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Abstract. The growing public threat of Alzheimer’s disease (AD) has raised the urgency to discover and validate prognostic
biomarkers in order to predicting time to onset of AD. It is anticipated that both whole genome single nucleotide polymorphism
(SNP) data and high dimensional whole brain imaging data offer predictive values to identify subjects at risk for progressing
to AD. The aim of this paper is to test whether both whole genome SNP data and whole brain imaging data offer predictive
values to identify subjects at risk for progressing to AD. In 343 subjects with mild cognitive impairment (MCI) enrolled in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI-1), we extracted high dimensional MR imaging (volumetric data on 93
brain regions plus a surface fluid registration based hippocampal subregion and surface data), and whole genome data (504,095
SNPs from GWAS), as well as routine neurocognitive and clinical data at baseline. MCI patients were then followed over 48
months, with 150 participants progressing to AD. Combining information from whole brain MR imaging and whole genome
data was substantially superior to the standard model for predicting time to onset of AD in a 48-month national study of subjects
at risk. Our findings demonstrate the promise of combined imaging-whole genome prognostic markers in people with mild
memory impairment.
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INTRODUCTION

The growing public threat of Alzheimer’s disease
(AD) has raised the urgency to discover and validate
prognostic biomarkers that may identify subjects at
greatest risk for future cognitive decline and accelerate
the testing of preventive strategies [1, 2]. In this regard,
studies of combinatorial biomarkers may have greater
ability to capture the heterogeneity and multifactorial
complexity of AD, than a traditional single biomarker
study [3].

Prior studies of subjects at risk for AD have exam-
ined the utility of various individual biomarkers, such
as cognitive tests, fluid markers, imaging measures,
and some individual genetic markers (e.g., ApoE4)
[1]. In particular, imaging markers such as hippocam-
pal volume and shape, cortical regional volumes and
thickness, and positron emission tomography (PET)
(amyloid imaging, FDG) abnormalities have all been
linked in one or more studies to faster progression
in at risk subjects [4–16], but are not yet optimally
predictive at an individual level.

More recently, genome-wide association study
(GWAS) data has been used to characterize several
potential genetic risk factors for AD with several
cross-sectional studies also correlating these data with
imaging and fluid biomarkers [17]. There are also some
studies combining imaging and genetics information to
predict the conversion of MCI to AD [18, 19], however,
they only consider the conversion of MCI to AD as a
binary response, and they do not investigate the risk of
progression to AD for each specific MCI individual.
To our knowledge, no prior study has leveraged both
GWAS SNP data, as well as high dimensional whole
brain imaging data to examine their combined value
in identifying subjects at greatest risk for progressing
to AD.

METHODS

Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://www.
loni.usc.edu/ADNI). The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-
profit organizations, as a $60 million, 5-year public
private partnership. The primary goal of ADNI has

been to test whether serial magnetic resonance imag-
ing (MRI), PET, other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of mild cognitive impair-
ment (aMCI) and early AD. Determination of sensitive
and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials. The Princi-
pal Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of Califor-
nia - San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800
adults, ages 55 to 90, to participate in the research—
approximately 200 cognitively normal older individu-
als to be followed for 3 years, 400 people with aMCI to
be followed for 3 years, and 200 people with early AD
to be followed for 2 years. For up-to-date information,
see http://www.adni-info.org.

Study sample

We considered 343 subjects with mild cognitive
impairment (MCI) enrolled in the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI-1). These MCI
patients were then followed over 48 months, with 150
participants progressing to AD (Table 1). MCI convert-
ers did not differ from MCI noncoverters in gender,
handedness, marital status, retirement percentage, and
age (p-values >0.05), but as expected, differed from
them in APOE4 status as well as baseline cognition
(p < 0.05) (Table 1). Mean follow up time was 75
days longer in converters (p = 0.06). From them, we
extracted high dimensional MR imaging and whole
genome data, as well as routine neurocognitive and
clinical data at baseline.

MRI imaging

These scans on 343 subjects were performed on
a 1.5 T MRI scanners by using a sagittal MPRAGE
sequence with the following parameters: repetition
time (TR) = 2400 ms, inversion time (TI) = 1000 ms,
flip angle = 8◦, and field of view (FOV) = 24 cm
with a 256 × 256 × 170 acquisition matrix in the x-,
y-, and z-dimensions, which yields a voxel size of
1.25 × 1.261 × 2.

We processed the MRI data by using standard
steps including anterior commissure and posterior

http://www.loni.usc.edu/ADNI
http://www.loni.usc.edu/ADNI
http://www.adni-info.org
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Table 1
Study sample: comparison of converters and nonconverters

Sample size MCI converters MCI nonconverters Test statistics
n = 150 n = 193

Mean Age (in years) 74.7 (7.0) 75.1 (7.5) T test: p = 0.69
Gender (Male percentage) 60.0% 66.8% Chi-square test: p = 0.23
Handedness (Right hand percentage) 92.0% 90.7% Chi-square test: p = 0.81
Marital Status (Widowed percentage) 10.7% 11.9% Chi-square test: p = 0.95
Marital Status (Divorced percentage) 4.7% 6.2%
Marital Status (Never Married percentage) 1.3% 1.0%
Mean Education Length (in years) 15.6 (2.9) 15.8 (3.0) T test: p = 0.52
Retirement percentage 80.0% 79.3% Chi-square test: p = 0.98
APOE 4 carriers (%): APOE4 first allele (genotype 3%) 78.7% 81.4% Chi-square test: p = 0.02
APOE4 first allele (genotype 4%) 17.3% 9.3%
APOE4 second allele (genotype 4%) 30.0% 56.0% Chi-square test: p < 0.0001
Mean ADAS-Cog 11 Score 13.2 (4.0) 10.2 (4.3) T test: p < 0.0001
Mean Duration of Follow up (in days) 1009.9 934.4 T test: p = 0.06

MCI, mild cognitive impairment; ADAS-Cog, Alzheimer’s Disease Assessment Scale-cognitive subscale.

commissure correction, skull-stripping, cerebellum
removing, intensity inhomogeneity correction, seg-
mentation, and registration [20]. After segmentation,
we segmented the brain data into four different tis-
sues: grey matter, white matter, and cerebrospinal fluid.
Moreover, we automatically labeled 93 regions of
interest (ROIs) on the Jacob atlas [21], and transferred
the labels following the deformable registration of sub-
ject images [22]. In addition, we chose 23 ROIs, which
may significantly influence MCI progression from the
existing literature [10, 23, 24]. The 23 ROIs were
bilateral entorhinal cortices, bilateral hippocampal for-
mation, bilateral amygdala, bilateral caudate nuclei,
bilateral putamen, bilateral posterior limb of internal
capsule including cerebral peduncle, bilateral nucleus
accumbens, bilateral lateral ventricles, bilateral thala-
mus, bilateral fornix, bilateral cingulate, and the corpus
callosum.

Hippocampus image preprocessing

We adopted a surface fluid registration based hip-
pocampal subregional analysis package [25], which
uses isothermal coordinates and fluid registration to
generate one-to-one hippocampal surface registration
for following surface statistics computation. This soft-
ware package has been adopted by various studies [22,
26–30].

Given the 3D MRI scans, hippocampal substructures
were segmented with FIRST [31] and hippocampal
surfaces were automatically reconstructed with the
marching cube method [32]. We applied an automatic
algorithm, topology optimization, to introduce two
cuts on a hippocampal surface to convert it into a
genus zero surface with two open boundaries. The
locations of the two cuts were at the front and back

of the hippocampal surface, representing its anterior
junction with the amygdala, and its posterior limit as
it turns into the white matter of the fornix. Then holo-
morphic 1-form basis functions were computed [33].
These induced conformal grids the hippocampal sur-
faces, which were consistent across subjects. With this
conformal grid, we computed the conformal represen-
tation of the surface [25], i.e., the conformal factor
and mean curvature, which represent the intrinsic and
extrinsic features of the surface, respectively. The “fea-
ture image” of a surface was computed by combining
the conformal factor and mean curvature and linearly
scaling the dynamic range into [0, 255]. Next, we
registered the feature image of each surface in the
dataset to a common template with an inverse consis-
tent fluid registration algorithm [26]. With conformal
parameterization, we essentially converted a 3D sur-
face registration problem into a 2D image registration
problem. The flow induced in the parameter domain
establishes high-order correspondences between 3D
surfaces. Finally, various surface statistics were com-
puted on the registered surface, such as multivariate
tensor-based morphometry statistics [33], which retain
the full tensor information of the deformation Jaco-
bian matrix, together with the radial distance [34],
which retains information on the deformation along
the surface normal direction.

SNP data

The subjects’ genotype variables were acquired
based on the Human 610-Quad Bead-Chip (Illumina,
Inc., San Diego, CA) in the ADNI database, which
resulted in 620,901 SNPs. To reduce the population
stratification effect, we used 749 Caucasians from all
818 subjects with complete imaging measurements at
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baseline. Quality control procedures included (i) call
rate check per subject and per SNP marker, (ii) gender
check, (iii) sibling pair identification, (iv) the Hardy-
Weinberg equilibrium test, (v) marker removal by the
minor allele frequency, and (vi) population stratifi-
cation. The second line preprocessing steps include
removal of SNPs with (a) more than 5% missing
values, (b) minor allele frequency smaller than 5%,
and (c) Hardy-Weinberg equilibrium p-value<1e–6.
Remaining missing genotype variables were imputed
as the modal value. 747 subjects and 504,095 SNPs
remained.

We included information from all the 22 chromo-
somes. Since each chromosome contains a number
of SNPs, we used principal component analysis for
each chromosome and picked the first two principal
components for each chromosome. We then used the
PLINK package (https://pngu.mgh.harvard.edu/ pur-
cell/plink/data.shtml#plink) to perform quality control
for the genomic data. The principal component anal-
ysis for each chromosome was conducted using ‘svd’
function in R software.

Statistical analyses

A popular model used in literature is the Cox pro-
portional hazards model, which accounts for other
covariates that are associated with the timing of the
events. Covariates of interest include demographic
information (8 covariates), the APOE4 genotype
(3 covariates), the Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-Cog) score (1 covari-
ate), the hippocampus surface data (7 covariates for
each curve, total 14 covariates), the ROI volume data
(23 covariates), the chromosomewise information (2
covariates for each chromosome, total 44 covariates),
and the significant SNPs information (5 covariates).
We used the R function “coxph” to implement the fit-
ting of the Cox proportional hazards model. We fitted
a Cox regression model with demographic, clinical,
and cognitive (ADAS-Cog score) predictors as well
as APOE, referred to as the Clinical-Cognitive model
(Model 1), and obtained its estimation and testing
results. This model did not include any other imaging
and genetic data. We fitted a second Cox regression

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Estimated coefficient functions associated with the hippocampus surface data. Panel (a)-(g) are the estimates of the first seven functional
principal components corresponding to the sorted seven eigenvalues, in which (a) corresponds the largest eigenvalue and (h) is the color bar
with 11 lines representing 11 equally spaced points between [−0.0462, 0.0421].
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model with demographic, imaging, and chromosome-
wise predictors, but without the ADAS-Cog score
and significant SNPs information, referred to as the
Imaging-Genetics model (Model 2), and obtained its
estimation and testing results.

As a comparison, we also used the results obtained
from GWAS to incorporate the genetic information.
Specifically, we selected the top 101 significant SNPs
by using a kernel machine method [35], and then cal-
culated their top 5 PCs and used them as predictors
(significant SNP information). We fitted a third Cox
regression model with demographic, imaging, and sig-
nificant SNP information, but without the ADAS-Cog
score and chromosome-wise information, and then
obtained parameter estimation and testing results. We
referred this model to as the Traditional Imaging-
Genetics Model (Model 3).

When we fitted Cox regression models, we treated
the left and right hippocampus surface data as func-
tional predictors. For each subject, the radial distance
was obtained from baseline hippocampal surfaces data,
which yields two 15,000 dimensional vectors denoting
data from left hippocampus and right hippocampus,
respectively. We applied functional principal compo-
nent analysis (FPCA) [36, 37]. We selected 7 functional
principal component (FPC) scores for each functional
predictor, which explain approximately 70% of the
variance. For implementation of FPCA, we use the
‘svd’ function in R software.

We used FPCA to extract the first 7 FPCs of each of
the left and right hippocampus surface data and the first
2 FPCs of the SNP data along each chromosome, then
used these as basis functions to represent the regression
coefficient functions associated with the hippocampus
surface and SNP on all chromosomes in the Cox regres-
sion. As an illustration, we plotted the first FPCs for
both left and right hippocampi in Fig. 1.

Since we do not have the validation data set,
we investigated the predictive performance of the
candidate models using the receiving operating char-
acteristic (ROC) curve. In particular, we calculated the
area under the curve (AUC), which is often used to
measure the prediction of survival models. In partic-
ular, we first randomly picked 200 subjects for the
training data and fit all the candidate models. After
that, we used the remaining 143 individuals for the
testing and calculated the AUC [38]. The method can
be implemented by using the R function “AUC.cd”.
We repeated the above steps for 100 times, i.e., ran-
domly separated the data for 100 times and obtained
100 AUCs. The mean and standard deviations can be
obtained using these 100 AUCs.

RESULTS

We compared the predictive value of standard of care
(clinical demographic variables, APOE4, the ADAS-
Cog score, Model 1) versus imaging-genetic markers
(MRI volumes and surface data plus GWAS SNP
and demographics, Model 2). We have obtained the
first five principal components of the 101 top SNPs
obtained from GWAS and added it into our Model
2 (call it Model 3). We have compared our Model 2
versus Model 3 as well.

ROC analysis revealed that Model 1 (combining
just routine clinical demographics and cognitive data
with a single genotype APOE4) had a low predictive
value at 48 months (AUC 0.75) (Fig. 2, Supplemen-
tary Table 1, Supplementary Figure 3). In this model,
APOE4 and ADAS-Cog were the significant predic-
tors. In contrast, Model 2 (combining full genetic SNP
and high dimension imaging data with demographics
but without any cognitive data) had a much higher
predictive value (AUC 0.95) (Fig. 2, Supplementary
Table 2, Supplementary Figure 3). SNPS on chro-
mosome 2, 10, 11, 15, 17, and 18 (Supplementary
Figure 2), APOE4 status, surface morphology data of
both hippocampi (especially anterior regions, Fig. 1,
Supplementary Figure 1) and volumes of hippocam-
pus, amygdala, and thalamus contributed significantly.
The 100-fold cross validation using a test and train-
ing data set revealed AUC of 0.95 (±0.014) for the
imaging-genetic model and 0.75 (±0.024) for the

Fig. 2. The ROC curves comparison for the imaging plus genetics
model versus the cognitive model plotted using one pair of training
and testing data set. The blue solid line denotes the ROC curve for
the image-genetics model and the red dash line denotes the ROC
curve for clinical-cognitive model.
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clinical-cognitive model. For the Traditional Imaging-
Genetics model, we can only obtain a predictive
value (AUC 0.90) (Fig. 2, Supplementary Table 3,
Supplementary Figure 3), which indicates the advan-
tages of using the chromosome-wise information
instead of the traditional significant SNPs information.
The reason may be due to the pitfalls of predic-
tion using significant SNPs [40]. Meanwhile, we have
found that combining all variables (cognitive data plus
imaging-genetic data) showed high predictive accu-
racy (AUC 0.96) but was not different from the value
provided by imaging-genetics data alone. Besides,
combining the significant SNPs information with all
the predictors in our Imaging Genetics Model achieved
slightly higher predictive accuracy (AUC 0.97), but
was not different from the value provided by Imaging-
Genetic Model alone.

From the estimation results of our imaging-genetics
model, we have found that divorced individuals, older
people, individuals with 2nd allele of APOE4 genotype
3 may have smaller hazard function. The individuals
with larger ROI volumes in hippocampal left, amyg-
dala right, and thalamus left may have smaller hazard
function, while the individuals with larger ROI vol-
umes in hippocampal right, amygdala left, posterior
limb of internal capsule, and thalamus right may have
larger hazard function.

DISCUSSION

These findings are the first demonstration, to our
knowledge, of the value of combined whole brain MR
and whole genome SNP data in the 48-month prog-
nosis of subjects at risk for AD. Our finding support
prior MRI studies of volumetric hippocampal changes
in prodromal AD [8, 39] and extend them by finding
that the possible prognostic value of combining infor-
mation from high dimensional imaging and genetics
may be superior to that provided by routine clinical-
cognitive testing data.

Our findings also confirm the association between
APOE4 status and AD, and identify additional new
markers on chromosomes 2, 10, 11, 15, 17, and 18 as
having significant effects on conversion. A variety of
genes have been identified in prior GWAS studies as
potential risk factors for AD such as clusterin (chro-
mosome 8), complement receptor 1 (chromosome 1),
phosphatidylinositol binding clathrin assembly protein
(chromosome 11), sortilin-related receptor (chromo-
some 11), triggering receptor expressed on myeloid
cells 2 (chromosome 6), and cluster of differentiation

33 (chromosome 19) as well as TOMM40 (chromo-
some 19) [41]. Our study did not examine any of these
newer gene markers specifically but provides support
to the notion that there is additional genetic heritability
in late-onset AD beyond that accounted for by APOE.

There are some strengths and limitations to our
analyses. ADNI is a national biomarker study that uti-
lized rigorous standardized data collection procedures,
and well established criteria to select MCI subjects.
Rather than using the individual data on all SNPs,
we used the more conservative statistical method of
doing principal component analysis for each chromo-
some and picking the first two principal components
for each chromosome. Our findings survived internal
cross validation but need replication in an independent
community based sample. We did not include measures
of pathology (e.g., amyloid-�) in our models since
cerebrospinal fluid and amyloid-PET were available
only in a small subset of individuals in ADNI-1. How-
ever, a study of ADNI-2 subjects has shown a robust
correlation between the APOE �4 allele and cortical
amyloid burden [42], suggesting that APOE �4 may
have served as a surrogate for cortical amyloid plaque
load in our analysis. It is important to confirm the above
findings obtained from ADNI-1 in other independent
data sets [40].

Prior investigations of prediction of MCI-AD to AD
have utilized feature selection to assess the most impor-
tant biomarkers of prediction of conversion. Here, we
have demonstrated the utility of Cox hazard models as a
valuable method for identifying the “optimal combina-
tion” of early markers of conversion to AD in patients
with MCI. If replicated in independent cohorts, such
combinatorial markers of early AD could be useful for
selecting at risk individuals for prevention trials and
for discovering novel targets for discovering disease
modifying therapies.
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