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Abstract.10

Background: Positron emission tomography (PET) with the glucose analog F-18-fluorodeoxyglucose (FDG) is widely used in
the diagnosis of neurodegenerative diseases. Guidelines recommend voxel-based statistical testing to support visual evaluation of
the PET images. However, the performance of voxel-based testing strongly depends on each single preprocessing step involved.
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Objective: To optimize the processing pipeline of voxel-based testing for the prognosis of dementia in subjects with amnestic
mild cognitive impairment (MCI).
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Methods: The study included 108 ADNI MCI subjects grouped as ‘stable MCI’ (n = 77) or ‘MCI-to-AD converter’ according
to their diagnostic trajectory over 3 years. Thirty-two ADNI normals served as controls. Voxel-based testing was performed
with the statistical parametric mapping software (SPM8) starting with default settings. The following modifications were added
step-by-step: (i) motion correction, (ii) custom-made FDG template, (iii) different reference regions for intensity scaling, and (iv)
smoothing was varied between 8 and 18 mm. The t-sum score for hypometabolism within a predefined AD mask was compared
between the different settings using receiver operating characteristic (ROC) analysis with respect to differentiation between
‘stable MCI’ and ‘MCI-to-AD converter’. The area (AUC) under the ROC curve was used as performance measure.
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Results: The default setting provided an AUC of 0.728. The modifications of the processing pipeline improved the AUC up to
0.832 (p = 0.046). Improvement of the AUC was confirmed in an independent validation sample of 241 ADNI MCI subjects
(p = 0.048).
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Conclusion: The prognostic value of voxel-based single subject analysis of brain FDG PET in MCI subjects can be improved
considerably by optimizing the processing pipeline.
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INTRODUCTION31

Positron emission tomography (PET) with the32

glucose analog 2-[F-18]-fluoro-2-deoxy-D-glucose33

(FDG) is a well-established radionuclide imaging34

modality for non-invasive in-vivo assessment of synap-35

tic function and dysfunction in the brain [1]. Patients36

with Alzheimer’s disease (AD) show a characteristic37

pattern of cerebral hypoactivity including the posterior38

cingulate/precuneus area and parietotemporal associa-39

tion cortices not only in the dementia phase but already40

in the phase of mild cognitive impairment (MCI) [2–7].41

Therefore, FDG PET is widely used for early diagno-42

sis of AD and differentiation from neurodegenerative43

diseases with different characteristic FDG PET pattern44

[6, 8–12].45

Revised criteria for the diagnosis of AD recommend46

biomarkers including brain FDG PET to complement47

clinical, i.e., symptom-based criteria with objective48

evidence of the underlying pathology [13–15], at least49

in research settings, although it has also been noted50

that synaptic dysfunction of the brain most likely is51

a down-stream consequence of amyloid-� pathology52

and, therefore, might be better considered a biomarker53

for staging and/or disease monitoring rather than a54

diagnostic marker [16]. Whereas the future role of FDG55

PET in the management of patients with suspected AD56

might not be clear yet, currently it is still widely used57

in clinically unclear cognitive impairment (CUCI) in58

everyday routine.59

Interpretation of brain FDG PET is based on visual60

inspection of the reconstructed tomographic images.61

However, the quality of the interpretation can be62

improved by software support. Voxel-based statistical63

single subject analysis [17, 18], i.e., voxel-by-voxel64

statistical testing of the patient’s FDG PET image65

against a database of normal brain FDG PETs, has been66

found particularly useful: it not only allows inexperi-67

enced readers to detect the AD pattern in FDG PET68

with the same accuracy (both sensitivity and speci-69

ficity) as experts, but also results in small improvement70

of expert interpretation [19]. Thus, common practice71

guidelines for brain FDG PET recommend the use of72

voxel-based single subject analysis to support visual73

interpretation of brain FDG PET in patients with sus-74

pected AD [20, 21].75

However, whereas there is general consensus that76

voxel-based single subject analysis should be used,77

there is much less consensus about how the analy-78

sis should be performed. This is a major limitation,79

because voxel-based testing requires several prepro-80

cessing steps, each of which can have strong impact81

on overall performance. The lack of standardization 82

of voxel-based single subject analysis might result in 83

the use of suboptimal protocols at some institutions so 84

that the diagnostic and prognostic potential of brain 85

FDG PET most likely is not fully exploited. The aim 86

of the present study therefore was to optimize the pro- 87

cessing pipeline of voxel-based single subject analysis 88

for prediction of MCI-to-AD conversion within the 89

framework of the freely available statistical parametric 90

mapping software package (version SPM8) [22]. 91

MATERIALS AND METHODS 92

Data used in the preparation of this article were 93

obtained from the Alzheimer’s Disease Neuroimaging 94

Initiative (ADNI) database (http://adni.loni.usc.edu). 95

The ADNI was launched in 2003 as a public-private 96

partnership, led by Principal Investigator Michael W. 97

Weiner, MD. The primary goal of ADNI has been 98

to test whether serial magnetic resonance imaging 99

(MRI), PET, other biological markers, and clinical and 100

neuropsychological assessment can be combined to 101

measure the progression of MCI and early AD. 102

MCI patients 103

Subjects with a baseline diagnosis of MCI, a follow- 104

up time of at least 36 months and baseline FDG 105

PET were downloaded from the ADNI database in 106

March 2014. Subjects were categorized according to 107

their diagnostic trajectory over 36 months: all sub- 108

jects who did not decline, i.e., who remained MCI 109

or changed between MCI and normal cognition, were 110

included in the stable MCI group, whereas subjects 111

whose diagnosis changed to AD (and then stayed AD) 112

during the 3-year follow-up were regarded as MCI-to- 113

AD converters. Conversion to non-AD dementia was 114

an exclusion criterion. There were no further exclu- 115

sion criteria, particularly no MCI patient was excluded 116

based on limited quality of the PET image. Following 117

this procedure, a total of 108 patients were included: 118

77 with stable MCI and 31 who had converted to AD 119

dementia (ADD). FDG PET had been performed with 120

18 different scanners at 44 different ADNI centers. 121

Subject demographics are given in Table 1. The ADNI 122

participant roster ID (RID) of the included patients is 123

given in the Supplementary Material. 124

Cognitively normal subjects and ADD patients 125

Thirty-two ADNI-normals (NC) and 32 ADNI- 126

ADD patients with baseline FDG PET were included 127

http://adni.loni.usc.edu
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Table 1
Baseline subject characteristics according to group. (NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE,
Mini-Mental State Examination; FAQ, functional activities questionnaire; ABETA142, concentration of amyloid-� 1-42 peptide in cerebrospinal

fluid; t-sum score for the following setting: motion correction, custom FDG template, parenchyma scaling, 12 mm smoothing)

Group n age∗ (y) gender† education∗ (y) FAQ∗ MMSE∗ ABETA142∗‡ (pg/ml) t-sum score∗

NC 32 73.8 ± 4.6 22/10 16.8 ± 2.7 0.56 ± 1.24 28.9 ± 1.2 n.a. 0 ± 8212
MCI stable 77 74.5 ± 7.7 23/54 16.0 ± 2.7 1.68 ± 2.26 27.7 ± 1.6 166.7 ± 63.6 14400 ± 17483
MCI converter 31 74.7 ± 6.4 12/19 15.8 ± 3.0 5.68 ± 5.10 27.1 ± 1.4 145.1 ± 42.8 37817 ± 20182
AD 32 74.0 ± 4.7 22/10 15.2 ± 2.8 13.34 ± 5.22 23.4 ± 2.2 142.6 ± 26.0 49020 ± 21897

∗mean ± SD. †female/male. ‡A�1-42 available in none of the NC subjects, 30 MCI stables, 17 MCI converters, and 5 AD subjects (ADNI table
“UPENNBIOMK.csv”).

as normal database for single subject analysis and for128

generation of an AD typical mask. The NC group was129

generated from all ADNI normals who (i) had base-130

line FDG PET, which (ii) had been acquired with a131

Philips Gemini TF PET/CT system (5 different cen-132

ters), and (iii) had baseline MRI (n = 38). Four of133

these NC subjects were excluded because of abnor-134

mally enlarged inner cerebrospinal fluid space [RID:135

4093, 5124, 5197, 5234]. Two further NC subjects136

were excluded because of at least one significant137

cluster of hypometabolism (p ≤ 0.001) in leave-138

one-out voxel-based single subject analysis (default139

setting). The remaining 32 NC subjects are described140

in Table 1.141

The ADD patients were selected to match the NC142

group by age and gender on a subject-by-subject base.143

In the included ADD patients, FDG PET had been144

acquired with 16 different scanners at 27 different cen-145

ters. No attempt was made to restrict the ADD group146

to patients which also had been scanned with a Philips147

Gemini TF, since (i) this would have resulted in a con-148

siderably smaller sample of only 7 ADD patients and149

(ii) matching with respect to age and gender appeared150

more important to us.151

FDG PET data152

In 152 out of the total of 172 subjects, FDG PET153

had been acquired according to a dynamic protocol so154

that 6 frames of 5 min duration from 30 to 60 min post155

injection were available for analysis. The remaining156

20 FDG PETs had been acquired as 30 min static157

emission scan starting 30 min post injection. Recon-158

structed dynamic (or static, if dynamic not available)159

PET data was downloaded in its original image format160

(“as archived”, DICOM, Interfile, or ECAT) in order to161

guarantee that no preprocessing had been performed.162

Then, the original images were converted to Nifti,163

from DICOM and ECAT using SPM8, from Interfile164

using ImageConverter (version 1.1.5, download:165

http://www.turkupetcentre.net/programs/tpc csharp. 166

html). 167

Voxel-based single subject analysis 168

All image processing was performed using a 169

custom-made pipeline for fully automated processing 170

implemented in MATLAB and using routines (dicom 171

import, ecat import, image calculator, smooth, realign, 172

coregister, normalize, basic models, unified segmen- 173

tation) of the freely available Statistical Parametric 174

Mapping software package SPM (version SPM8, Well- 175

come Trust Centre for Neuroimaging, Institute of 176

Neurology, UCL, London, UK) [22, 23]. 177

Several repeats of voxel-based single subject anal- 178

ysis were performed starting with a ‘default’ setting, 179

which then was adapted by stepwise adding the follow- 180

ing changes (as described below): (i) frame-by-frame 181

motion correction of the dynamic PET sequences prior 182

to summing to one static uptake image, (ii) custom- 183

made tracer-specific FDG template generated from the 184

NCs for stereotactical normalization, and (iii) differ- 185

ent reference regions for scaling of voxel intensities. 186

Finally, smoothing prior to voxel-based testing was 187

varied. A summary of all settings is shown in Table 2. 188

The processing pipeline provides a batch mode util- 189

ity so that all subjects from all groups, i.e., n = 172, 190

were processed automatically in one batch for each 191

setting of the single subject analysis. 192

Frame-by-frame motion correction 193

In dynamic FDG PETs, inter-frame motion was cor- 194

rected using the ‘realign’ routine of SPM8. The first 195

frame was used as reference. The magnitude of the 196

motion was estimated as follows. Five reference points, 197

which had been predefined in template space (located 198

in precuneus, left/right parietotemporal and left/right 199

lateral temporal cortex), were transferred to the first 200

frame of the patient’s dynamic scan by stereotactically 201

http://www.turkupetcentre.net/programs/tpc_csharp.html
http://www.turkupetcentre.net/programs/tpc_csharp.html
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Table 2
Settings for single subject analysis

Setting motion correction template intensity scaling smoothing [mm] comment

0 no O-15-water global scaling 12 SPM8 default
1 yes O-15-water global scaling 12 motion correction
2 yes FDG global scaling 12 custom FDG template
3a yes FDG parenchyma 12 mean (or median)
3b yes FDG iterative parenchyma 12 exclusion of hypo-voxels
3c yes FDG Yakushev∗ 12 inclusion of hyper-voxels
3d yes FDG pons 12
4 yes FDG parenchyma 8:2:18
5a yes FDG parenchyma 12 ANCOVA: covariate = age

5b yes FDG parenchyma 12 intensity scaling prior to smoothing
∗based on [31].

normalizing the template to this frame. The motion202

between the first and any other frame was tracked for203

each reference point, and the distance (in mm) the204

point had moved was computed. The maximum dis-205

tance over the 5 reference points was used as ‘motion206

amplitude’ to quantitatively characterize the motion207

between the first and the considered frame (indepen-208

dent of the direction of the motion). Frames with a209

motion amplitude >4 mm were discarded (rationale:210

4 mm is about half the spatial resolution in the recon-211

structed images, which has been shown to be about212

the threshold for relevant errors by mismatch between213

PET and low-dose CT for attenuation correction [24]).214

A motion-corrected static uptake image was obtained215

by summing the remaining frames after realignment.216

FDG brain template217

The default PET template provided by SPM8 is218

based on [O-15]-water perfusion PET images and,219

therefore, might not be optimal to guide stereotac-220

tical normalization of brain FDG PET images [25].221

Therefore, a tracer-specific FDG PET template was222

generated from the 32 NC FDG PETs. In detail, for223

each NC, the motion-corrected FDG PET was co-224

registered to its baseline MPRAGE MRI (the first225

of the two baseline MPRAGE scans was used in all226

cases; unpreprocessed MRI data was downloaded from227

ADNI). Then, the MRI was segmented and stereotac-228

tically normalized using SPM’s unified segmentation229

algorithm [26]. Unified segmentation was guided by230

freely available tissue probability maps (TPM) with231

1 mm isotropic resolution generated from a sample of232

662 healthy elderly subjects [27]. The latter might pro-233

vide better performance in the elderly patients with234

suspected neurodegenerative disease than the 2 mm235

TPM from healthy young adults provided by SPM [28].236

A more detailed description of the MRI processing 237

can be found in [29]. The optimal MRI transformation 238

was applied to the co-registered FDG PET to trans- 239

form it from native patient space into the anatomical 240

space of the Montreal Neurological Institute (MNI) 241

[22]. After stereotactical normalization, intensity scal- 242

ing was performed by global scaling (described below). 243

A preliminary FDG PET template was obtained by 244

averaging the scaled FDG PETs over all 32 NC sub- 245

jects. 246

In a second step, all NCs were stereotactically 247

normalized to the preliminary FDG template (PET- 248

based normalization), intensity scaled (global scaling), 249

and averaged to create the final FDG PET template. 250

PET-based stereotactical normalization reduced the 251

voxel-by-voxel coefficient of variance (COV) over the 252

stereotactically normalized and scaled NC FDG PET 253

images (Fig. 1, rationale: “the lower the variability in 254

the control group the higher the power of voxel-based 255

single subject analysis for detection of disease-related 256

alterations of FDG uptake”). 257

Stereotactical normalization 258

Stereotactical normalization as part of preprocess- 259

ing for voxel-based statistical testing was PET-based 260

in all subjects, including MCI and ADD patients as 261

well as NC subjects. The rationale for this was that 262

PET-based stereotactical normalization appears more 263

relevant clinically, since an individual (high resolution) 264

T1-weighted MRI is not always available in routine 265

patient care. 266

Each individual FDG PET image was stereo- 267

tactically normalized into MNI space using the 268

normalization routine of SPM8 and SPM’s default [O- 269

15]-water PET template or the new custom-made FDG 270

template. The following settings were used: no tem- 271
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Fig. 1. Voxel-wise coefficient of variance (COV) over the 32 ADNI NC subjects for different methods of stereotactical normalization (comp.
subsection 2.6). Top row: MRI-based stereotactical normalization using unified segmentation. Middle row: PET-based stereotactical normaliza-
tion of the NCs using the FDG template as target. Bottom row: PET-based stereotactical normalization using an FDG template generated from
the 32 ADNI ADD subjects as target. The stereotactically normalized PET images were scaled to the parenchyma mean before the COV was
computed. The COV images were masked with the parenchyma mask for display purposes.

plate/source weighting, no template smoothing, source272

smoothing 8 mm, affine regularization to MNI, non-273

linear frequency cut-off 25, nonlinear iterations 16,274

nonlinear regularization 1, preservation of concentra-275

tion, trilinear interpolation and bounding box [–90276

–126 –72; 90 90 108] mm with isotropic voxels of277

2 mm edge length.278

Smoothing279

Stereotactically normalized images were smoothed280

by convolution with an isotropic 3-dimensional281

Gaussian kernel with full-width-at-half-maximum282

(FWHM) ranging from 8 mm to 18 mm in steps of283

2 mm.284

Intensity scaling 285

Intensity scaling was applied after smoothing as 286

the last preprocessing step for voxel-based testing. 287

The following scaling methods were implemented: 288

conventional global scaling as implemented in 289

SPM (‘proportional scaling’) [23, 30], parenchyma 290

scaling, iterative parenchyma scaling (neglecting 291

hypometabolic voxels by iterative parenchyma scal- 292

ing), ’Yakushev‘ scaling (scaling factor based on 293

hypermetabolic voxels after global scaling [31]), and 294

scaling to the pons [32]. 295

For conventional global scaling, the mean intensity 296

M was computed over all voxels in the total image 297

volume (including ‘air voxels’) and then the mean 298
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intensity of all voxels with intensity ≥M/8 was used as299

reference value for scaling, i.e., each voxel value was300

divided by the reference value.301

For parenchyma scaling, the reference value was302

computed as the mean voxel intensity within a mask303

that had been created by thresholding the custom FDG304

template at a voxel intensity value of 1.45 (Fig. 2). A305

similar mask has previously been created by the union306

of the a priori images of gray and white matter provided307

by SPM, each thresholded at a given probability [33].308

Parenchyma scaling eliminates variability due to inter-309

subject variation of extracranial FDG uptake (scalp,310

nasopharyngeal space, etc.).311

For iterative parenchyma scaling, brain regions with312

significant hypometabolism in voxel-based testing at313

the liberal significance level of p ≤ 0.01 (uncorrected314

for multiple testing) in the i-th iteration were excluded315

from the computation of the reference value for the316

(i + 1)-th iteration [34]. The iteration was stopped when317

the relative change of the reference value dropped318

below 0.2% or after a maximum of 10 iterations319

(the latter stop criterion was not reached in any320

subject). Scaling of the NCs was adjusted during321

each iteration.322

For pons scaling, the mean intensity within a prede-323

fined pons mask was used as reference value [32]. The324

pons mask was based on the pons region of interest325

(ROI) provided by the WFU PickAtlas (human atlas,326

TD lobes) [35]. Slight manual adjustment of the ROI327

was performed to adapt it to the customized FDG PET328

template. Four of the 108 MCI subjects were excluded329

from pons scaling, because the pons had not completely330

been within the field-of-view of the PET acquisition in331

these subjects.332

Voxel-based testing 333

For each MCI subject, the scaled, smoothed, and 334

stereotactically normalized FDG PET image was com- 335

pared voxel-by-voxel against the group of NC subjects 336

using the two-sample t-test [36] implemented in SPM 337

with the following parameter settings: grand mean 338

scaling = no, ANCOVA = no, no masking, no global 339

calculation, no global normalization (age was used as 340

covariate in setting 5a, Table 2). Scaling was turned off, 341

since the images had been scaled during preprocess- 342

ing (see below). For each setting of the single subject 343

analysis, preprocessing of NC subjects was exactly the 344

same as for MCI subjects. 345

T-sum score 346

The t-sum score as proposed by Herholz and co- 347

workers was computed by summing the t-values from 348

voxel-based testing of an MCI subject over all vox- 349

els within a binary ‘ADD mask’. This ADD mask 350

is intended to delineate the brain regions with AD- 351

specific reduction of FDG uptake [37]. The ADD 352

mask was generated by voxel-based group testing for 353

reduced FDG uptake in the ADNI ADD patients ver- 354

sus the ADNI NC subjects included in the present 355

study (uncorrected p ≤ 0.005, cluster size ≥125 vox- 356

els = 1 ml). Since interactions between the ADD mask 357

and other preprocessing steps cannot be ruled out (with 358

stereotactical normalization, for example), the ADD 359

mask was generated separately for each setting of the 360

single subject analysis in order to avoid bias by a fixed 361

predefined mask. A representative ADD mask is shown 362

in Fig. 3. 363

Fig. 2. Parenchyma mask overlaid to the FDG template.
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Fig. 3. Representative ADD mask (generated by ADD versus NC group testing with frame-by-frame motion correction, FDG template,
parenchyma scaling, 12 mm smoothing) overlaid to the FDG template.

Receiver operating characteristic analysis364

The power of the t-sum score for differentiation365

between ‘MCI-to-AD converter’ and ‘MCI stable’ was366

analyzed using receiver operating characteristic (ROC)367

analysis. The area AUC under the ROC curve was used368

as performance measure. The nonparametric DeLong369

test for paired samples was used for comparing the370

AUC between the t-sum ROC curves for different371

parameters settings [38].372

The AUC does not require the selection of a cut-373

off and, therefore, is not affected by any limitations of374

the cut-off selection process, in contrast to sensitivity,375

specificity and predictive values. This also simplifies376

comparison of diagnostic or prognostic utility across377

methods and studies.378

Head-to-head comparison against another method379

For head-to-head comparison with optimized SPM8380

single subject processing, the semi-quantitative brain381

FDG PET parameters of ADNI subjects made avail-382

able by Foster and co-workers via the ADNI website383

(upload on March 17, 2015) were downloaded (on May384

20, 2015). The following 6 semi-quantitative param-385

eters derived by using routines from the Neurostat386

software package [17] are provided: (i) mean FDG387

uptake in the bilateral association cortices scaled to388

mean FDG uptake in the pons (denoted AVEASSOC by389

Foster et al.), (ii) mean FDG uptake in the frontal cortex 390

scaled to mean FDG uptake in the pons (AVEFRONT), 391

(iii) number of (hypometabolic) voxels ≥2 standard 392

deviations and <3 standard deviations below the mean 393

in the control group (X2SDSIGPXL), (iv) number of 394

(hypometabolic) voxels ≥3 standard deviations below 395

control mean (X3SDSIGPXL), (v) sum over all voxel 396

z-scores ≥2 standard deviations below control mean 397

(SUMZ2), and (vi) sum over all voxel z-scores ≥3 stan- 398

dard deviations below control mean (SUMZ3). These 399

semi-quantitative parameters were available for 107 of 400

the 108 ADNI MCI subjects included in the present 401

study (see above). 402

Validation 403

Inclusion of the MCI subjects described (and used in 404

the analyses described so far) was based on a search of 405

the ADNI database in March 2014. For generation of an 406

independent validation sample of ADNI MCI subjects, 407

the search was repeated in August 2015 using exactly 408

the same eligibility criteria. This resulted in a total of 409

241 additional MCI subjects who had completed the 3 410

years follow-up in the meanwhile (ADNI participant 411

roster IDs are listed in the Supplementary Material). 412

181 of these MCI subjects had been cognitively sta- 413

ble for 3 years; the remaining 60 had converted to 414

ADD. Subject demographics of the validation sample 415

are given in Table 3. 416
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Table 3
Baseline characteristics of the validation sample of ADNI MCI subjects. (MCI, mild cognitive impairment; MMSE, Mini-Mental State Exam-
ination; FAQ, functional activities questionnaire; ABETA142, concentration of amyloid-� 1-42 peptide in cerebrospinal fluid; t-sum score for

the following setting: motion correction, custom FDG template, parenchyma scaling, 12 mm smoothing)

Group n age∗ (y) gender† education∗ (y) FAQ∗ MMSE∗ ABETA142∗‡ (pg/ml) t-sum score∗

MCI stable 181 70.5 ± 7.2 86/95 16.3 ± 2.6 1.58 ± 2.66 28.2 ± 1.6 143.8 ± 29.5 14604 ± 16754
MCI converter 60 73.7 ± 6.5 23/37 16.2 ± 2.7 5.44 ± 4.83 27.2 ± 1.7 152.5 ± 47.6 28356 ± 20085

∗mean ± SD. †female/male. ‡ABETA142 available in 9 MCI stables and 17 MCI converters (ADNI table “UPENNBIOMK.csv”).

Brain FDG PETs of the MCI subjects in the valida-417

tion sample were processed as described above. The418

impact of the SPM8 parameter setting on the differ-419

entiation between ‘MCI-to-AD converters’ and ‘MCI420

stables’ was again assessed via comparison of the AUC421

under the ROC curve of the t-sum score.422

In the validation sample, overall accuracy, sensi-423

tivity, specificity, and predictive values of the t-sum424

score were estimated in addition to the AUC. The425

cut-off was selected according to the Youden cri-426

terion [39], i.e., by maximizing the Youden index427

J = sensitivity + specificity – 1, which is symmetric in428

sensitivity and specificity and, therefore, imposes equal429

penalty on false positive and false negative classifica-430

tions. Although maximization of the Youden index is431

a rather simple model, it might be affected by statisti-432

cal noise. Thus, overfitting cannot be ruled out so that433

estimates of diagnostic accuracy measures are most434

likely overly optimistic. In order to correct for over-435

fitting, 100 repeats of 20-fold cross-validation were436

performed. Estimating errors of accuracy estimates by437

variance across repeats of cross-validation is limited438

by the risk of duplicated training samples. We there-439

fore used Equation (3) in [40] to estimate the 95%440

confidence interval of the accuracy measures.441

RESULTS442

Image processing worked properly in all subjects443

(according to visual inspection of stereotactically nor-444

malized images and statistical maps), i.e., there was no445

failure in any of the subjects (108 + 241 = 349 ADNI446

MCI subjects, 32 ADNI normals, and 32 ADNI ADD447

patients), although no subject was excluded based on448

technical constraints such as poor PET image quality.449

This demonstrates the robustness of the fully auto-450

matic SPM processing pipeline, which is an important451

prerequisite for use in everyday clinical routine. The452

processing time for single subject analysis was about453

4 minutes on a standard PC, which is compatible with454

busy clinical workflow.455

The results of the ROC analyses in the original sam-456

ple of 108 MCI subjects are summarized in Fig. 4. With457

Fig. 4. Area under the ROC curve for the different settings of the
SPM8 processing pipeline in the original sample of 108 MCI sub-
jects.

the SPM default setting for voxel-based single subject 458

analysis, the t-sum score provided an AUC of 0.728 459

for the differentiation between ‘MCI-to-AD converter’ 460

and ‘MCI stable’. Frame-by-frame motion correction 461

improved the AUC to 0.754. Whereas replacing SPM’s 462

[O-15]-water template by the custom FDG template 463

did not further improve AUC (0.753), parenchyma 464

scaling (instead of proportional scaling) resulted in 465

considerable further improvement to AUC = 0.832. 466

The total improvement from AUC = 0.728 for the 467

default setting to AUC = 0.832 for the ‘optimized’ set- 468

ting was statistically significant (two-sided p = 0.046). 469

‘Simple’, i.e., non-iterative parenchyma scaling per- 470

formed better than all other scaling methods, including 471

iterative parenchyma scaling. The degree of smooth- 472

ing had negligible impact on the AUC, at least with 473

parenchyma scaling. Reversed order of smoothing and 474

intensity scaling, i.e., intensity scaling prior to smooth- 475

ing, resulted in reduction of AUC (0.786). Taking into 476

account the subjects’ age as covariate in the statistical 477

test did not further improve the AUC (0.829). 478
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Among the 6 semi-quantitative brain FDG PET479

parameters provided by Foster and co-workers, the480

mean FDG uptake in the association cortices scaled481

to the mean pons uptake (AVEASSOC) achieved482

the highest AUC with a value of 0.745 (Fig. 5).483

The difference compared to AUC = 0.832 achieved484

with the optimized SPM8 processing showed a485

tendency towards statistical significance (two-sided486

p = 0.080).487

ROC analysis of the SPM8 t-sum scores in the488

validation sample of 241 ADNI MCI subjects resulted489

in AUC of 0.675 and 0.746 with the default and490

with the optimized parameter setting, respectively.491

The difference was statistically significant (two-492

sided p = 0.048). Cross-validated overall accuracy,493

sensitivity, specificity, and predictive values are494

summarized in Table 4. All these measures were495

considerably larger for the optimized setting than496

for the default setting. The difference was highly497

significant statistically, as indicated by the fact that the498

95% confidence intervals did not even overlap (except499

for the negative predictive value for which there was a500

small overlap).501

Fig. 5. ROC curves for prognosis of MCI-to-AD conversion in the
original sample of 108 MCI subjects. “SPM8 default” and “SPM8
optimum” are for the t-sum score obtained with default and optimum
SPM8 setting, respectively. “FAQ” is for the total score of the func-
tional activity questionnaire. “Foster et al” is for the average FDG
uptake in the association cortices scaled to mean FDG uptake in the
pons (AVEASSOC) provided by Foster et al. on the ADNI website
(subsection 2.13). All ROC curves are for the same 107 MCI sub-
jects. The ROC curves presented in this figure use only 107 of the
108 MCI subjects included in the present study, since AVEASSOC
was not available for one subject (RID 135).

DISCUSSION 502

The aim of this study was to optimize the parameter 503

settings of voxel-based SPM single subject analysis for 504

prediction of MCI-to-AD conversion within 3 years by 505

brain FDG PET. The following aspects of the process- 506

ing pipeline were considered: frame-by-frame motion 507

correction, [O-15]-water versus FDG template, spatial 508

smoothing, and intensity scaling. 509

The first step towards improved single subject anal- 510

ysis of brain FDG PET was motion correction. The 511

majority of the ADNI brain FDG PETs included in the 512

present study comprised 6 frames of 5 min duration 513

from 30 to 60 min post injection. Motion correction 514

was performed frame-by-frame by realigning frames 515

2 to 6 with the first frame. With modern PET/CT (and 516

PET/MR systems), PET emission recording is in list 517

mode which allows arbitrary framing of the acquired 518

data during image reconstruction. Modern PET/CT 519

(and PET/MR systems) also provide high sensitivity 520

for the detection of radioactive decays so that ade- 521

quate statistical image quality requires less than 30 min 522

acquisition time (after injection of a standard dose of 523

about 200 MBq FDG [20, 21]). In our department, we 524

perform a 15-min acquisition 40 ± 5 min post injection 525

which then is reconstructed into 15 frames of 1 min 526

duration for frame-by-frame motion correction. 527

The second important factor was intensity scaling 528

which has been found to have a large impact on the 529

performance of single subject analysis of brain FDG 530

PET also in previous studies [32, 41–44]. In the present 531

study, direct voxel-wise scaling to the mean intensity 532

in a predefined gray and white matter (parenchyma) 533

mask provided the best performance. Compared to 534

the widely used proportional scaling method imple- 535

mented in SPM, the AUC increased from 0.754 to 536

0.832. This most likely is explained by elimination 537

of extra variability associated with inter-subject dif- 538

ferences of extracranial FDG uptake, for example in 539

the scalp and in nasopharyngeal space. Proportional 540

scaling typically averages the voxel intensity over all 541

tissues with visually detectable FDG uptake including 542

extracranial structures. 543

A limitation of simple scaling to the mean inten- 544

sity in the fixed parenchyma mask is that this mask 545

includes brain regions affected by reduced FDG uptake 546

in patients with ADD and MCI due to AD, which 547

results in underestimation of the true reference value. 548

The latter causes overestimation of scaled FDG uptake 549

which results in reduced power for the detection 550

of hypometabolism (and spurious hypermetabolism) 551

[45]. This effect can be avoided either by using a fixed 552
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Table 4
Area (AUC) under the ROC curve, cut-off value on the t-sum score determined by the maximum Youden index, and accuracy measures for
prediction of ADNI-MCI to ADD conversion within 36 months by the t-sum score computed by the SPM8 single subject processing pipeline
with default or optimized setting in the validation sample of MCI subjects. All accuracy measures were cross-validated by 100 repeats of 20-fold
cross-validation. 95% confidence intervals (CI) are given in brackets. The 95%-CI for the AUC was obtained as described in [38], the 95%-CIs
for the accuracy measures were estimated according to [40]. The standard deviation of the cut-off is given in round brackets. (PPV, positive

predictive value; NPV, negative predictive value)

Setting AUC cut-off Cross validated

accuracy sensitivity specificity PPV NPV

default 0.675 [0.60–0.75] 21735 (8172) 0.57 [0.52–0.62] 0.58 [0.53–0.63] 0.56 [0.51–0.62] 0.31 [0.26–0.36] 0.80 [0.76–0.84]
optimized 0.746 [0.67–0.82] 18774 (1199) 0.68 [0.63–0.73] 0.70 [0.65–0.75] 0.68 [0.63–0.73] 0.42 [0.37–‘0.47] 0.87 [0.83–0.90]

anatomical reference region which is not affected by553

AD or by using data-driven techniques to automatically554

eliminate affected regions based on statistical crite-555

ria. Methods of both types were tested in the present556

study. The pons was used as AD-unaffected reference557

region, based on the finding of preserved pontine glu-558

cose metabolism in AD by Minoshima and co-workers559

[32]. Iterative parenchyma scaling and the Yakushev560

method [31] were used as data driven techniques. How-561

ever, none of these methods performed better than562

simple parenchyma scaling. We hypothesize that this563

is related to statistical noise of the reference value: the564

larger the reference region the smaller the statistical565

noise of the reference value obtained by averaging the566

intensity over all voxels within the reference region.567

The results of the present study suggest that reduction568

of statistical noise by the large size of the parenchyma569

reference region overcompensates the impact of sys-570

tematic underestimation of the reference value caused571

by AD-related hypometabolism in the parenchyma ref-572

erence region, at least for prediction of MCI-to-AD573

conversion. With data-driven methods, the reference574

region varies between tests which might be considered575

a disadvantage in single subject analysis (inter-subject576

variability of test performance).577

The mean of the voxel intensity over all voxels578

within the reference region was used as reference value579

to characterize the FDG uptake in the reference region.580

We also tested the median instead of the mean (results581

not shown). The rationale for this was that the median582

might be less sensitive to moderate (disease-related)583

intensity changes which primarily affect the inten-584

sity spectrum above the median and, therefore, do585

not change the median. However, using the median586

did not improve prognostic accuracy (for example,587

parenchyma scaling: AUC = 0.798 versus 0.832 with588

median and mean, respectively).589

Pons scaling performed slightly worse than590

parenchyma scaling (AUC = 0.762 versus 0.832). In591

addition, when using the pons as reference region, it592

is mandatory to carefully check in each single subject 593

whether the pons has been completely within the field- 594

of-view of the PET acquisition. Failure to do so might 595

result in false negative single subject analysis due to 596

severe underestimation of pontine FDG uptake. 597

Concerning the brain template used to define the 598

target space for stereotactical normalization, there was 599

no difference with respect to MCI-to-AD prognosis 600

between the [O-15]-water template provided by SPM 601

and a custom-made tracer-specific template generated 602

from FDG PETs of age-matched ADNI NC subjects. 603

We made some attempts to improve the FDG PET tem- 604

plate, for example by using the 32 ADNI ADD patients 605

included in the present study rather than the ADNI NC 606

subjects to generate the template. However, this ADD 607

FDG template resulted in increased voxel-by-voxel 608

coefficient of variance over the stereotactically nor- 609

malized and parenchyma scaled NC FDG PET images 610

(Fig. 1). Although this did not degrade the accuracy 611

for prediction of MCI-to-AD conversion (0.831 versus 612

0.832 for ADD FDG and NC FDG template, respec- 613

tively), the NC FDG PET template described in above 614

was used for all analyses presented here. 615

It has been previously shown that the template can 616

have a considerable impact on the performance of sin- 617

gle subject analysis [46, 47]. That the impact was small 618

in the present study might be explained by the fact 619

that O-15-water and FDG PET provide rather simi- 620

lar images (both are considered surrogate of synaptic 621

activity). 622

MRI-based stereotactical normalization of FDG 623

PET was performed only during template generation 624

(see Materials and Methods), although MRI-based 625

stereotactical normalization has been shown to 626

improve the power of voxel-based testing compared to 627

PET-based stereotactical normalization [48]. However, 628

in everyday clinical patient care, MRI is not available 629

in all patients. Therefore, we recommend PET-based 630

stereotactical normalization for clinical routine, in 631

order to guarantee the same processing in all patients. 632
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Fully consistent processing in all patients appears633

important in clinical routine to guarantee stable per-634

formance of statistical single subject analysis.635

The amount of smoothing, too, had only very small636

impact on the prognosis of MCI-to-AD conversion,637

even though it was varied in the rather large range638

from 8 to 18 mm FWHM. The aim of spatial smooth-639

ing is (i) to cope with residual inter-subject variability640

after stereotactical normalization and (ii) to increase641

the signal-to-noise ratio for improved statistical power642

for detection of hypometabolic clusters. It has been643

suggested that spatial smoothing should match the spa-644

tial extent of the effect to be detected [49, 50]. Thus,645

one would expect rather strong smoothing to work646

best for the detection of the spatially rather extended647

AD-characteristic pattern of hypometabolism in FDG648

PET (typical volume of the ADD mask was about649

370 ml, comp. Fig. 3). The fact that smoothing had650

only a very small effect in the present study might be651

explained by some interaction with the parenchyma652

mask used as reference region for intensity scaling.653

The parenchyma mask is rather narrow (Fig. 2) so654

that increasing the width of the Gaussian smooth-655

ing kernel beyond the radial width of the mask is656

expected to have only a small effect on voxel inten-657

sities within the parenchyma mask. In order to test658

this hypothesis, variation of the smoothing kernel659

was repeated in combination with proportional scal-660

ing. Proportional scaling typically includes the whole661

head as reference region and, therefore, should be662

more sensitive to smoothing than parenchyma scal-663

ing. This was confirmed: with proportional scaling, the664

AUC of the t-sum score increased with the amount of665

smoothing, from AUC = 0.749 at 8 mm kernel width666

to AUC = 0.767 at 14 mm to AUC = 0.782 at 18 mm.667

This indicates that the impact of spatial smoothing668

depends on the reference region for intensity scaling:669

the impact is large for proportional scaling, but small670

for parenchyma scaling. Stability of parenchyma scal-671

ing with respect to the amount of smoothing might be672

considered an advantage, particularly in multi-site and673

single-site/multi-camera settings in which the spatial674

resolution of the tested images depends also on camera-675

specific PET acquisition and reconstruction protocols.676

It might be noted that smoothing with 8 mm FWHM677

provided greater AUC than smoothing with 12 mm678

FWHM (Fig. 4), although the difference was very679

small and far from being statistically significant. Nev-680

ertheless, we recommend 12 mm rather than 8 mm681

smoothing. The rationale for this is that 12 mm is better682

in compensating inter-scan variability in spatial res-683

olution in the original brain FDG PET images. The684

variability of spatial resolution in ADNI PET images 685

is rather small due to homogenization of the acqui- 686

sition protocol across different PET scanners in the 687

ADNI. Variability is expected to be larger in settings 688

with less homogenized acquisition protocols. In these 689

cases, 12 mm smoothing is more effective than 8 mm 690

smoothing in reducing non-physiological inter-subject 691

variability of FDG uptake. 692

Accounting for the subjects’ age as covariate in the 693

statistical testing did not improve the performance of 694

FDG PET single subject analysis for the prognosis 695

of MCI-to-AD conversion. Therefore, age correction 696

does not appear mandatory for this task, at least as long 697

as patients and control group for voxel-based testing 698

are well matched with respect to age (all groups were 699

very well matched with respect to age in the present 700

study, Table 1). Age correction might have even detri- 701

mental effects, particularly if some of the older subjects 702

in the control group suffer from preclinical AD. In this 703

case, age correction will correct not only for effects of 704

healthy aging on FDG uptake but, to some extent, also 705

for AD-typical hypometabolism. The latter will reduce 706

the power for detection of the AD pattern in patients 707

to be diagnosed. 708

Finally, switching the order of image smoothing 709

and intensity scaling, i.e., performing intensity scaling 710

prior to smoothing, resulted in considerable deteriora- 711

tion of the prognostic power and, therefore, cannot be 712

recommended. 713

Altogether, optimizing the parameter setting of the 714

SPM processing pipeline improved the AUC of the 715

t-sum score for differentiation between MCI-to-AD 716

converters and MCI stable subjects by about 14% 717

from 0.728 (SPM default settings) to 0.832 (Fig. 4, 718

5). The effect was statistically significant (two-sided 719

p = 0.046). To put this into perspective, it might be 720

noted that many studies suggest a capping of prog- 721

nostic accuracy in MCI patients considerably below 722

100%, independent of the criteria and/or biomark- 723

ers used [28, 51–54]. Therefore, not only the relative 724

improvement by 14%, but also the final absolute value 725

of AUC = 0.832 appears rather remarkable, particularly 726

as it can be achieved rather easily without extra costs, 727

i.e., using standard FDG PET acquisition protocols (no 728

dynamic imaging of the full time course of FDG con- 729

centration in tissue starting with i.v. injection required, 730

no blood sampling, no tracer kinetic modeling) and 731

the freely available SPM software package with only 732

minor adaptions. 733

This finding was confirmed in an independent vali- 734

dation sample of 241 further ADNI MCI subjects. The 735

relative improvement in AUC was about the same in 736
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the original and in the validation sample: 14% and737

11%, respectively. However, it should be noted that the738

absolute AUC values were lower in the validation sam-739

ple: 0.675 versus 0.728 with default parameter settings,740

0.746 versus 0.832 with optimized parameter settings741

of the SPM8 processing pipeline. We hypothesize that742

this is related to the fact that the original sample mainly743

included late MCI subjects from the ADNI-1 phase,744

whereas the validation sample included many subjects745

from ADNI-GO and ADNI-2 with early MCI in which746

prognosis is expected to be more difficult than in late747

MCI. To some extent this is reflected by the fraction of748

MCI-to-AD converters in both samples, as it is smaller749

in the validation sample (25% versus 29%).750

The power of brain FDG PET for the prognosis of751

MCI-to-AD conversion has been investigated in sev-752

eral previous studies using different methods. Arbizu753

and coworkers, who evaluated a variant of the AD-754

related hypometabolic convergence index [55] for the755

prognosis of MCI-to-AD conversion in 121 ADNI MCI756

subjects reported an AUC of 0.804 for a multivariate757

model including the posterior cingulate index together758

with age, gender, MMSE, and ApoE4 status [51]. Mor-759

belli and coworkers, who evaluated the AD t-sum score760

in 127 MCI patients from the European Alzheimer’s761

Disease Consortium network reported an accuracy of762

79.6% for prediction of MCI-to-AD conversion [54].763

In the present study, maximum accuracy of the t-sum764

score was 83.3%.765

In a recent study on multimodal prediction of MCI-766

to-AD conversion we found the sum score of the767

functional activity questionnaire (FAQ) to be the best768

single feature [56]. For the original n = 108 ADNI MCI769

sample included in the present study, ROC analysis of770

this sum score (FAQTOTAL) resulted in AUC = 0.786771

(Fig. 5). Thus, the t-sum score from the single sub-772

ject analysis of FDG PET performed better than the773

FAQ only after optimizing the processing protocol.774

This finding underpins the necessity of optimizing sin-775

gle subject analysis of brain FDG PET, since otherwise776

the additional benefit from FDG PET might be rather777

small, particularly when considering the cost-benefit778

ratio.779

Concerning the parameter setting for single subject780

analysis of brain FDG PET within the SPM framework,781

Perani and colleagues optimized an SPM5-based pro-782

cessing pipeline with respect to differential diagnosis783

of neurodegenerative diseases including AD, fron-784

totemporal lobar degeneration (FTLD), and dementia785

with Lewy bodies [57]. Visual interpretation of the sta-786

tistical parametric maps improved the differentiation787

between AD and FTLD compared to visual interpre-788

tation of the raw FDG uptake images. The optimized 789

SPM5 processing pipeline used PET-based stereotacti- 790

cal normalization (with very similar parameter settings 791

as in the present study) to a dementia-specific FDG 792

template, proportional intensity scaling followed by 793

smoothing with an isotropic 3-dimensional Gaussian 794

kernel of 8 mm FWHM. The impact of extracranial 795

inter-subject variability of FDG uptake was taken into 796

account by an explicit mask to restrict voxel-based test- 797

ing to the brain. The results of this previous study are 798

in good agreement with the results of the present study. 799

Minor differences of the optimized processing pipeline 800

between the two studies might be explained by the dif- 801

ferent task for which the processing was optimized: 802

differential diagnosis of neurodegenerative diseases in 803

the study by Perani and colleagues versus MCI-to-AD 804

conversion in the present study. Visual interpretation of 805

statistical parametric maps in the Perani study versus 806

quantitative t-sum score analysis in the present study 807

might also have contributed to the minor differences. 808

Limitations of the present study include the use of a 809

fixed time interval for prediction (3 years) and that all 810

analyses were strictly univariate. Future studies might 811

use Kaplan-Meier analysis and/or multivariate Cox 812

regression to better account for inter-subject variability 813

of follow-up duration and time to conversion as well 814

as to assess the incremental value of FDG PET over 815

other features used for the diagnosis of AD. 816

conclusion 817

Optimizing SPM for voxel-based single subject 818

analysis of brain FDG PET can provide considerable 819

improvement of MCI-to-AD prediction. To achieve 820

this we recommend: (i) reconstruction (of list mode 821

data) into several frames of constant duration (1 822

to 5 min), (ii) frame-by-frame motion correction by 823

realignment to the reference frame (chronologically 824

closest to the low-dose CT for attenuation correction), 825

(iii) discarding all frames with more than 4 mm dis- 826

placement with respect to the reference frame in order 827

to avoid attenuation artifacts (if the spatial mismatch 828

with respect to the low-dose CT for attenuation cor- 829

rection can be corrected frame-by-frame during image 830

reconstruction, this might be preferred), (iv) add the 831

selected frames to generate one static FDG uptake 832

image (5 min total duration provides sufficient statis- 833

tical image quality in most cases), (v) 3-dimensional 834

spatial smoothing with an isotropic Gaussian kernel 835

with 12 mm FWHM, (vi) voxel-wise intensity scaling 836

to the mean tracer uptake in brain parenchyma using 837

a predefined mask in template space. These steps can 838
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easily be implemented as a fully automatic processing839

pipeline.840
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