). It appears new, however, to base the selection on a
machine learning-based classifier that combines numerous bi-
omarkers, which include neuroimaging measures. Combina-
tions of disease markers are more likely to achieve sample size
reductions than using single measures, such as subpopulation
selection based on hippocampal volume only (of course statis-
tical power must be traded off against the logistical complexity
and cost of collecting and analyzing multiple biomarker as-
sessments). When we considered the subset of subjects classi-
fied as most likely to have AD by our multifeature AD clas-
sifier, and the most likely decliners in MCI, we were able to
reduce the n80 estimates to fewer than 40 subjects for both AD
and MCI, improving on those estimates we reported before
(Ho et al., 2009; Hua et al., 2009; Hua et al., 2010b). This
result supports the concept of clinical trial enrichment, which
has been previously advocated (Cummings et al., 2007; Frisoni
et al., 2010; Hampel and Broich, 2009). Our enrichment strat-
egy works because the subpopulation of subjects who are more
likely to decline are selected based on disease classifiers and
outcome predictors that integrate information from a number
of complementary biomarkers.

We chose to compute sample sizes needed to detect a
25% slowing of atrophy with 80% power. While 25% is a
reasonable target for a treatment that aims to slow atrophy,
the exact number chosen is arbitrary. It is simple to compute
sample size estimates for other percentage reductions in the
atrophic rate, such as 5% or 50%, for example. As we noted
in Hua et al. (2010b), treatments may slow atrophy to
different degrees, which may be denoted by k%, for differ-
ent k. The sample size estimates required to detect a k%
slowing of atrophy may be easily derived by multiplying the
sample size estimates (n80) in this paper by (25/k)2, as the
numbers follow an inverse-square law. For example, four
times as many subjects would be needed to detect a 12.5%
slowing of atrophy (half of 25%), versus a 25% slowing of
atrophy (Ho et al., 2009). The quadratic relationship be-
tween the sample size estimates and the percentage atrophic
rate is illustrated in (Hua et al., 2010b). Similarly, the results

1438 O. Kohannim et al. / Neurobiology of Aging 31 (2010) 1429–1442



Author's personal copy

of this paper can be easily translated to studies aiming to
detect a different level of treatment effect, and our findings
remain unaffected as multiplying the variables by a constant
(25/k)2 does not alter the ranking of the effect sizes in the
statistical tests (it is a monotone transformation, i.e. it pre-
serves the rank order).

As a caveat, the n80 “minimal sample size” measure is
practical but has limitations: first, it is based on changes in
the patient groups only, and not their difference from con-
trols; second, it assumes that a treatment would slow atro-
phy in the same places as it normally occurs, with the same
clinical outcome as observing an untreated sample with less
atrophy. Finally, any treatment effects in a subanalysis
might only apply to people who fit the selection criteria for
that subanalysis; even so, evidence of an effect in a suba-
nalysis might suffice to initiate a broader study.

The approach and results reported here are relevant to
future work in the neuroimaging of AD in several ways.
First, several authors advocate “enrichment” in clinical tri-
als by trying to select those most likely to decline, based on
clinical criteria, or occasionally based on imaging criteria.
This can be done by applying thresholds or cut-offs to
volumetric measures on MRI scans, such as hippocampal
volume, but here we advocate using the full armory of
imaging and CSF measures to classify subjects first, and
then use the classifier’s output to select subpopulations for
later statistical testing.

Although this may seem like basing the statistical ap-
proach in part on the data collected, rather than specifying
it all in advance of the study, this approach would identify
subjects whose imaging data made them most likely to show
treatment effects, regardless of the treatment. A similar
approach to boost the power of imaging biomarkers is
voxel-set preselection, which substantially boosts power to
detect the slowing of atrophy (Chen et al., 2010; Hua et al.,
2010).

For these statistically guided measures to be widely
adopted as outcome measures in clinical trials, there needs
to be some flexibility on the part of regulatory bodies that
some features of the data collected may play a role in
establishing which measures or subjects are evaluated. The
analysis strategy can then adapt to the incoming data, and
can exploit the power of Bayesian statistics and machine
learning to obtain more powerful measures. It is quite de-
fensible � and even advisable � for these machine learning
approaches to be used, so long as the independence of
statistical training and test samples is rigorously maintained.

A limitation of our study is that sample sizes become
small when multiple imaging modalities and biomarkers are
considered. In longitudinal studies especially, assessments
of many kinds bring added costs, complexity, logistical
difficulty, subject burden, and subject attrition (although in
ADNI, attrition rates are only around 7% per year). Larger
cohorts of subjects with available data from multiple bi-
omarkers would allow more powerful classifiers and pre-

dictors to be developed, incorporating the best combinations
of available diagnostic tools. More accurate ranking of bi-
omarkers for verifying the details of Jack et al.’s temporal
sequence hypothesis would become feasible. In addition,
future studies will include additional diagnostic modalities
such as Pittsburgh Compound B (PiB), diffusion tensor
imaging (DTI), arterial spin labeling (ASL) and resting state
functional MRI for disease classification. PiB has been
collected in a small subsample of ADNI subjects, but we did
not evaluate it here as requiring all biomarkers would have
further limited our sample sizes. Another future direction
would be to employ machine learning algorithms other than
SVM (e.g. boosting; Morra et al., 2009b), or classifiers
based on features in voxel-based maps (Sun et al., 2009), to
improve classification and prediction accuracy. More pow-
erful classifiers may then be implemented to improve upon
our clinical trial boosting results. Furthermore, machine
learning can perhaps be used to discover genetic (Stein et
al., 2010a; Stein et al., 2010b), epidemiological and physi-
ological factors that influence the progression of AD.
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