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Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly with no effec-

tive treatment currently. Recent studies of noninvasive neuroimaging, resting-state func-

tional magnetic resonance imaging (rs-fMRI) with graph theoretical analysis have shown

that patients with AD and mild cognitive impairment (MCI) exhibit disrupted topological

organization in large-scale brain networks. In previous work, it is a common practice to

threshold such networks. However, it is not only difficult to make a principled choice of

threshold values, but also worse is the discard of potential important information. To

address this issue, we propose a threshold-free feature by integrating a prior persistent

homology-based topological feature (the zeroth Betti number) and a newly defined con-

nected component aggregation cost feature to model brain networks over all possible

scales. We show that the induced topological feature (Integrated Persistent Feature) follows

a monotonically decreasing convergence function and further propose to use its slope as a

concise and persistent brain network topological measure. We apply this measure to study

rs-fMRI data from the Alzheimer's Disease Neuroimaging Initiative and compare our

approach with five other widely used graph measures across five parcellation schemes rang-

ing from 90 to 1,024 region-of-interests. The experimental results demonstrate that the

proposed network measure shows more statistical power and stronger robustness in group

difference studies in that the absolute values of the proposed measure of AD are lower than

MCI and much lower than normal controls, providing empirical evidence for decreased func-

tional integration in AD dementia and MCI.

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; ALFF, amplitude of low-frequency fluctuations; BNP, the zeroth

Betti numbers plot; BOLD, blood oxygen level dependent; CDR, clinical dementia rating; CPL, characteristic path length; EC, eigenvector centrality; FC, func-

tional connectivity; FDG, fludeoxyglucose; H-1024, randomly generated high-resolution atlas with 1,024 ROIs; ICA, independent component analysis; IPF, Inte-

grated Persistent Feature; L-AAL116, low-resolution automated anatomical labeling atlas with 116 ROIs; L-AAL90, low-resolution automated anatomical

labeling atlas with 90 ROIs; L-Crad200, low-resolution Craddock et al. functional atlas with 200 ROIs; L-HOA112, low-resolution Harvard-Oxford atlas with

112 ROIs; MCI, mild cognitive impairment; MMSE, Mini-Mental Status Examination; Mod, modularity; MRI, magnetic resonance imaging; MST, minimum span-

ning tree; NC, normal control; ND, network diameter; PET, positron emission tomography; ReHo, regional homogeneity; ROI, region-of-interest; rs-fMRI, rest-

ing-state functional magnetic resonance imaging; RSN, resting-state network; SIP, slope of IPF plot; SLD, single linkage dendrogram; SLFF, spontaneous low-

frequency fluctuations

Received: 23 May 2018 Revised: 25 July 2018 Accepted: 26 August 2018

DOI: 10.1002/hbm.24383

1062 © 2018 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/hbm Hum Brain Mapp. 2019;40:1062–1081.

https://orcid.org/0000-0001-8497-3069
https://orcid.org/0000-0002-6241-735X
mailto:kuang@nuc.edu.cn
mailto:ylwang@asu.edu
http://wileyonlinelibrary.com/journal/hbm


KEYWORDS

Alzheimer's disease, functional connectivity, network measure, persistent homology, resting-

state functional magnetic resonance imaging, rips filtration

1 | INTRODUCTION

Alzheimer's disease (AD) is a progressive neurodegenerative disorder

which is mainly characterized by significant impairments in a global

cognitive decline (Bernhardt, Chen, He, Evans, & Bernasconi, 2011;

DeSalvo, Douw, Tanaka, Reinsberger, & Stufflebeam, 2013; Lo et al.,

2010; Stam, Jones, Nolte, Breakspear, & Scheltens, 2006; Van Der

Flier et al., 2002; Vlooswijk et al., 2011). There are several available

imaging biomarkers for mild cognitive impairment (MCI) and AD

including structural imaging markers, such as magnetic resonance

imaging (MRI)-based hippocampal morphometry (Damoiseaux &

Greicius, 2009; Jack et al., 1999; Jack et al., 2000; Tsao et al., 2017;

Wang et al., 2011), molecular imaging markers, such as amyloid posi-

tron emission tomography (PET) (Johnson et al., 2013; Landau et al.,

2012; Okello et al., 2009), and functional imaging markers, such as

fludeoxyglucose (FDG)-PET (Caroli et al., 2012; Cohen & Klunk,

2014). Among these biomarkers, FDG-PET has been proven a precise

predictor of both MCI and AD (Ito et al., 2015) and is more suitable to

monitor disease progression because functional changes are pre-

sented in an early stage of the disease and continue to change as the

disease progresses (Sheline & Raichle, 2013). However, FDG-PET uses

ionizing radiation and is relatively expensive. As a noninvasive tech-

nique, resting-state functional magnetic resonance imaging (rs-fMRI)

has been discussed as a functional imaging alternative for FDG-PET

(Teipel et al., 2015). It evaluates low-frequency fluctuations in the

blood oxygen level dependent (BOLD) signal while the subject is at

rest, and is particularly useful in the setting for patients who are

unable to cooperate with the task-based paradigm (Fox & Raichle,

2007; Lee et al., 2016). By measuring functional connectivity

(FC) between spatially distinct brain regions, rs-fMRI can be used to

evaluate brain functions (Biswal, Zerrin Yetkin, Haughton, & Hyde,

1995; Cordes et al., 2001). Although rs-fMRI is still investigational,

some reports have indicated that this method is ready for clinical

application in the preclinical setting (Lee, Smyser, & Shimony, 2013;

Sheline & Raichle, 2013; Wang et al., 2013).

There are three general aspects/levels in AD-related research

with fMRI modality, namely, regional coherence, functional connectiv-

ity, and functional network. Spontaneous low-frequency fluctuations

(SLFF) (Biswal et al., 1995; Li et al., 2002), regional homogeneity

(ReHo) (Zang, Jiang, Lu, He, & Tian, 2004), and amplitude of low-

frequency fluctuations (ALFF) (Han et al., 2011; Liu et al., 2014) are

among methods for the research of local regional coherence study.

Such methods evaluate fMRI signal similarity or intensity for a given

local region in the resting brain. However, the functional association

between different regions cannot be obtained merely by such ana-

lyses. Thus, further functional connectivity analysis needs to be done

on activated functional regions (Jiang & Zuo, 2016; Liu et al., 2008) by

methods including independent component analysis (ICA) (Beckmann,

DeLuca, Devlin, & Smith, 2005), seed-based or region-of-interest

(ROI) method (Poldrack, 2007), and so forth. Generally, the functional

connectivity maps are then compared with a two-sample t test

(Sheline & Raichle, 2013) which inevitably introduces the problem of

mass-univariate hypothesis testing. To enable relatively comprehen-

sive mapping of brain functional connectivity and topological organi-

zation, numerous studies have been focused on functional network

(Biswal et al., 2010; He, Chen, Gong, & Evans, 2009; Wang et al.,

2013; Wang, Zuo, & He, 2010) using various network analysis mea-

sures based on graph theory (Bullmore & Sporns, 2009; He & Evans,

2010; Sporns, 2011). With these measures, various nontrivial topolog-

ical features, including small-world organization (Sanz-Arigita et al.,

2010; Stam et al., 2006), modular structure (De Haan et al., 2012;

Sporns & Betzel, 2016), and highly connected hubs (Binnewijzend

et al., 2014; Dai et al., 2015), have been observed to be disrupted in

MCI and dementia due to AD (Dai & He, 2014). The weighted net-

works usually require defining a set of thresholding values to remove

spurious connections before quantifying network features (Giusti,

Ghrist, & Bassett, 2016). The fixed thresholding scheme is a common

practice to perform the selection of those strongest edges that exceed

a given fixed threshold, which can be obtained based on the density

of the network (Tong, Aganj, Ge, Polimeni, & Fischl, 2017), or using

statistical criteria of connectivity strength (Binnewijzend et al., 2012;

Smith & Nichols, 2009; Wang et al., 2013), and so forth. However, it

may result in inconsistent network features when the thresholding

value varies as its choice is rather arbitrary (Woo, Krishnan, & Wager,

2014; Zalesky, Cocchi, Fornito, Murray, & Bullmore, 2012). Therefore,

the parameter-free scheme of cost thresholding has been applied

to overcome this issue. The optimal thresholding value can be

sought automatically by maximizing the cost efficiency (Khazaee,

Ebrahimzadeh, & Babajani-Feremi, 2016), or keeping the shortest

traveling paths (Dimitriadis et al., 2010) where minimum spanning tree

(MST) (Stam et al., 2014) is an exemplar, and so on. However, such

scheme usually only has one single optimal threshold, this operation

may discard some potential valuable information during network con-

struction (Giusti et al., 2016; Santarnecchi, Galli, Polizzotto, Rossi, &

Rossi, 2014).

To address the issue of network threshold selection, a set of brain

network analysis methods called graph filtration based on persistent

homology (Chen & Edelsbrunner, 2011; Edelsbrunner & Harer, 2010;

Wu et al., 2017) has been proposed to measure persistent brain net-

work topology features generated over all possible thresholds (Choi

et al., 2014; Chung, Hanson, Ye, Davidson, & Pollak, 2015; Lee et al.,

2017; Lee, Kang, Chung, Kim, & Lee, 2012; Yoo et al., 2017). It

quantifies various persistent topological features at different scales in

a coherent manner and avoids the thresholding selection. Existing
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approaches mainly associate persistent topological features, for exam-

ple, the zeroth Betti numbers, with current varying thresholding

values. However, they usually ignore the association between such

features and forthcoming thresholding value changes to aggregate all

connected components into one connected component. Imagine that

there is an energy cost to consolidate individual brain networks into a

fully connected component: we may name this feature the connected

component aggregation cost. Intuitively, Betti numbers and aggregation

cost are complementary, as Betti numbers describe invariant features

in the current state, while the aggregation cost estimates the total

cost for completing all subsequent evolutions in a nested filtration

graph. Therefore, we propose a novel univariate and persistent brain

network feature that considers both current and forthcoming persis-

tent topological features and hypothesize that such a concise and per-

sistent feature may boost statistical power to detect AD-induced

topological changes in resting-state fMRI analysis.

In this article, we will develop a robust and parameter-free net-

work measure, Integrated Persistent Feature (IPF) and apply it to study

resting-state networks (RSN) constructed from rs-fMRI. In our experi-

ments, we employ rs-fMRI data from the publicly available Alzheimer's

Disease Neuroimaging Initiative (ADNI) to investigate the topological

changes in the functional connectomes of patients of AD and MCI

comparing with those of normal control (NC) subjects. Our data set

consists of 106 subjects, including 31 AD, 38 MCI, and 37 NC sub-

jects. We set out to test whether the proposed network feature pro-

vides a robust, computationally efficient, and statistically powerful

measure of human brain network dynamics.

2 | METHODS

2.1 | Theoretic background

2.1.1 | Connected component aggregation cost

In a graph filtration (defined in Appendix A), the zeroth Betti numbers

plot (BNP) (defined in Appendix B) shows how the number of con-

nected components (i.e., the zeroth Betti number) varies over differ-

ent filtration values (Ghrist, 2008). An example is shown in Figure 1.

However, the zeroth Betti number only quantifies the invariant fea-

ture in a given state, and the state information of future networks

(i.e., subsequent evolutional networks in a nested filtration graph) is

not measured. Thus, we define an additional feature to quantify the

process for completing all subsequent evolutions in a nested filtration

graph.

Definition 1: We define connected component aggregation

cost as the total of involved edge weights for completing

all subsequent evolutions from any current connected

components to a future fully connected component in a

graph filtration. Given λ0 = 0, as well as a tree

T with m ≥ 2 nodes and unique positive edge weights

λ1 < λ2 < � � � < λm − 1, the connected component aggrega-

tion cost corresponding to the maximal graph filtration is

defined as

l T,λið Þ¼

Xm−1

k¼i+1

λk , 0≤ i≤m−2

0, i¼m−1:

8>>>><
>>>>:

ð1Þ

The connected component aggregation cost is defined as the

summation of subsequent filtration values before evolving into a fully

connected component on the collection of binary networks. The cost

at filtration value λm − 1 is zero where all nodes are connected.

The connected component aggregation cost can be easily under-

stood through energy consumption in the aggregation process from

loose connected components to a fully connected component. Sup-

pose each connected component has its energy and the energy will

disappear once the component is connected with another. In other

words, to connect more components, more energy consumption is

required. In a graph filtration, none of the nodes is connected at the

beginning when filtration value λ is zero; the nodes are gradually con-

nected and eventually aggregate into one giant component when all

nodes are connected. Thus, as we set the fully connected component

as the target of graph evolution, the required energy consumption

progressively declines with the graph evolution until all components

are connected. In this way, because the graph filtration is produced by

minimum spanning tree (Lee et al., 2012) in this study, the connected

component aggregation cost can be thought as the least energy con-

sumption for evolving from the current loose connected components

to a future fully connected component.

To some extent, the connected component aggregation cost is

related to path lengths between the connected components, as the

more loosely connected the components are, the more aggregation

cost will take to transit to more tightly connected components until all

components are connected. As we know the changes in path lengths

between nodes have been proved to be very important in brain net-

work analysis (Braun, Muldoon, & Bassett, 2015), especially in AD

research (Sheline & Raichle, 2013; Stam et al., 2006; Wang et al.,

2013). We argue that the connected component aggregation cost

may be a useful feature for the AD network analysis research.

2.1.2 | Integrated Persistent Feature

We further define a novel network measure, IPF, by integrating a prior

topological feature (i.e., the zeroth Betti number) and the newly

FIGURE 1 An example of graph filtration. The left is an original

weighted graph X followed by four nested binary networks
B X,0ð Þ�B X,0:1ð Þ�B X,0:2ð Þ�B X,0:4ð Þ at four increasing filtration
values 0, 0.1, 0.2, and 0.4, respectively [Color figure can be viewed at
wileyonlinelibrary.com]
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defined connected component aggregation cost. The IPF without nor-

malization can be defined as the product of β0(T, λi) and l(T, λi),

γ0 T,λið Þ¼ β0 T,λið Þ* l T,λið Þ ð2Þ

To confine the IPF between 0 and max(λi), we divide it by

m × (m − 1) and get a normalized form of IPF,

γ T,λið Þ¼ γ0 T,λið Þ
m m−1ð Þ ð3Þ

Definition 2: According to Equations (1)–(3) and (B1), given

λ0 = 0, as well as a tree T with m ≥ 2 nodes and

unique positive edge weights λ1 < λ2 < � � � < λm − 1, the

IPF corresponding to the maximal graph filtration is

defined as

γ T,λið Þ¼

m− i
m m−1ð Þ

Xm−1

k¼i+1

λk , 0≤ i≤m−2

0, i¼m−1

8>>>><
>>>>:

ð4Þ

In Figure 2, we provide a topological feature computation exam-

ple using the same data in Figure 1. The MST T of weighted graph X is

constructed first. Then four nested binary trees B T,0ð Þ�B T,0:1ð Þ�
B T,0:2ð Þ�B T,0:4ð Þ are built at 4 increasing filtration values 0, 0.1,

0.2, and 0.4, respectively. According to Equations (B1), (1), (2), and (4),

four topological features including the zeroth Betti number β0, con-

nected component aggregation cost l, non-normalized IPF γ0, and IPF γ

are computed.

The network structure can be detected by plotting the change of

IPF over different filtration values when the connected component is

evolving to form a bigger component. Previous BNP study only con-

siders the changes in the number of connected components (Choi

et al., 2014; Chung et al., 2015; Lee et al., 2012; Lee et al., 2017),

while our proposed IPF plot encodes more evolutionary information

of the connected components in graph filtration as the estimated

information related to future state is also considered as the connected

component aggregation cost. In brain network research, the IPF is

usually limited between 0 and 1 as any correlation λi in a connectivity

matrix is <1 normally. It enjoys an advantage that different numbers

of nodes can be processed consistently. The following proposition

provides the theoretical foundation for our proposed work.

Proposition 1: Given λ0 = 0, as well as a tree T with m ≥ 2

nodes and unique positive edge weights λ1 < λ2 < � � �
< λm − 1, the IPF plot corresponding to the maximal graph

filtration determined by each edge weight, λ, is a monoton-

ically decreasing convergence function.

Please refer to Appendix C for its proof. Here our goal is to inte-

grate the obtained multivariate IPF into a univariate network measure.

According to Proposition 1, the IPF plot over all possible filtration

values is a monotonically decreasing convergence function, so the IPF

is also a persistent topology feature like the zeroth Betti number. Sim-

ilar to the BNP plot methods (Choi et al., 2014; Chung et al., 2015;

Lee et al., 2012; Lee et al., 2017; Yoo et al., 2017), we define the slope

of IPF plot (SIP) as a novel univariate network measure. When the fil-

tration value λ evolves, the number of connected components is get-

ting smaller and the connected component aggregation cost is getting

less until all nodes are connected when the IPF is equal to zero. The

proposed measure SIP may be thought as the information diffusion

rate or the convergence speed of arriving to a fully connected

component.

2.2 | Algorithms

Figure 3 shows the pipeline to measure and discriminate RSN struc-

tures with the proposed SIP measure. First, we use SPM8 toolbox,

Data Processing Assistant for Resting-State fMRI (DPARSF) (Yan &

Zang, 2010) and Resting-State fMRI Data Analysis Toolkit (REST)

(Song et al., 2011) to preprocess the rs-fMRI data (the first row). Then

we construct the single linkage distance matrix for each subject using

SLD (Lee et al., 2012) according to correlation-based distance matrix

from mean time series of predefined ROIs (the second row). We fur-

ther compute IPF plots to measure constructed multiscale RSN based

on persistent homology theory (the third row). With the goal to dis-

criminate various AD diagnostic stages, the difference of RSN struc-

tures is evaluated by statistical group difference using our proposed

method together with five other network measures over various par-

cellation schemes (the fourth row). We explain some major steps in

the following subsections.

2.2.1 | Data acquisition and preprocessing

High-resolution brain scans were acquired at multiple ADNI sites

using 3.0 T Philips MRI scanners. The rs-fMRI (Figure 3a) were

obtained using an echo-planar imaging (EPI) sequence and the param-

eters included repetition time (TR) = 3,000 ms, echo time

(TE) = 30 ms, flip angle = 80�, number of slices = 48, slice thickness =

3.3 mm, voxel size = 3 mm × 3 mm × 3 mm, voxel matrix = 64 × 64,

and total volume = 140.

The preprocessing of rs-fMRI data (Figure 3b) was carried out

using SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/), DPARSF

(http://www.restfmri.net) (Yan & Zang, 2010), and REST (http://www.

FIGURE 2 A computation example of topological features based on

Figure 1. The top left is an MST T of weighted graph in Figure 1 left,
followed by four nested trees B T,0ð Þ�B T,0:1ð Þ�B T,0:2ð Þ�B T,0:4ð Þ
at four increasing filtration values 0, 0.1, 0.2, and 0.4, respectively.
The topological features of the binary network, such as the zeroth
Betti number and IPF, are varied according to the increase of filtration
value λ [Color figure can be viewed at wileyonlinelibrary.com]

KUANG ET AL. 1065

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net
http://www.restfmri.net
http://wileyonlinelibrary.com


restfmri.net) (Song et al., 2011) according to well-accepted pipelines.

All subjects' data were preprocessed individually. Specifically, the first

10 acquired rs-fMRI volumes of each subject were initially removed

prior to any further processing to stabilize the signal (Suk, Wee, Lee, &

Shen, 2016). The remaining 130 volumes were then corrected for the

staggered order of slice acquisition that was used during echo planar

scanning to ensure the data on each slice correspond to the same

point in time. The images were realigned with the image at the time

point of TR/2 (slice# 47) as reference to minimize relative errors

across each TR. After correcting acquisition time delay, the volumes

of each subject were realigned to its mean image based on rigid body

transformation and least squares techniques, and spatially normalized

to the Montreal Neurological Institute (MNI) space. Subsequently, all

images were spatially smoothed with a Gaussian kernel of

4 × 4 × 4 mm3 full-width at half-maximum, then linear trend adjust-

ments were performed. It has been shown that a frequency range

between 0.025 and 0.06 or 0.07 is reliable for test–retest experiments

(Liu et al., 2014; Malinen et al., 2010; Xi et al., 2012). In this regard,

the functional time series data were band-pass filtered to retain fre-

quencies between 0.01 and 0.08 Hz, which is the relevant frequency

range. To further reduce the effects of nuisance signals

(Weissenbacher et al., 2009) and focus on the signals of gray matter, a

validated confound regression procedure (Van Dijk et al., 2010) was

performed on each subject's time series data to remove confounding

factors including cerebrospinal fluid signals and white matter signals

as well as six head-motion profiles. Due to the ongoing controversy of

removing the global signal in the processing of rs-fMRI data (Fox,

Zhang, Snyder, & Raichle, 2009; Murphy, Birn, Handwerker, Jones, &

Bandettini, 2009), we omitted the process of global signal regression

(Lynall et al., 2010; Supekar, Menon, Rubin, Musen, & Greicius, 2008).

In addressing head motion concerns in resting-state fMRI analyses

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Satterthwaite

et al., 2013; Van Dijk, Sabuncu, & Buckner, 2012), we assessed the

rotation and translation for all subjects and excluded subjects with

excessive head motion with a displacement of more than 1 mm or an

angular rotation of more than 1� in any direction.

2.2.2 | Multiscale network reconstruction by SLD

First, we use the Pearson correlation to construct RSN. We extract

the time series of rs-fMRI signals (Figure 3c) from n selected ROIs and

each ROI serves as a node in the brain network. The measurement set

is denoted as X = {x1, x2, � � �, xn} where xi represents a time series at

ith node. We define the observed distance (Figure 3d) between the

measurements xi and xj through the Pearson correlation,

wX xi ,xj
� �¼1−corr xi ,xj

� � ð5Þ

Here, corr(xi, xj) is the Pearson correlation function. A stronger

functional connectivity infers a higher Pearson correlation corr(xi, xj),

producing the shorter observed distance, that is, the lower edge

weight wX(xi, xj). In the graph filtration, the lower edges with stronger

functional connectivity are added first to better reflect true biological

connections. After the weighted matrix {wX(xi, xj)} of each subject is

constructed as functional connectivity network, we reconstruct the

multiscale network as described below.

The filtered subnetworks on top of the weighted network should

be built before computing the persistent features of the complex,

according to a typical workflow of persistence in topological data

analysis (Chazal, Glisse, Labruere, & Michel, 2013). The most intuitive

approach is to sort all weights of original network in ascending order

and use the ranks as indices for the subnetworks (Petri et al., 2014).

The computation of such an approach is less efficient especially for

high-resolution networks, and a common practice is to limit the size of

filtrations by equally dividing maximum weights (Adams, Tausz, &

FIGURE 3 Pipeline to measure and discriminate RSN structures with

the proposed SIP measure. (a) Each participant's rs-fMRI scan is
preprocessed and normalized to the Montreal Neurological Institute
(MNI) space (b), and the mean time series of ROIs are extracted (c).

We calculate the observed distance matrix through Pearson
correlation (d) and obtain the predicted distance matrix using single
linkage dendrogram (SLD) (e). We further construct a multiscale RSN
per subject from single linkage distance matrix (f ) and plot the
corresponding Integrated Persistent Feature (IPF) over different scales
(g). We obtain all IPF plots and corresponding network measures of
the slope of IPF plot (SIP), respectively, for all participants by
repeating steps (a–g). The difference of RSN structures is evaluated
by statistical group difference analysis (h) of our proposed measure
together with five other network measures over various parcellation
schemes (i) [Color figure can be viewed at wileyonlinelibrary.com]
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Vejdemo-Johansson, 2014). However, it requires selecting a number

of nested subgraphs empirically. In this study, the representative filtra-

tions are generalized in an unbiased manner by the single linkage clus-

ter analysis (Gower & Ross, 1969) as a convenient way of

summarizing taxonomic relationships in the form of dendrograms. This

SLD involves defining a single linkage distance as the model predicted

distance (Lee et al., 2012) (Figure 3e). Let p = {v0, v1, � � �, vk} 2 P be a

path between xi and xj, where P is the collection of all possible paths

between xi and xj, and v0 = xi, vk = xj. The single linkage distance is for-

mally defined as below.

dX xi ,xj
� �¼min

8p2P
max

l¼0, ���,k−1
wXðv1,vl+1Þjp¼fv0,v1, � � �,vkg

� �
ð6Þ

It denotes the shortest distance of all maximum edges over every

possible path between any specific pair of nodes. Given a weighted

network X with edge weight matrix {wX(xi, xj)}, we can get the single

linkage distance matrix {dX(xi, xj)} and sort it in the ascending order {λ1,

λ2, � � �}. The SLD method initially treats each node as a cluster and iter-

atively merges two closest clusters at each step. Two clusters will

combine when at least there exists one link between them of length λ

where λi < λ < λi + 1. The dendrogram shows how clusters at level λ1

combine at level λ2 and so on at successive levels until all clusters

combine into a single cluster at the root of the tree.

Similar to the SLD method (Gower & Ross, 1969), the zeroth per-

sistent homology graph filtration is used to analyze a family of graphs

and requires hierarchically building nested structures (Giusti et al.,

2016). All components are initially born and more and more compo-

nents are disappeared once they are connected when we gradually

increase the filtration values. We can generate graph filtrations by the

SLD method which is equivalent to building the MST (Murtagh, 1983)

as the clusters at any level λi can be obtained from the MST by delet-

ing all segments of length >λi. Therefore, each level of filtered network

at λi is used as a single scale under the original weighted network, and

further the corresponding persistent feature IPF at such scale can be

computed (Equation (4)). By summarizing the network topology of all

scales, we can investigate spatial dynamics of RSN.

It should be noticed that our multiscale framework is different

from some existing MST analyses on brain network analysis (Stam

et al., 2014; Tewarie, van Dellen, Hillebrand, & Stam, 2015; Van

Dellen et al., 2014; Van Dellen et al., 2018). First of all, the purposes

of using MST are different. The goal of existing studies (Stam et al.,

2014; Tewarie et al., 2015; Van Dellen et al., 2014; Van Dellen et al.,

2018) is to investigate the conventional graph theoretical features on

MST directly, such as diameter, leaf fraction, and centrality, and then

study their differences between health and illness. In contrast, we use

MST to build a set of thresholds (filtration values) for graph filtration

in an unbiased manner and the persistent features over all threshold-

ing nested subnetworks are then quantified. Second, exiting MST

studies usually focus on the features computed at one fixed scale of

MST based on graph theory, while we investigate the spatially

dynamic evolutions in different scales. Last, a tree without forming

loops is also a much simpler structure than the nested filtered subnet-

works. However, existing MST studies cannot reflect some properties

that depend upon cycles. Theoretically speaking, they may be

detected by our framework when we extend the persistent dimension

from the zeroth Betti number, β0, to the first Betti number, β1, in

future.

2.2.3 | Statistical group difference analysis

In this study, the brain network is constructed at macroscale where

nodes represent brain regions and edges represent interregional FC at

resting state. To define network nodes, we divide the brain into

90 ROIs according to a low-resolution automated anatomical labeling

atlas (L-AAL90) (Tzourio-Mazoyer et al., 2002). We calculate Pearson

correlation-based distance wX according to Equation (5) between the

representative time series of each node extracted from each subject

and get 90 × 90 symmetric FC matrices. After producing a single link-

age distance matrix per subject according to Equation (6), the multi-

scale RSN is constructed using our proposed methods for every

subject in AD, MCI, and NC groups by graph filtration, and the corre-

sponding SIP is obtained.

Here our proposed SIP is used as a univariate feature for statisti-

cally characterizing network differences. In contrast to previous work

that produces one multiscale network per group (Choi et al., 2014;

Chung et al., 2015; Lee et al., 2012; Lee et al., 2017), we construct

one network per subject to improve the ease of use and computation

efficiency. For subject i in group 1, we construct a multiscale network

(Figure 3f ) and its MST Ti by SLD, subsequently corresponding

IPF γ1(Ti, λ) (Figure 3g) is computed with Equation (4). For subject j in

group 2, we can also generate a multiscale network and MST Tj as well

as IPF γ2(Tj, λ) in the same way. Although we are interested in testing

whether the IPF plots are different between groups, we do not intend

to directly set the pointwise null hypothesis as

H0
0 :mean γ1 Ti ,λð Þ� �¼mean γ2 Tj,λ

� �� �
for all λ2 ½0,1�,

because it will perform multiple comparisons of IPF at different filtra-

tion values. Instead, we compare the proposed network measure SIP.

Given the ith subject's SIP in Group 1 and jth subject's SIP in Group

2 are represented as α1i and α2j , the null hypothesis is

H0 :mean α1i
� �¼mean α2j

� �
, ð7Þ

while the alternate hypothesis is

H1 :mean α1i
� � 6¼mean α2j

� �
,

where mean is the average of SIPs in a group.

As there is no prior study on the statistical distribution of SIP, it is

difficult to construct a parametric test procedure. Moreover, the sam-

ple is limited, so it is necessary to empirically construct the null distri-

bution and determine the p value. In this study, we carry out two

kinds of nonparametric statistical analyses (Figure 3h). First, between-

group differences of AD versus MCI, AD versus NC, and MCI versus

NC are inferred according to Equation (7) by nonparametric permuta-

tion test with 10,000 permutations (Wang et al., 2013; Yao et al.,

2010), which has been usually used in pairwise comparisons in net-

work measures. Then we execute the Kruskal–Wallis test (Hollander,

Wolfe, & Chicken, 1973) for detecting multi-group difference among

three groups of AD versus MCI vrersus NC.
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2.2.4 | Reproducibility and test–retest reliability

Graph-based brain connectome analyses are usually sensitive to the

choice of brain parcellation schemes (Bai et al., 2009; Biswal et al.,

1995; Buldú et al., 2011; Wang et al., 2009). To evaluate the repro-

ducibility and test–retest reliability, we evaluate our methods against

different parcellation schemes. We define network nodes with five

brain atlases with different resolutions, including four low-resolution

atlases of automated anatomical labeling atlas with 90 ROIs (L-AAL90)

and 116 ROIs (L-AAL116) (Tzourio-Mazoyer et al., 2002), Harvard-

Oxford atlas with 112 ROIs (L-HOA112) (Kennedy et al., 1998; Makris

et al., 1999), and Craddock et al. functional atlas with 200 ROIs (L-

Crad200) (Craddock, James, Holtzheimer, Hu, & Mayberg, 2012), as

well as one randomly generated high-resolution atlas with 1,024 ROIs

(H-1024) (Zalesky et al., 2010). The statistical group difference analy-

sis (Figure 3h) of our proposed method together with five other mea-

sures are evaluated and compared under all five parcellation schemes

(Figure 3i).

3 | RESULTS

We conducted two experiments to verify our proposed network

measure with some synthetic data and the ADNI rs-fMRI data.

For replicating our results, we have provided our experimental

data and MATLAB source code at http://gsl.lab.asu.edu/

software/IPF.

3.1 | Synthetic data results

We conducted two sets of synthetic data studies to evaluate our

method performance for brain connectivity analysis and test–retest

reliability studies.

In the first synthetic data experiment, the simulated brain data of

three groups were generated randomly. Each group has K = 40 sub-

jects and each subject has S = 100 volumes of scanning images. There

are M = 90 nodes representing brain ROIs defined by L-AAL90 atlas.

The initial data of xijk, yijk, zijk in three groups at node j for subject k at

ith volume were simulated as independent standard normal N (0, 1)

respectively. Here the normal distribution is defined as N μ,σð Þ¼

1ffiffiffiffiffiffiffiffi
2πσ2

p e−
x−μð Þ2
2σ2 where μ is the mean and σ is the standard deviation. Then

we added small noise N (0, 0.01–0.1) into y to make x and y are not

exactly the same. To simulate connected components in each group,

we selected four nodes indexed by p = 1, 3, 5, 7 for first two groups,

and eight nodes indexed by p = 1, 3, 5, … 15 for the third group.

These eight nodes represent 8 left hemisphere brain regions defined

in L-AAL90 respectively, that is, precentral gyrus, superior frontal

gyrus, superior frontal gyrus (orbital part), middle frontal gyrus, mid-

dle frontal gyrus (orbital part), inferior frontal gyrus (pars opercu-

laris), inferior frontal gyrus (pars triangularis), and inferior frontal

gyrus (pars orbitalis). After that, extra linear dependencies were

introduced into x, y, z, respectively, to increase correlations between

all selected nodes. Specifically, the synthetic data are defined as

below:

Group 1 :
xijk ¼N 0,1ð Þ

xipk ¼0:1 xi1k +N 0,0:01ð Þ
,

(
p2 A¼ 3,5,7f gð Þ,

Group 2 :
yijk ¼N 0,1ð Þ+N 0;0:1ð Þ
yipk ¼0:1 yi1k +N 0,0:01ð Þ

,

(
p2 A¼ 3,5,7f gð Þ,

Group 3 :
zijk ¼N 0,1ð Þ

zipk ¼0:1 zi1k +N 0,0:01ð Þ
,

(
p2 A¼ 3,5,7,� � �,15f gð Þ,

ð8Þ

where i 2 {1, 2, …, S}, j 2 {1, 2, …, M}\A, k 2 {1, 2, …, K}.

Note that we also added small noise N (0, 0.01) to perturb

the node values. In the end, correlation matrices based on the

synthetic brain data were obtained by Pearson correlation

(Equation (5)).

Following the proposed methods, we obtained 40 multiscale brain

networks and corresponding SIPs in each group. Randomly selected

examples of synthetic multiscale networks are shown in Figure 4.

Then permutation tests were applied according to Equation (7) and

we obtained the mean p values of 0.52 and 1.6e−5 over 2000 simula-

tions for Group 1 versus Group 2, and Group 2 versus Group 3, sepa-

rately. As Groups 1 and 2 have the same size of connected

components with high correlations, we could not detect any group

difference. There is a significant difference between Groups 2 and

3 as they have different sizes of connected components. Figure 5

shows the results of the group difference study with synthetic data.

The IPF gradually decreases and one fully connected component is

constructed eventually while changing filtration value from 0 to

1. The SIP in group 3 is not as steep as those in Groups 1 and 2, while

Groups 1 and 2 have similar steepness (Figure 5a). The group differ-

ences could be detected intuitively from the resulting SIPs in

Figure 5b where all 40 subjects' SIPs of each group are exhibited. The

significance corresponds to the vertical gap between the SIPs. There

is no significant group difference between Groups 1 and 2 (p = .52),

comparing to significant differences in Group 2 versus 3 and Group

1 versus 3 (p = 1.6e−5 for both).

In the second synthetic data experiment, for the purpose of

test–retest reliability study, we changed the number of nodes from

90 to 50, 150, 250, 350, 500, 800, and 1,000 under different subject

number of 20, 40, 60, 100, and 200, respectively. Then we test–

retested the synthetic multiscale brain networks according proposed

methods over 100 times. There is still no significant difference

between Groups 1 and 2 (p > .31), comparing to the significant dif-

ferences in Group 2 versus 3 and Group 1 versus 3 (p < .0001 for

both) as expected.

3.2 | Application to AD

With rs-fMRI data, using the predefined 90 ROIs, we constructed mul-

tiscale brain networks using our proposed methods. Group differences

were studied by the SIP with the subject-wise network. Finally, we

evaluated our proposed method under four additional brain parcella-

tion schemes with 112, 116, 200, and 1,024 ROIs. We compared the

new measure with another persistent homology-based measure (BNP)

and four widely used graph theory approaches that characterize the

brain network topologic features of small-world organization, modular

structure, and highly connected hubs.
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3.2.1 | Subjects

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public–private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serial MRI, PET, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

MCI and early AD.

At the time of downloading from ADNI database (May, 2017),

there were 31 AD patients aged 60–90 years in the rs-fMRI dataset.

They were matched by age, gender, and education to 38 MCI and

37 NC subjects, together comprising the 106 participants selected for

this study. These subjects had been recruited from 15 sites across the

U.S. and Canada, and only their first valid rs-fMRI was selected for this

study. In Table 1, we present their detailed demographic information.

All studied images had no excessive head motion (six-parameter rigid

body) defined by a displacement of <0.7 mm or an angular rotation of

less than in any direction 0.8�. The Kruskal–Wallis tests (Hollander

et al., 1973) showed no significant differences in gender, age, educa-

tion, or head motion among the AD, MCI, and NC groups, while there

were significant differences in Mini-Mental Status Examination

(MMSE) scores (Folstein, Folstein, & McHugh, 1975) and Clinical

Dementia Rating (CDR) global scores (Morris, 1993). Diagnostic classi-

fication was made by ADNI investigators using established criteria

FIGURE 5 The synthetic data results of group difference study. (a) The resulting Integrated Persistent Feature (IPF) plots imply group

differences. The IPF gradually decreases and one fully connected component is constructed eventually while changing filtration value from 0 to
1. The SIP in group 3 is not as steep as those in group 1 and 2, while group 1 and 2 get similar steepness. (b) The resulting SIPs for all 40 subjects
of each group showing group differences. The significance corresponds to the vertical gap between the SIPs. There is no significant group
difference between group 1 and 2 (p = .52), comparing to significant difference in group 2 versus 3 and group 1 versus 3 (p = 1.6e−5 for both)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The synthetic multiscale brain networks at five different filtrations values 0, 0.65, 0.7, 0.75, and 0.85 for Groups 1, 2, and 3 with 4, 4,

and 8 highly connected nodes, respectively. The color of nodes represents the node index predefined in L-AAL90 atlas. Specifically, the eight
selected nodes indexed by p = 1, 3, 5, …, 15 represent 8 left-hemisphere brain regions defined in L-AAL90, respectively. They are precentral
gyrus, superior frontal gyrus, superior frontal gyrus (orbital part), middle frontal gyrus, middle frontal gyrus (orbital part), inferior frontal gyrus (pars
opercularis), inferior frontal gyrus (pars triangularis), and inferior frontal gyrus (pars orbitalis) [Color figure can be viewed at
wileyonlinelibrary.com]
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(McKhann et al., 1984; McKhann et al., 2011; Petersen et al., 2001).

NC had MMSE scores between 25 and 30, no significant memory con-

cerns, and CDR global scores of 0. MCI patients had MMSE scores

between 26 and 30, and a CDR score of 0.5. Participants in the AD

cohort had MMSE scores between 17 and 26, and fulfilled the

NINCDS-ADRA (National Institute of Neurological and Communica-

tive Disorders and Stroke and the Alzheimer's Disease and Related

Disorders Association) criteria for probable AD (Makedonov, Chen,

Masellis, & MacIntosh, 2016).

3.2.2 | Multiscale network and corresponding SIP

We constructed weighted matrices for all subjects by Equation (5)

where the observed distance wx is one minus correlation. Although wx

is always between 0 and 2 and may have a value larger than 1, all

nodes are connected before wx reaches 1 in our current dataset dur-

ing the graph filtration. Thus, the filtration is finished when wx

between 0 and 1. To observe the group differences among AD, MCI,

and NC, we further constructed the mean RSN for each group which

is an average of all involved subject's networks. Figure 6 shows three

multiscale RSNs at 6 different values 0.1, 0.15, 0.2…, 0.35 computed

from three group means of brain networks. We found that the con-

nected components in NC aggregated faster than MCI, and much

faster than AD. The topological changes in the number of connected

component for 3 group mean RSNs were visualized by the SLD in

Figure 7. We calculated the corresponding IPF of three group means

under the multiscale RSN at all different filtration values, and showed

the relationship between filtration values and IPFs in Figure 8. Our

proposed IPF not only considers the changes in the number of con-

nected component, but also introduces an extra connected compo-

nent aggregation cost at the same time (Equation (4)). The IPF

gradually decreases and one fully connected component is con-

structed eventually when filtration values vary from 0 to 1. We found

that the SIP of NC group mean is steeper than MCI's and much

steeper than AD's.

TABLE 1 Demographical information of the subjectsa

AD (n = 31) MCI (n = 38) NC (n = 37) p value

Age (years) 60.7–86.6 (74.0�6.1) 60.0–88.7 (73.1�7.3) 65.2–90 (74.1�6.2) .7486

Education (years) 0–20 (15.4�3.9) 11–20 (15.6�2.9) 0–20 (16.1�3.6) .4267

Gender (male/female) 16/15 19/19 15/22 .6033

Head translation (mm) 0.13–0.70 (0.31�0.12) 0.13–0.62 (0.32�0.14) 0.07–0.60 (0.31�0.12) .9895

Head rotation (�) 0.09–0.77 (0.30�0.17) 0.10–0.59 (0.25�0.13) 0.08–0.51 (0.25�0.11) .3083

MMSE 22.8�3.4 (17–26) 27.8�1.5 (26–30) 28.8�1.6 (25–30) .0015

CDR (global score) ≥1 0.5 0 –

a Data are presented as the range of minimum–maximum (mean�SD). The p value was obtained using the Kruskal–Wallis test (Hollander et al., 1973) by R
software (Team, 2014).

FIGURE 6 The constructed multiscale brain networks using our proposed methods for 3 group means of (a) AD, (b) MCI, and (c) NC at 6 different

filtrations values 0.1, 0.15, 0.2, …, 0.35. The color of nodes represents the node index predefined in L-AAL90 atlas [Color figure can be viewed at
wileyonlinelibrary.com]
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3.2.3 | Statistical group difference analysis

We compared our work with another persistent homology-based

method of BNP (Chung et al., 2015; Lee et al., 2012; Lee et al., 2017)

and four other widely used graph measures that summarize global

network topology. Numerous studies (Bullmore & Sporns, 2009) have

confirmed that both structural as well as functional brain networks

display the typical features of a small-world organization, modular

structure, and highly connected hubs, whose exemplars are the char-

acteristic path length (CPL) (Brier et al., 2014; Watts & Strogatz,

1998), modularity (Mod) (Sporns & Betzel, 2016; Tagliazucchi et al.,

2013), and eigenvector centrality (EC) (Binnewijzend et al., 2014;

Qiu et al., 2016; Van Duinkerken et al., 2017), respectively. Thus we

compared our work with these three measures and network diame-

ter (ND) (Assenov, Ramírez, Schelhorn, Lengauer, & Albrecht, 2007;

Fagerholm, Hellyer, Scott, Leech, & Sharp, 2015) as the path is

important for functional network analysis. Specifically, the character-

istic path length is the average shortest path length between all pairs

of nodes in the graph, indicating how easily information can be trans-

ferred across the network (Rubinov & Sporns, 2010), while the mod-

ularity measures how the network can be subdivided into modules

or communities (Newman & Girvan, 2004; Tagliazucchi et al., 2013).

The nodal eccentricity is the greatest geodesic distance between the

node and any other nodes (Assenov et al., 2007; Hage & Harary,

1995). It can be thought of as how far a node is from the node most

distant from it in the graph. The network diameter is the maximum

eccentricity of any node in the network, that is, the greatest distance

between any pair of nodes (Hage & Harary, 1995). Furthermore,

eigenvector centrality (Van Duinkerken et al., 2017) is a self-

referential measure that assigns a high level of importance to nodes

if they are connected to other nodes that are themselves highly con-

nected. The eigenvector centrality of a node is decreased if its neigh-

bors lose connectivity with their local hubs (Binnewijzend et al.,

2014; Fagerholm et al., 2015). We adopted the Brain Connectivity

Toolbox (BCT, https://sites.google.com/site/bctnet/) (Rubinov &

Sporns, 2010) for their implementation. For a fair comparison, similar

to a prior study (Wang et al., 2013) in threshold selection of

weighted network, we retained the network matrix elements whose

corresponding p values passed through a statistical threshold

(Bonferroni corrected p < .05) for each correlation matrix in graph

measures of CPL, ND, EC, and Mod.

FIGURE 7 The single linkage dendrograms (SLDs) for 3 group means of (a) AD, (b) MCI, and (c) NC. The vertical and horizontal axes represent the

node index and filtration value, respectively. The color of lines represents the total edge weight from current connected component to the giant
component. The total weight from the giant component is 0. When individual components evolves to a fully connected component, the total
edge weight decrease [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 The resulting Integrated Persistent Feature (IPF) at different filtration values for 3 group means of (a) AD, (b) MCI, and (c) NC. Their

SIPs are −0.71, −0.73, and − 0.77, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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The acquired p values of our proposed SIP and other network

measures are shown in Table 2. Our proposed SIP can detect differ-

ences from any two groups at the 0.05 level and three groups at the

0.01 level (p = .002). It achieved greater statistically significant group

differences compared to another persistent homology-based method

of BNP (Chung et al., 2015;Lee et al., 2012 ; Lee et al., 2017) which

cannot detect significant differences between AD and MCI groups at

the 0.05 level (p = .499). In addition, prior research (Chung et al.,

2015) indicated that it is impractical to study group difference analysis

by permutation test of 10,000 permutations because it would take

about 7 days of computation in their experimental environment. We

evaluated it in our experimental environment and confirmed that our

method requires much less computation than the previous method

(Chung et al., 2015) which requires converging all original image sets

to construct group-wise networks in a round of permutation (about

0.84 s) and requires about 2.3 h (10,000 × 0.84 s) for the entire test-

ing process. In our setup, since the subject-wise RSN is constructed

one time (about 0.48 s) and corresponding network feature SIP that is

used for permutation test can be obtained beforehand, the computa-

tion is mainly used to calculate SIP for all subjects. Thus it only took

about 270 s (106 × 0.48 s plus some additional test time) for 106 sub-

jects in all 10,000 permutation test. It is roughly a 31-fold efficiency

gain in our current dataset.

Furthermore, we also compared our work with four traditional

graph measures that summarize global network topology of small-

world organization, modular structure, and highly connected hubs,

including CPL, ND, EC, and Mod. The acquired p values of these

measures are shown in Table 2. We can find that our propose SIP

obtained better significance of group difference, and only our pro-

posed method can detect difference among three groups at signifi-

cance level of p < .01 (Table 2) in the current dataset. It implies that

our method may have stronger statistical power in discriminating

different AD diagnostic stages in the population-based studies.

In general, our experimental results show that our proposed SIP

achieved more significant group difference in our dataset. The newly

added connected component aggregation cost possibly played an

important role as it is related to path length between the connected

components to some extent, which is very important in AD patients

as their path lengths exhibit apparent changes (Sheline & Raichle,

2013; Stam et al., 2006; Wang et al., 2013).

3.2.4 | Reproducibility and test–retest reliability analysis

Graph-based brain connectome analyses are sensitive to the choice of

parcellation schemes (Bai et al., 2009; Biswal et al., 1995; Buldú et al.,

2011; Wang et al., 2009). To assess the effects of different parcella-

tion strategies, we carried out the same set of analyses with four

other commonly employed atlases, including three low-resolution

atlases of L-HOA112 (Kennedy et al., 1998; Makris et al., 1999), L-

AAL116 (Tzourio-Mazoyer et al., 2002), and L-Crad200 (Craddock

et al., 2012), as well as a randomly generated high-resolution atlas H-

1024 (Zalesky et al., 2010). The detailed statistical significances of

group difference under subject-wise networks are presented in

Table 3, which shows that our proposed SIP achieved better robust-

ness across different parcellation schemes.

4 | DISCUSSION

This study has three main findings. First, we generalize the BNP

methods (Chung et al., 2015; Lee et al., 2012; Lee et al., 2017) by pro-

posing a novel network measure, SIP, which integrates the zeroth

Betti number and the newly defined connected component aggrega-

tion cost to reflect some complementary information related to the

forthcoming state in the process of graph evolution. Our theoretical

proof shows its feasibility and empirical experiments results demon-

strate that our approach may improve statistical power and enjoy

stronger parcellation robustness. Second, we adapt multiscale brain

network construction from group-wise to subject-wise by statistical

inference and thus improve the computation efficiency for large-scale

brain network analyses. By constructing subject-wise multiscale net-

works, we showed that our methods gained strong efficiency in the

case of permutation test with 10,000 permutations. Third, we studied

the performance of our newly defined measure in the ADNI data set

while previous studies of persistent homology mainly analyzed FDG-

PET and structural MRI data for other diseases, such as epilepsy (Choi

et al., 2014), autism spectrum disorder, and attention-deficit hyperac-

tivity disorder (Lee et al., 2012; Lee et al., 2017). To our knowledge, it

TABLE 2 Between-group differences of different network measures over L-AAL90 atlas

Between-group

Network measure

SIP BNP CPL ND EC Mod

AD vs MCI 0.046a 0.499 0.391 0.415 0.088c 0.497

AD vs NC 0.0006b 0.016a 0.203 0.097c 0.046a 0.153

MCI vs NC 0.033a 0.011a 0.094c 0.099c 0.311 0.098c

AD vs MCI vs NC 0.002b 0.073c 0.614 0.559 0.500 0.800

Threshold selection: The first two measures are threshold-free, while the last four measures take the significant network edges by Bonferroni correction
method with corrected p value <.05.
Measures: proposed SIP, slope of IPF plot; BNP, the zeroth Betti numbers plot (Chung et al., 2015; Lee et al., 2012; Lee et al., 2017); CPL, characteristic
path length (Brier et al., 2014; Wang et al., 2013); ND, network diameter (Assenov et al., 2007; Fagerholm et al., 2015); EC, eigenvector centrality
(Binnewijzend et al., 2014; Qiu et al., 2016); Mod, modularity (Sporns & Betzel, 2016; Tagliazucchi et al., 2013).
The p value was obtained using 10,000 permutation test between two single groups and Kruskal–Wallis test (Hollander et al., 1973) for multiple compari-
sons among all three groups by R software (Team, 2014), respectively. The minimum p value in each row is bold.
a .01 ≤ p ≤ .05.
b p < .01.
c .05 < p < .1.
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is the first time that persistent homology has been applied to analyze

RSN for AD research. Our work offers some new insights to RSN

changes related to AD progression and may provide evidence for the

RSN-based noninvasive preclinical AD imaging biomarker research.

4.1 | Subject-wise versus group-wise network

The multiscale RSN was constructed using an ROI-based approach

with 90 ROIs at all possible filtration values. There are two kinds of

networks, that is, subject-wise network and group-wise network. The

subject-wise network is an ROI-connectivity network produced from

a single subject, while the group-wise network is an average of all

involved subject-wise networks. In this study, we performed the sta-

tistical hypothesis testing directly over the original subject-wise net-

work, rather than the more easily detectable group-wise network by

jackknife resampling method that Chung and his coauthors applied in

their seminal persistent homology-based studies (Chung et al., 2015;

Lee et al., 2012; Lee et al., 2017). Intuitively, the between-group dif-

ferences in group-wise networks should be easier to detect than that

in subject-wise networks. We may apply bottleneck distance to quan-

tify the difference between two networks. This metric is often used in

measuring the distance between two networks in the same metric

space (Edelsbrunner & Harer, 2010). The bottleneck distance between

two networks X and Y with the same node sets V={v0, v1, � � �, vk} is
defined as

dB X,Yð Þ¼ min
8vi2V

max
8vj2V

jwX vi ,vj
� �

−wY vi,vj
� � j ð9Þ

It can detect the maximum difference between two brain net-

works. Figure 9 shows the bottleneck distance maps of subject-wise

networks and group-wise networks among AD-MCI-NC. As we see in

the figure, the latter difference is indeed more obvious. To validate

the sensitivity to subtle changes in network structure, we directly

conducted statistical hypothesis testing on all measures under

subject-wise networks. In this condition, only our proposed SIP

obtained a significant difference among all three groups of AD, MCI

and NC at 0.01 level (p = .002) under L-AAL90 atlas, whereas few

other comparative measures can obtain a significance level of 0.05

even for single between-group differences (Table 2). In addition, the

subject-wise network improves the ease of statistic inference and

computation efficiency. Most prior persistent homology-based

research has conducted statistical inference under group-wise net-

works. Their computation costs are relatively high as all subjects in a

TABLE 3 Reproducibility of statistical analysis with different network measures over various parcellation schemes

Parcellation

Measure

SIP BNP CPL ND EC Mod

Group difference between AD vs MCI

L-HOA112 0.044c 0.280 0.433 0.202 0.245 0.475

L-AAL116 0.024c 0.458 0.352 0.367 0.228 0.464

L-Crad200 0.043c 0.344 0.147 0.444 0.048c 0.157

H-1024 0.031c 0.323 0.299 0.088a 0.098b 0.470

Group difference between AD vs NC

L-HOA112 0.007b 0.046c 0.252 0.399 0.192 0.221

L-AAL116 0.002b 0.046c 0.238 0.213 0.096a 0.154

L-Crad200 0.008b 0.071a 0.460 0.194 0.030c 0.367

H-1024 0.025c 0.295 0.393 0.491 0.091a 0.181

Group difference between MCI vs NC

L-HOA112 0.223 0.122 0.190 0.272 0.423 0.226

L-AAL116 0.196 0.053a 0.092 a 0.094a 0.373 0.156

L-Crad200 0.218 0.133 0.154 0.147 0.447 0.077 a

H-1024 0.047c 0.462 0.207 0.077a 0.388 0.091 a

Group difference among AD vs MCI vs NC

L-HOA112 0.047c 0.209 0.700 0.934 0.973 0.881

L-AAL116 0.019c 0.307 0.497 0.453 0.727 0.705

L-Crad200 0.079a 0.360 0.609 0.502 0.442 0.664

H-1024 0.045c 0.626 0.675 0.515 0.797 0.879

Threshold selection: The first two measures are threshold-free, while the last four measures take the significant network edges by Bonferroni correction
method with corrected p value <.05.
Measures: SIP: the slope of IPF plot; BNP: the zeroth Betti numbers plot (Chung et al., 2015; Lee et al., 2012; Lee et al., 2017); CPL: characteristic path
length (Brier et al., 2014; Wang et al., 2013); ND: network diameter (Assenov et al., 2007; Fagerholm et al., 2015); EC: eigenvector centrality (Binnewijzend
et al., 2014; Qiu et al., 2016); Mod: modularity (Sporns & Betzel, 2016; Tagliazucchi et al., 2013).
Parcellations: L-HOA112, low-resolution Harvard-Oxford atlas with 112 ROIs (Kennedy et al., 1998; Makris et al., 1999); L-AAL116, low-resolution auto-
mated anatomical labeling atlas with 116 ROIs (Tzourio-Mazoyer et al., 2002); L-Crad200, low-resolution Craddock et al. functional atlas with 200 ROIs
(Craddock et al., 2012); H-1024, randomly generated high-resolution atlas with 1,024 ROIs (Zalesky et al., 2010).
The p value was obtained using 10,000 permutation test between two single groups and Kruskal–Wallis test (Hollander et al., 1973) for multiple compari-
sons among all three groups by R software respectively (Team, 2014). The minimum p value in each row is bold.
a .05 < p < .1.
b p < .01.
c .01 ≤ p ≤ .05.

KUANG ET AL. 1073



specific group have to be involved. For example, it was reported that

the group difference analysis by permutation test with 10,000 permu-

tations could not be implemented because it would take about 7 days

of computation in their experimental environment (Chung et al.,

2015). By constructing subject-wise multiscale RSN, our methods are

less demanding for large cohort subject numbers and, as a result, gain

about 31-time efficiency in the case of permutation test with ten-

thousand permutations in our experiments.

4.2 | Threshold-free versus threshold-dependent

The edges in a weighted network usually reflect the measurement of

correlation or coherence of activity between nodes. It is common to

threshold an original network to obtain a sparser one according to the

significance of connections (Binnewijzend et al., 2012; Smith &

Nichols, 2009; Wang et al., 2013) or the desired sparsity (Eavani et al.,

2015; Wee, Yang, Yap, Shen, & AsDN, 2016) before quantifying graph

theoretical features. However, such a threshold-dependent scheme

may discard a great deal of potential important information from origi-

nal network and may cause ineffectiveness (Giusti et al., 2016). In

addition, it is difficult to make a principled choice of such thresholds.

In our threshold-free framework using graph filtration, we do not need

to specify any parameters to obtain thresholding matrix because

all possible thresholds are exactly the edge weights of MST and thus

the multiscale subnetworks are constructed automatically. As this

framework retains most of the original network information in the

resulting nested subnetworks, it may be more effective for brain net-

work analysis.

To compare with the threshold-free measures (SIP and BNP), we

adopted two thresholding schemes for the threshold-dependent mea-

sures (CPL, ND, EC, and Mod) and the thresholding weighed networks

were then examined. First, a general practice for the choice of thresh-

old is the multiple comparison correction over every possible edge

(Wang et al., 2013). The original weighted network matrix elements

whose corresponding p values passed through a statistical threshold

are retained. The experimental results of threshold-dependent mea-

sures in Tables 2 and 3 were obtained when we selected network

edges by Bonferroni correction method with corrected p value<.05.

As these threshold-dependent measures could not detect significant

difference under this scheme, we performed the second scheme that

thresholds weighted network repeatedly over a wide range of sparsity

(He, Chen, & Evans, 2008). We tried 80 sparsity thresholds by itera-

tively deleting 11%–90% of the edges with the largest weights

(i.e., the weakest functional connectivity) from the original RSN over

L-AAL90 atlas for threshold-dependent measures, and recorded the

lowest p values of AD versus MCI versus NC from these thresholds in

Table 4. It should be noticed that we have not applied such threshold-

ing schemes on the threshold-free measurers as they run the omni-

thresholding framework automatically. Even under such an unfair

competitive condition, our threshold-free SIP does not lose as it may

consist of comprehensive information after multiscale thresholding.

Although there are some similar existing multi-thresholding stud-

ies on brain network research (Achard, Salvador, Whitcher, Suckling, &

Bullmore, 2006; He et al., 2008; Kim et al., 2015; Supekar et al., 2008)

that have been used in modeling connectivity matrices at many differ-

ent thresholds or scales, they usually only have limited generality

because the determination of thresholding set is relatively arbitrary.

Moreover, they are usually used to visualize how the feature varies

over different thresholds but the pattern of change is rarely quanti-

fied. In contrast, persistent homology-based framework (Choi et al.,

2014; Chung et al., 2015; Giusti et al., 2016; Lee et al., 2012; Lee

et al., 2017; Yoo et al., 2017) can be used to quantify such dynamic

patterns in a more general and coherent way.

FIGURE 9 Bottleneck distance maps of subject-wise networks

(a) and group-wise networks (b). The group-wise networks were
obtained by leave-one-out jackknife resampling method. In each map,
the three diagonal block matrices with the size 31 × 31, 38 × 38, and
37 × 37 measure the distance between networks within a group and
the off-diagonal block matrices measure the distance between groups
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Most significant results of threshold-dependent measures by removing a certain percentage edges

Between-group

Threshold-free measure Threshold-dependent measure

SIP BNP CPL (70%) ND (20%) EC (80%) Mod (90%)

AD vs MCI 0.046 0.499 0.001 0.103 0.020 0.019

AD vs NC 0.0006 0.016 0.001 0.023 0.007 0.036

MCI vs NC 0.033 0.011 0.481 0.231 0.345 0.399

AD vs MCI vs NC 0.002 0.073 0.003 0.137 0.030 0.083

Threshold-free measure: The p values are copied from Table 2 for visual comparison.
Threshold-dependent measure: We tried 80 sparsity thresholds by iteratively deleting top 11%–90% edges of the weakest functional connectivity from
original RSN. The four threshold-dependent measures detect the best p values of AD versus MCI versus NC if we remove top 70%, 20%, 80%, and 90%
weakest functional connectivity, respectively.
Measures: SIP: the slope of IPF plot; BNP: the zeroth Betti numbers plot (Chung et al., 2015; Lee et al., 2012; Lee et al., 2017); CPL: characteristic path
length (Brier et al., 2014; Wang et al., 2013); ND: network diameter (Assenov et al., 2007; Fagerholm et al., 2015); EC: eigenvector centrality (Binnewijzend
et al., 2014; Qiu et al., 2016); Mod: modularity (Sporns & Betzel, 2016; Tagliazucchi et al., 2013).
The p value was obtained using 10,000 permutation test between two single groups and Kruskal–Wallis test (Hollander et al., 1973) for multiple compari-
sons among all three groups by R software (Team, 2014). The minimum p value in each row is bold.
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4.3 | From multivariate statistics to a univariate
measure

In the graph filtration of brain networks, there are a set of persistent

statistics as every subgraph has a feature at each filtration value. To

compare the networks between disease and health, some studies have

summarized these multivariate features into univariate using AUC-

based methods which estimate area under the curves of persistent

feature plots over all filtration values (Chung et al., 2015; Giusti,

Pastalkova, Curto, & Itskov, 2015). Others (Khalid, Kim, Chung, Ye, &

Jeon, 2014; Lee et al., 2012) applied linear regression analysis to

compute the slope of the BNP as it follows a monotonic function.

In our study, we deliberately designed a monotonically decreasing

convergence function so that we can quantify the proposed IPF by its

slope. All the results of the proposed IPF plots and the comparison

BNPs in Section 3.2 were obtained using the slope's approach. In

addition, we also investigated the AUC-based method in our experi-

ments and the obtained p values are shown in Table 5. In general, the

proposed IPF plot detects better significance than the comparison

BNP when the AUC-based method is applied. In addition, the experi-

mental results are not better than those achieved by the slope-based

method (Table 2) especially for BNP. As the proposed IPF plot and the

comparison BNP are both monotonically decreasing convergence

functions, the slope-based methods may better reflect the changes of

persistent feature over all possible scales.

4.4 | MCI converters vesus nonconverters

Patients with MCI represent an important clinical group as they are at

increased risk of MCI (Okello et al., 2009). It is a challenging problem

to study the difference between MCI converters and non-converters.

There are only 2 out of all 38 MCI patients converting to AD within

2 years in our current dataset. In order to further study the conver-

sion of MCI patients to AD, we added all other 8 MCI converters from

ADNI2 dataset during a 2-year follow-up period after their baseline

rs-fMRI. We compared the difference of SIP between MCI converters

(n = 10) and non-converters (n = 36) at the baseline, and found their

difference are tend to be significant by 10,000 permutation tests

(p value = .088). The absolute mean value of SIP of MCI converters is

smaller than that of MCI nonconverters, and is closer to that of AD

group. Although further rigorous studies which involve more subjects

and longitudinal imaging data analysis, for example, Cox hazard model

(Cox, 1972), is warranted for this line of research, our research results

may provide valuable insights for MCI conversion research by rs-fMRI

analyses.

4.5 | Relationship of SIP to biological processes

Similar to the zeroth Betti number, the IPF is a persistent topology

feature and its plot is a monotonically decreasing convergence func-

tion. It quantifies the topological changes of a network when the con-

nected components are aggregating into a bigger one. In this way, the

proposed network measure SIP can be thought as the information dif-

fusion rate or convergence speed of arriving at a fully connected com-

ponent. In this study, the computed group SIPs show a pattern,

AD < MCI < NC, with the significance level p = .002 based on the

Kruskal–Wallis test. The fact that SIP curves are less steepening with

AD and MCI groups than with NC may imply a slower information dif-

fusion rate in AD and MCI groups. Furthermore, the SIP is directly

related to the whole-brain network topology, suggesting the contribu-

tion to the observed global topological abnormalities. Therefore, it is

reasonable to speculate that the slow convergence speed is caused by

decreased functional integration throughout the brain, which may fur-

ther be responsible for cognitive deficits in patients. This finding is

consistent with previous reports of the impaired global organization

and disrupted neuronal integration in AD dementia and MCI patients

(Blennow, De Leon, & Zetterberg, 2006; Sanz-Arigita et al., 2010; Sorg

et al., 2007; Stam et al., 2006; Van Der Flier et al., 2002; Wang et al.,

2013). In Figure 6, we found there are relatively dense short-distant

(<0.25) connected components and relatively spare long-distance

(≥0.25) connected components in MCI and AD groups comparing to

NC group. Progress in clinical stages from MCI to AD may result in

more disruptions of long-distant components, so it may be encour-

aged to establish short-distant components as alternative connections

to keep information transmission between two distant regions. Over-

all, our results provide some empirical evidence for disrupted network

organization in AD dementia and MCI patients at the global level.

4.6 | Potential future improvements

There are at least four main caveats when applying the proposed per-

sistent feature. First, we only used the zeroth Betti number β0 in this

study but it is possible to integrate higher degree Betti numbers in our

framework. The current IPF plot shows how the disconnected sub-

components are integrated into a fully connected component when

the filtration value increases, but it does not consider how the sub-

components are densely or sparsely connected. The sparse network

tends to have more holes and the Betti number β1 has the potential to

measure the number of holes in a network. The higher Betti numbers

are usually identified using persistent homology-based kernel

(Kusano, Hiraoka, & Fukumizu, 2016). In the specific case of the first

Betti number, a study has reported that the hole in the metabolic net-

work of AD can be detected based on persistent homology and

1-Laplacian (Lee, Chung, Kang, & Lee, 2014). To some extent, our pro-

posed feature IPF is an integral of the persistence of the zeroth

homology. If we also define the total persistence of the first homology

in a similar way (Cohen-Steiner, Edelsbrunner, Harer, & Mileyko,

2010) and combine it with our current feature IPF, we may extend

TABLE 5 Statistical differences of persistent features by AUC-based

method over L-AAL90 atlas

Between-group AUC of IPF plot AUC of BNP

AD vs MCI 0.027 0.108

AD vs NC 0.043 0.154

MCI vs NC 0.416 0.412

AD vs MCI vs NC 0.084 0.641

The p value was obtained using 10,000 permutation test between two sin-
gle groups and Kruskal–Wallis test (Hollander et al., 1973) for multiple
comparisons among all three groups by R software (Team, 2014). The min-
imum p value in each row is bold. In general, the proposed IPF plot detects
better significance than the compared BNP when the AUC-based method
is applied.
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our work to higher Betti numbers. Thus, we may quantify the integra-

tion of the whole brain regions and the sparsity of connected regions.

Second, the longitudinal characteristics of RSN remain to be deter-

mined. In this study, we only investigated the brain network dynamics

in cross sectional images. With longitudinal brain images, we may fur-

ther study the evolution between longitudinal brain networks by

quantifying the difference of their persistent features. Although there

is no longitudinal study using persistent homology features, the exist-

ing integrated brain network research on BNP (Chung et al., 2017;

Lee et al., 2017) may inspire some ideas for its future applications in

AD research. Third, additional studies are needed to clarify the ability

of the proposed SIP to detect and track AD, provide diagnostic or

prognostic value, or assist in the evaluation of disease-slowing treat-

ments. Here we did not categorize subjects based on amyloid, tau, or

other neurodegenerative biomarker criteria because not all of the sub-

jects had biomarker data available. The diagnostic classification of AD,

MCI, and NC was made by ADNI investigators using some established

criteria (McKhann et al., 1984; McKhann et al., 2011; Petersen et al.,

2001). We checked these diagnostic classifications with amyloid bio-

markers for 47 available subjects and found they concur with the

diagnostic statuses. However, for more reliable results, in future work,

we intend to enrich our dataset and further study the performance of

our proposed network measure in discriminating groups of cognitively

unimpaired amyloid negative versus cognitively unimpaired amyloid

positive, MCI amyloid negative versus MCI amyloid positive and

dementia amyloid negative versus dementia amyloid positive

(Langbaum et al., 2013; Wu et al., 2018). Finally, our current results

should be viewed as exploratory and need to be further confirmed in

other independent cohorts in future (Tomše et al., 2017). Similar to

some prior work (Khazaee et al., 2016) where the integration of single

global network features with other local feature boosted fMRI net-

work classification performance, our proposed univariate SIP may

achieve satisfying classification performance when combining with

other local features to take advantage some advanced machine learn-

ing methods like support vector machine (Cortes & Vapnik, 1995), and

so forth. We further hypothesize that the adoption of some machine

learning techniques, such as nonlinear kernel machine (Hofmann,

Scholkopf, & Smola, 2008), may help improve its classification perfor-

mance. Overall, this work presents our initial efforts to enrich persis-

tent brain network analysis features. We hope our preliminary results

could inspire new ideas and further advance persistent homology-

based brain network analysis research.

5 | CONCLUSION

In this article, we present a novel network measure to complement

the mathematical theory of BNP by integrating an additional feature

of connected component aggregation cost with BNP to achieve holis-

tic descriptions of graph evolutions and quantify brain network

dynamics. We apply the new measure to study the RSN in AD

research and release our software source code and experimental data

to the public. Our method offers a novel insight into the whole-brain

network analysis and the proposed measure SIP differentiates AD

dementia and MCI patients from healthy individuals with improved

performance compared to other widely used measures. The experi-

mental results provide empirical evidence for disrupted network orga-

nization in AD dementia and MCI patients at a global level, and

suggest that our SIP may be a potential imaging biomarker of AD. In

the future, we will validate our method in other independent cohorts.

We will also explore its broad applications for the preclinical AD

research (Langbaum et al., 2013), such as building univariate Cox pro-

portional hazard models to determine the hazard ratio for progression

into AD (Chen et al., 2011) and reducing sample sizes for the AD clini-

cal trials (Gutman, et al., 2013).
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APPENDIX A: GRAPH FILTRATION

Given a weighted graph X = (V, W) with a node set V = {1, 2, … n} and

edge weights W = (wij), where wij is the weight between node i and j,

we introduce a binary network B X,λð Þ at a fixed threshold λ as a sim-

plicial complex (Edelsbrunner, Letscher, & Zomorodian, 2000). The

adjacency matrix C = (cij) of binary network B X,λð Þ is defined as.

cij X,λð Þ¼ 1 if wij ≤ λ;
0 otherwise:

(
ðA1Þ

Any edge weight lager than λ is excluded, otherwise it is retained

and set to 1, thus a binary network B X,λð Þ is constructed from the

weighted graph X. When the threshold λ is changed, we construct a

sequence of binary networks

B X,λ0ð Þ,B X,λ1ð Þ,B X,λ2ð Þ, � � �

Each of the binary networks is a simplicial complex with

0-simplices (nodes) and 1-simplices (edges), and is a special case of

the Rips complex (Ghrist, 2008). When the threshold λ increases, the

subsequent Rips complex becomes larger than the entire previous

Rips complex. The nested sequence of the Rips complexes is called

Rips filtration, which is the main theme of persistent homology

(Edelsbrunner & Harer, 2010; Freedman & Chen, 2009). Therefore,

we can construct the filtration on the collection of binary networks.

B X,λ0ð Þ�B X,λ1ð Þ� �� �B X,λmð Þ, ðA2Þ

for 0 = λ0 < λ1 < � � � < λm and λ1, λ2, � � �, λm 2 W, which is a special

case of Rips filtration, that is, graph filtration.

Figure 1 illustrates an example of graph filtration with 4 nodes.

The left is an original weighted graph X = (V, W) followed by 4 nested

binary networks B X,0ð Þ�B X,0:1ð Þ�B X,0:2ð Þ�B X,0:4ð Þ at 4 increas-

ing filtration values 0, 0.1, 0.2, and 0.4, respectively. The topological

features of the binary network will be changed according to the

increase of filtration value λ (Ghrist, 2008). In Figure 1, we may also

obtain another nested filtration graph, such as B X,0ð Þ�B X,0:2ð Þ�
B X,0:6ð Þ among many other possibilities. So how can we obtain a
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unique filtration that can be used in characterizing graphs? The follow-

ing method helps establish its uniqueness.

Given a weighted graph X = (V, W) with m unique positive edge

weights, if we sort the m unique positive edge weights λ1 < � � � < λm in

an ascending order, the maximal graph filtration is B X,0ð Þ�B X,λ1ð Þ�
�� � �B X,λmð Þ according to Equation (A2). Further, the maximum level

of its graph filtration is m + 1, and the form is unique (see Theorem

2 in (Chung et al., 2015)). The finiteness and uniqueness of the filtra-

tion levels over finite graphs have been already applied in some soft-

ware packages such as JavaPlex (Adams et al., 2014) and Gudhi

(Maria, Boissonnat, Glisse, & Yvinec, 2014). It should be noticed that a

set of unique positive weights can be obtained by removing any multi-

plicative weights when identical edge weights exist.

APPENDIX B: BETTI NUMBERS

In a simplicial complex, a path between two nodes is a sequence of

nodes such that from each of these nodes, there is an edge to the next

node in the sequence. Two nodes are connected if there is at least

one path between them. A connected component in the simplicial com-

plex is a subset of nodes any two of which are connected. Betti num-

bers (Edelsbrunner et al., 2000) are used to distinguish topological

spaces based on the connectivity of k-dimensional simplicial complex.

The kth Betti number is the rank of the kth homology group, which

counts the number of distinct k-dimensional holes or k-cycles. Specifi-

cally, the zeroth Betti number, β0, refers to the number of connected

components, and the first Betti number, β1, is the number of one-

dimensional or circular holes.

Generally, the maximal graph filtration can be quantified by plot-

ting the change of Betti numbers and computed by using either single

linkage dendrogram (SLD) (Lee et al., 2012), the Dulmage–

Mendelsohn decomposition (Ait-Aoudia, Jegou, & Michelucci, 2014;

Pothen & Fan, 1990), or existing simplicial complex approaches

(Carlsson & Mémoli, 2008; De Silva & Ghrist, 2007; Edelsbrunner

et al., 2000). In this study, we compute the zeroth Betti number β0 by

constructing SLD which is equivalent to building the MST (Lee et al.,

2012). The detailed procedure is described in Section 2.2.2. In the

case of a tree which is a special graph without cycle, we can conclude

a much stronger statement than general graph as following.

Given λ0 = 0, as well as a tree T with m ≥ 2 nodes and unique

positive edge weights λ1 < λ2 < � � � < λm − 1, the zeroth Betti number β0

corresponding to the maximal graph filtration is defined as (Chung

et al., 2015)

β0 T,λið Þ¼m− i, 0≤ i≤m−1 ðB1Þ

Therefore, a weighted graph filtration in Equation (A2) can be

converted to a sequence of nested binary trees B T,λ0ð Þ�B T,λ1ð Þ�
�� �B T,λmð Þ by SLD if we only focus on the zeroth Betti number.

APPENDIX C: MONOTONICITY OF THE IPF PLOT

Proposition 1: Given λ0 = 0, as well as a tree T with m ≥ 2

nodes and unique positive edge weights λ1 < λ2 < � � � <
λm − 1, the IPF plot corresponding to the maximal graph

filtration determined by each edge weight, λ, is a monoton-

ically decreasing convergence function.

Proof: As there are totally m − 1 edges in a tree T with m nodes,

the maximum level of its graph filtration is m, and the maximal unique

graph filtration is

B T,λ0 ¼0ð Þ�B T,λ1ð Þ� �� �B T,λm−1ð Þ:

Let γ T,λið Þ¼ 1
m m−1ð Þβ0 T,λið Þ× l T,λið Þ, where β0(T, λi) and l(T, λi) are

the zeroth Betti number and connected component aggregation cost

corresponding to the maximal graph filtration, respectively.

The zeroth Betti number β0(T, λi) corresponding to the maximal

graph filtration is given by the coordinates

λ0,mð Þ, λ1,m−1ð Þ, λ2,m−2ð Þ, � � �, λm−2,2ð Þ, λm−1,1ð Þ:

Obviously, the sequence of the zeroth Betti numbers is bounded

and is decreased while filtration value changing from λ0 to λm − 1, thus

β0(T, λi) is a monotonically decreasing convergence function.

Further, the connected component aggregation cost l(T, λi) corre-

sponding to the maximal graph filtration is given by the coordinates

λ0,
Xm−1

k¼1

λk

 !
, λ1,

Xm−1

k¼2

λk

 !
, λ2,

Xm−1

k¼3

λk

 !
, � � �, λm−2,

Xm−1

k¼m−1

λk

 !
, λm−1,0ð Þ:

As all edge weights are positive, the sequence of connected com-

ponent aggregation cost is bounded and is decreased while filtration

value changing from λ0 to λm − 1, thus l(T, λi) is also a monotonically

decreasing convergence function.

Because both β0(T, λi) and l(T, λi) are non-negative and are

monotonically decreasing convergence functions, γ T,λið Þ¼
1

m m−1ð Þβ0 T,λið Þ*l T,λið Þ is also a monotonically decreasing convergence

function.
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