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Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the con- 

cept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally 

mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset 

of the feature set. We show how scandent trees can be used to enhance the performance of decision 

forests trained on a small number of multimodal samples when we have access to larger datasets with 

vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in 

the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms en- 

able us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset 

of features of the training data. Using this methodology, we build a model trained on MRI and PET im- 

ages of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly 

more effective in staging of cognitive impairments compared to a similar decision forest model trained 

and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

o  

t  

b  

(

 

c  

u  

f  

i  

o  

d  

t  

M  

f  
1. Introduction 

In recent years there has been a surge of interest in multi-

modal data analysis. Different modalities provide researchers with

complementary information about diseases and provide the means

for more accurate detection and staging. This can be valuable in

the case of progressive illnesses such as Alzheimer’s disease and

certain kinds of cancer. Simultaneous analysis of multiple modal-

ities could also help us discover novel relations between differ-

ent modalities, such as understanding the relationship of molec-

ular changes caused by a disease and its imaging signature when

both genetics and imaging data are available. Given these potential

advantages, there has been a trend of merging different modal-

ities in biomedical studies. For instance the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), a six year $65 million study, has
� For the Alzheimers Disease Neuroimaging Initiative: Part of the data used in 

preparation of this article were obtained from the Alzheimers Disease Neuroimag- 

ing Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 

the ADNI contributed to the design and implementation of ADNI and/or provided 

data but did not participate in analysis or writing of this report. A complete listing 

of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/ 

how- to- apply/ADNI- Acknowledgement-List.pdf 
∗ Corresponding author. 

E-mail addresses: mmoradi@us.ibm.com , moradi2004@gmail.com (M. Moradi). 
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ocused on using medical imaging modalities like magnetic res-

nance imaging (MRI) and positron emission tomography (PET)

ogether with genetics and other clinical biomarkers for gaining

etter understanding of Alzheimer’s Disease and its progression

 http://adni.loni.usc.edu ). 

Acquiring multimodal data is generally more costly and time

onsuming than a single modality. As a result, multimodal datasets

sually have valuable features, but a small set of samples with all

eatures. This makes it difficult to build classifiers with large train-

ng data for highly multimodal protocols. For instance, in the case

f the ADNI dataset, nearly half of the patients are missing the PET

ata. PET imaging is expensive and requires the use of radioac-

ive tracers. As a result, a large number of patients only receive

RI scans, despite the fact that PET imaging provides unique brain

unctional information by quantification of the cerebral blood flow,

etabolism, and receptor binding, which are not measured with

RI. This is a common scenario in dealing with multimodal data.

 computational model that can be trained on both MRI and PET

ata (multimodal data), but be deployed in clinical settings where

nly MRI (single modal data) is available, is a valuable contribu-

ion in this area, provided that the model outperforms one that is

olely trained on MRI data. 

Another common scenario is the case of a new multimodal re-

earch protocol including at least one component which is only ob-

ained in the course of the study itself. An example of this scenario

http://dx.doi.org/10.1016/j.media.2016.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.07.012&domain=pdf
http://adni.loni.usc.edu/wp-content/uploads/how-to-apply/ADNI-Acknowledgement-List.pdf
mailto:mmoradi@us.ibm.com
mailto:moradi2004@gmail.com
http://adni.loni.usc.edu
http://dx.doi.org/10.1016/j.media.2016.07.012
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s our study to understand the relationship of molecular signature

f prostate cancer with the imaging signature of the disease ob-

ained through multiparametric MRI (mpMRI). The hope is that the

imultaneous analysis of the molecular and imaging data can pro-

ide clues towards building a reliable and affordable clinical stag-

ng test. Since prostate cancer is a multifocal disease with tumors

t different stages in each foci, this study requires tissue samples

or molecular analysis that are obtained from a specific area with

nown spatial registration to the MRI images. The steps taken to

cquire this data are not part of the clinical routine and the pace

f data acquisition is slow. On the contrary, we have access to hun-

reds of samples with only mpMRI data and known histology. In

his scenario, we are building a computational model that would

e studied on the mpMRI+genomics (multimodal) data. Here, we

ay benefit from a computational framework that can utilize the

ather large single modality dataset during training, but be able to

andle the multimodal data at the testing stage. 

In this paper we present solutions, within the context of de-

ision tree/forest paradigm of learning to address the problems

osed in the two scenarios described above. Recent relevant work

ncludes an investigation of the applications of imputation meth-

ds for dealing with missing values in the ADNI dataset ( Campos

t al., 2015 ). The results show that joining a multimodal dataset

ith a single modal dataset by imputation of the missing values

mproves the classification accuracy, compared to training a clas-

ifier on either the single modal or the available multimodal data.

n our current work, we intend to go beyond the paradigm of im-

utation. This is due to the fact that multimodal studies do not

ecessarily hold the usual assumptions in imputation that only a

mall number of data points are missing at random. We intend to

eal with situations where blocks of data are missing together and

he missing values are not spread randomly. 

One trend in dealing with block wise missing values in mul-

imodal datasets is separately modeling different blocks of data

nd then joining the resulting models by using a merging classi-

er or an ensembling method. One of the most successful attempts

n this field is applying multi-source learning techniques for deal-

ng with block wise missing data in ADNI ( Yuan et al., 2012; Xiang

t al., 2013; 2014 ). The incomplete Multi-Source Feature learning

ethod (iMSF) proposed by Yuan et al., models different blocks of

ata with similar feature sets as different tasks and learns a joint

odel by imposing a sparse learning regularisation on these tasks

 Yuan et al., 2012 ). The authors also propose a different approach

y using a model score completion scheme. This method is based

n training independent classifiers on different blocks of data, and

hen using the prediction scores calculated by each classifier as a

ew presentation of the data that can then be imputed using con-

entional imputation techniques. A recent paper by Yu et al., pro-

oses a new method based on Multi-task Linear Programming Dis-

riminant (MLPD) analysis ( Yu et al., 2014 ). This method formulates

he problem as a multi-task learning scenario in a fashion simi-

ar to the iMSF method but does not constraint all of the tasks to

hare the same set of features, allowing joint learning of a more

exible model. 

As a limitation to these studies, the training and testing

atasets are assumed to have the same distribution and fea-

ure sets. Recently, Cheng et al., addressed this issue and pro-

osed a method for multimodal data analysis based on multimodal

anifold-regularized transfer learning method ( Cheng et al., 2015 ).

his method enables using data from different domains together

ith unlabeled data for multimodal classification. This work uses a

eature transform based data fusion approach and includes a spar-

ity constraint in order to deal with the high dimensionality issue.

In this paper we address the same limitations reported in

heng et al. (2015) , but with different assumptions that fit our sce-

arios. We don’t assume that there is unlabeled data available. We
 c  
o assume that the feature set of the test data is a subset of the

raining data. For instance, in case of the ADNI dataset, we assume

hat the training dataset consists of a set of samples with both MRI

nd PET data (although incomplete) but the test sample only con-

ists of MRI data. This scenario is aimed at enabling the use of

ultimodal datasets for training of a classifiers that requires only

 subset of modalities for testing. 

.1. Scandent trees and tree-based feature transforms 

An important issue in multimodal classification is the high di-

ensionality problem that poses difficulties in feature selection

nd classifier building. The majority of the methods in the liter-

ture use the multi-kernel SVM framework for multimodal classi-

cation and need to impose sparse conditions on the multimodal

eature set in order to avoid over-fitting ( Cheng et al., 2015; Jie

t al., 2015; Zhang and Shen, 2012 ). 

In the current paper, by working within the decision tree/forest

aradigm we benefit from its embedded way of dealing with high

imensional data through feature bagging ( Breiman, 2001 ). An-

ther motivation for the use of decision forest paradigm is that it

rovides the ability to morph the treatment of missing data within

he framework of learning to maximize the classification perfor-

ance. This area of work has seen significant contributions in re-

ent years. These include the state of the art imputation methods

mbedded in the classification and regression tree (CART) algo-

ithm ( Steinberg and Colla, 2009; Quinlan, 2014 ) and in Random

orests (rfImpute) ( Breiman, 2001 ). 

A key element of our methodologies is the concept of scandent

rees recently proposed in Hor and Moradi (2015) . To our knowl-

dge this is the first decision-forest-based method with an em-

edded way to deal with block wise missing data in multimodal

atasets. In Hor and Moradi (2015) , we only considered one sce-

ario: a classifier that benefits from a large single modal dataset

t the time of training, but is tested on multimodal data. This was

otivated by our work in the area of prostate cancer staging. 

Another key element within our work is the concept of tree-

ased feature maps. A disadvantage of decision forests compared

ith SVM is the lack of an embedded framework for kernel-based

eature transformation in the case of forests. Using multi-kernel

pproaches, researchers have devised solutions for incorporation of

arious modalities in the SVM context. 

Other related work includes the “auto-context” method intro-

uced in Tu and Bai (2010) that provides a general interface to it-

ratively form feature transforms that can be interpreted as con-

ext features. However, similar to the other iterative methods, this

ethod assumes the same feature set for both training and testing

tages. Tree-based feature transforms have recently received some

ttention. For example, a recent work by Cao et al. (2015) uses

tacked decision forests. This method is based on using the prob-

bility values estimated by trees in a random forest as a feature

ector, and using this feature vector for training of an enhanced

ecision forest, potentially together with the original feature set.

nspired by the applications of multi-kernel SVMs in multimodal

ata analysis, we apply this concept of tree-based feature trans-

orms for multimodal data analysis. 

This manuscript reports two specific contributions: First , We re-

ort an improved version of our algorithm reported in Hor and

oradi (2015) for dealing with the missing data problem in the

ultimodal test scenario. We provide complementary results on a

rostate cancer dataset and compare the scandent tree method to

ifferent state of the art methods for missing value imputation. 

Second , entirely new to this work, we develop the idea of scan-

ent tree-based feature transforms to solve the problem of missing

ata in the single modal testing scenario. This problem has many

linical applications in areas where expensive research protocols
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meet the realities of clinical practice and high cost. Here, the as-

sumption of a multimodal dataset with block wise missing values

remains. However, there is no multimodal assumption about the

test set. To solve this problem, we use the idea of tree-based fea-

ture transforms along with the scandent tree. This combination al-

lows us to use tree-based feature transforms built on one modality

to transform the features from a different modality. Using this ap-

proach, we use MRI and PET data in the ADNI dataset and train a

classifier that only requires the MRI data for the prediction of dif-

ferent stages of Alzheimer’s disease. We show that the inclusion of

the PET data at the time of training results in an improved classi-

fication accuracy, even though the test cases are not subjected to

PET imaging. 

The structure of the remaining of the paper is as follows: In

Section 2 an improved version of the scandent tree algorithm is

presented. We then describe our new contribution for using the

scandent tree model in the single modal classification task based

on the concept of tree-based feature transforms. In Section 3 , we

introduce the datasets used in this work and the evaluation meth-

ods used in each scenario. Section 4 shows the experimental re-

sults on the prostate cancer dataset and the ADNI dataset, each tar-

geting one of the two multimodal scenarios. Finally, Section 5 pro-

vides a detailed discussion on the results. 

2. Method 

Let us assume that the training data consists of at least

one single-modality dataset defined as S = (s 1 , s 2 , . . . , s N s ) and at

least one multi-modality dataset defined as M = (m 1 , m 2 , . . . , m N m )

which are described respectively by the multi-modal feature set F m 

and the single-modal feature set F s , where F s ⊂ F m 

. We do not set

conditions on the feature or sample sizes but in practical scenarios,

usually the multi-modality dataset has fewer samples ( N m 

< N s ).

Also the single modal set is missing some of the more discrimina-

tive features. In this section we explain the proposed method for

two target scenarios: First we aim to train a classifier using both

S and M that can predict the outcome class C, for any test data

described by F m 

. Then we assume another scenario in which the

classifier is trained to predict the outcome class C using the same

two datasets, but the test data is described only by F s . In other

words, in the first scenario we make use of a single-modal dataset

for optimization of a multi-modal decision forest. While in the sec-

ond scenario we use the multi-modal dataset to improve the per-

formance of a single-modal random forest. 

2.1. First scenario: the multimodal classification task 

As an advantage of having all the important features, trees

formed by the multimodal dataset are expected to partition the

feature space very effectively. But because of the low multimodal

sample size, the estimation of the outcome probability at each leaf

may not be accurate. The proposed method tries to reduce the pre-

diction error at each leaf of the multimodal tree by using single

modality samples that are likely to belong to the same leaf. In or-

der to find these single modality samples, a feature space parti-

tioning algorithm is needed that can simulate the feature space di-

vision of the target multimodal tree on the single modality dataset.

The proposed method is to grow single modality trees that mimic

the feature space division structure of the multimodal decision

tree. Growing a tree that follows the structure of another tree

from the root to the top brings analogy to the behaviour of “scan-

dent”trees in nature that climb a stronger “support” tree. Consid-

ering this analogy, the proposed method can be divided into three

basic steps: First, division of the sample space by a multimodal

decision tree, called “the support tree”. Second, forming the single

modality trees that mimic the structure of the support tree, called
scandent trees”. And third, leaf level inference of outcome label

, using the multimodal samples in each leaf and the single modal

amples that are most likely to belong to the selected leaf. 

Support tree: The first step in the proposed method is growing

 decision tree to predict the outcome class based on the multi-

odal dataset. This tree can be one of the trees in a decision forest

r an individual tree grown using any of the well known methods,

uch as C4.5 ( Quinlan, 2014 ) and CART ( Therneau et al., 2010b ).

he method used in this paper for growth of the support tree is

ased on the implementation of CART algorithm in the package

rpart” in R language ( Therneau et al., 2010a ). 

Assuming that the tree is grown and optimized using the multi-

odal dataset M , there are two steps that might be the source of

lassification error in the tree: Division of sample space at inner

ranches, and majority voting at the leaves. The sample space di-

ision requires sufficient sample size at each division point which

ecomes an issue as the tree gets deeper. However, ensembling

ithin the forest paradigm compensates for occasional incorrect

ivisions at inner branches, leaving majority voting at the leaves

s the critical step to get a precise estimation of probability of

he class label. This error can be compensated for by the scandent

rees. 

Scandent trees: The second step is to form the scandent trees

hich enable the assignment of single modality samples to the

eaves of the support tree. The process of feature space division

n the support tree can be considered as grouping the multimodal

ata set M to different multimodal subsets. Let us define the sub-

et of the samples of M in the i th node as M i and the feature used

or sample space division at node i as f i . 

Intuitively, the idea of the scandent tree algorithm is to break

he support tree into subtrees that partition the sample space ei-

her using only the missing modalities or only the shared modal-

ty. And then replace these sub-trees with a single modal local

ree that divides the samples in a similar way. In order to reduce

he number of consecutive estimations, it is critical that the sin-

le modal local trees estimate the largest subtrees in the support

ree that hold these assumptions. We name the nodes that define

he boundaries of such trees as ’link node’s. Using mathematical

otations a link node can be defined as follows: 

For any arbitrary choice of node j , and its immediate parent

ode i , we define node j as a ’link node’ if f i belongs to a differ-

nt feature set from f j , or if node j is either the root node or a leaf.

n other words, node j is a link node if and only if : 

Node j is the root node, 

r 

Node j is a leaf node, 

r 

f j ∈ F s and f i �∈ F s , 

r 

f j �∈ F s and f i ∈ F s . 

It can be seen in Fig. 1 that node j 2 is a link node because it is

ased on a feature set different from it’s immediate parent (node

 1). For a similar reason nodes i 1 and j 3 are also link nodes while

odes j 1, i 2 and j 4 are not. The other link nodes in this example

re the root node (node R ) and the leaf nodes (nodes k 1 to k 8). 

We define the link nodes among the direct and indirect child

odes of node i that are found first in a Depth-First-Search (DFS)

n the subtree rooting from node i as the set of nearest child link

odes of node i . Each link node and its nearest child link nodes can

e used to address a subtree in the support tree that uses one and

nly one feature set for sample space partitioning. For instance in

ig. 1 , the nearest child link nodes of node i 1 are k 1, k 2 and j 2. 

The subtree that roots from node i 1 and divides i 1 to nodes k 1,

 2 and j 2 is a tree that only uses the missing modality for fea-

ure space division. A similar subtree would be the single modal
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Fig. 1. The support tree. 
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i  
ubtree rooting from node R that only uses the shared modality

o divide the sample between nearest child link nodes ( i 1, j 3, k 7

nd k 8). Assuming that for each division node i in the set of the

ink nodes of the support tree, there exists a set of nearest child

ink nodes j 1 , j 2 , . . . j ki . We define T i as an optimum tree that can

ivide the set of multimodal samples at node i ( M i ) to the set of

ultimodal samples at each child node ( M j ) using the feature set

 s . The pseudo-code for forming such a tree is as follows: 

or each link node i in the support tree, 

 

For each sample n in M i and each node j in set of 

nearest child link nodes of node i 

{ 

if n ∈ M j , 

C 
′ 
i,n 

= j 

} 

Grow T i , as optimum tree that for each sample n in M i , 

predicts C 
′ 
i,n 

using only F s . 

 

The above algorithm forms local trees T i for each node i that

ivide M i to the child subsets M j , using only the single modality

eatures F s . Here C 
′ 

is a new categorical label-set defined for the

orresponding local tree. For each sample in the parent node, the

 

′ 
is assigned in a way that the samples belonging to a specific

hild node j are mapped to the same category within C 
′ 
. 

For each node i, if f i ∈ F s , then T i is expected to divide M i to the

hild subsets ( M j ) with perfect accuracy. But if f i �∈ F s , then T i will

e optimized to form the smallest tree that can divide the sample

pace in a similar manner to the support tree. Using T i ’s for feature

pace division at each node, we can form a new tree that consists

f the same link nodes as the support tree but only uses features

f a single modality ( F s ) for sample space division, we name this

ingle modality tree, a scandent tree. Since T i ’s are single modal

rees, they can be used to predict the probability that each single

odality sample s belongs to link node j , calculated by: 

p(s ∈ Node j ) = p(s ∈ Node j | s ∈ Node i ) p(s ∈ Node i ) 

n which Node i is the parent link node of Node j , the term p ( s ∈
ode j | s ∈ Node i ) is estimated by the corresponding sub-tree T i and

 ( s ∈ Node i ) is calculated by recursion. 

This method is expected to be generally more accurate than di-

ect estimation of the leaves by other single modality classifiers.

ecause the scandent tree only has to predict the division bound-

ries for features that do not belong in F s and other divisions will

e perfectly accurate. 
As an example, Fig. 2 shows that the subtree that divides node

 to nodes k 1, k 2 and j 2 in the support tree is replaced by a local

ree T i in the scandent tree that estimates the same sample parti-

ioning. 

Given the small multimodal sample size, the local trees could

e prone to overfitting if only the few samples in the correspond-

ng link nodes are used for training T i ’s. As an improvement com-

ared to the earlier version of this method, we now overcome this

roblem by using all of the available multimodal samples ( M ) for

raining of each local tree by running the whole multimodal train-

ng set through the corresponding sub-tree of the support tree.

his will give each sample in the multimodal dataset a label from

he set C 
′ 
. This method adds more multimodal samples to the par-

nt link node ( M i ) and each child link node ( M j ) which results in

etter estimation of T i . We found that using this trick adds to the

obustness of the scandent. 

Leaf level inference: The standard method for leaf-level in-

erence is majority voting. However, if there are a large number

f single modality samples misplaced by the scandent tree, they

ight flood the original multimodal samples. 

To tackle this problem we define the weights of each sample x

n leaf i as: 

 (x ) i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 /N, x ∈ M i 

p( x ∈ Lea f i ) /N, x / ∈ M i & 

p( x ∈ Lea f i ) > q 
0 , x / ∈ M i & 

p( x ∈ Lea f i ) < q 

In which q is the selected minimum threshold for the proba-

ility that a single-modality sample belongs to the selected leaf i ,

nd N is the total number of samples in leaf i (single modal and

ultimodal). As q value increases, the probability that a misplaced

ample is used in the leaf-level inference is reduced. This may in-

rease the accuracy of the majority voting but increasing q will also

educe the number of single modality samples at each leaf result-

ng in low precision of the probability estimation. This trade-off is

ore evident at the two ends of the spectrum, for q = 1 the tree

ill be the same as the support tree which suffers from low sam-

le size at the leaves. For q = 0 all the single modality samples will

e used for inference at each leaf. 

The optimization of the q parameter for each leaf is essential

or optimal performance of the resulting tree. This can be done

y cross validation over the multimodal dataset, using out of the

ag samples in case of a decision forest. Using non-uniform re-

ampling instead of majority voting ensures that the single modal

amples at the leaves are randomized. This randomization is crit-

cal because the single modal samples are not randomly selected

n the scandent tree growth algorithm and without re-sampling,

here is a possibility that many of the scandent trees in the result-

ng forest are not independent. This would violate one of the basic

equirements of tree ensembling in a decision forest. 

Although the proposed algorithm is explained only for one sin-

le modality dataset, the same method can be applied on different

ingle modality datasets using the same support tree. As a result,

he proposed framework can be used flexibly when different sub-

ets of features are missing. 

Implementation: For building the support trees, we randomly

agged 2/3 of the multimodal samples and randomly selected the

quare root of the dimension of the multimodal feature set as the

eature bag. This bootstrapping and bagging phase is done sepa-

ately for each of the outcome classes to ensure balanced class la-

els. Then the scandent trees are formed and for each leaf of each

upport tree in the forest the q parameter is optimized using the

orresponding out of the bag samples. 

After growing and optimizing each of the trees, the probabil-

ty of outcome class C is calculated by averaging the corresponding
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Fig. 2. The scandent tree. 
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Table 1 

Evaluation Datasets. 

Parameter Prostate cancer ADNI 

Number of Multimodal features 44 9 

Multimodal sample size 27 218 

Number of Single modal features 5 7 

Single modal sample size 428 508 
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probabilities of all trees in the forest. We use the R package “rpart”

( Therneau et al., 2010a ) both for growing each support tree and

each of the local single modal trees ( T i ’s). This package uses inter-

nal cross validation to form the optimal tree. But for the purpose

of controlling the bias-variance of the resulting forest, the depth

of support tree is limited by controlling the minimum of samples

needed for each division. The depth of T i ’s in each scandent tree is

optimized by internal cross validation. 

2.2. Second scenario: the single modal classification task 

For the first scenario we assumed that the missing modalities

only affect the training of the classifier and the test data was as-

sumed to be complete. In this section, we describe a method that

can use the scandent tree model for training a single-modal clas-

sifier that is able to predict the outcome class even when the test

data is incomplete. 

To obtain a forest that transfers the value of the multimodal

dataset into a single modal environment, it is tempting to sim-

ply replace all the trees in a forest trained on the available multi-

modal training data with their corresponding scandent trees. How-

ever, this approach fails due to bias and the fact that many of the

multimodal divisions of support trees might not be predictable by

the single modal feature set. 

Instead, we choose an approach inspired by the use of decision

trees as feature maps. For this we start with growing a scandent

forest similar to the method explained for the first scenario. How-

ever, instead of directly using the scandent trees, we use the set of

local trees ( T i ’s) from all the scandent trees of a multimodal for-

est as tree-based “feature-transforms”. Each T i is a single modal

tree which maps F s to a new space defined by the corresponding

 

′ 
set. This means that each T i yields a categorical feature to de-

scribe each sample. Then we use the single modal dataset with the

extended feature set, including the original and these tree-based

features, to grow an improved single modal forest. Note that trees

trained on single modal features can be directly used as categorical

or continuous (similar to Cao et al. (2015) ) feature transformers. In

the current work, however, we use the scandent subtrees to link

two inconsistent datasets. 

This method has a few advantages compared to the conven-

tional method for forming a single modal decision forest or di-

rectly using the scandent trees as a new set of trees in a single

modal decision forest. First, because at each split of each tree in

the single modal forest, the tree growth algorithm searches for the

best division feature among both the original single modal features

and the new features generated by the local trees ( T i s), the result-

ing tree is expected to be more accurate than both the scandent
ree and the tree grown using only the original single modal fea-

ures. Second, although the T i s are formed by a small multimodal

ataset, the feature selection criteria (Gini impurity or information

ain) is calculated based on the large single modality dataset. In

ther words, the single modal forest uses the features inspired by

he multimodal forest, but it is completely randomized and opti-

ized based on the larger single modal dataset. 

Implementation: The first step is to grow a multimodal forest

nd the related scandent trees using the method explained in the

revious sections. Then the local trees ( T i s) are extracted from each

ree and each T i is used as a feature generator for single modal

ataset. Given that each T i is a single modal classifier, it can assign

abels relative to the local class labels ( C 
′ 
) to each single modal

ample. The resulting labels are used as new categorical features

hich can be calculated for any test data using the correspond-

ng T i . We then use a conventional decision forest growth method

imilar to what was explained in the previous section to grow a

orest using this set of new features together with the original sin-

le modal feature set. 

It should be mentioned that because the local trees are trained

sing the small multimodal dataset, many of the generated fea-

ures might not be useful for the single modal decision forest.

onsidering the large number of local trees in a random for-

st, this can flood the original single modal features.So we filter

he new features by a conventional feature selection algorithm,

amely based on the feature importance measure in a decision for-

st. We apply feature bagging separately to the set of the origi-

al single modal features and the new features, and then merge

hem together to form the feature bag used for each single modal

ree. 

. Evaluation 

We report results on a prostate cancer multimodal dataset and

n Alzheimer’s disease dataset. A summary of the datasets used in

his paper can be seen in Table 1 . 
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.1. Prostate cancer data 

This consists of a small genomics+MRI prostate cancer dataset

 N m 

= 27 ) accompanied by a relatively large MRI only dataset ( N s =
28 ). The single modal dataset consists of five multi-parametric

RI features from dynamic contrast enhanced (DCE) MRI and dif-

usion MRI on a 3 Tesla scanner. We used the apparent diffu-

ion coefficient (ADC) and fractional anisotropy (FA) from diffusion

RI, and three pharmacokinetic parameters from DCE MRI: volume

ransfer constant, k trans , fractional volume of extravascular extracel-

ular space, v e , and fractional plasma volume v p ( Haq et al., 2015;

oradi et al., 2012 ). 

This data is from patients undergoing radical prostatectomy at

ancouver General Hospital and has been collected with informed

onsent, and with the approval of the Research Ethics Board of

he Vancouver General Hospital. Imaging is performed a week be-

ore the surgery. After the surgery, the prostate specimens were

rocessed with wholemount cuts that matched the slices in the

RI scans. A cutting device and the procedure described in Drew

t al. (2010) ensured that the cuts matched the MRI slices. An ex-

erienced pathologist outlined the area of the tumor/normal from

holemount histopathology slides. 

The tissue samples were then obtained by needle biopsy from

he corresponding formalin-fixed paraffin-embedded (FFPE) tissue

locks and RNA was extracted and purified from these samples. An

laborate specimen cutting and registration mechanism described

n previous work ( Haq et al., 2015; Drew et al., 2010 ) ensures that

he MRI feature are calculated and averaged over the same region

f interest of the prostate gland that is sampled for gene expres-

ion analysis. The expression level of 39 genes that form the most

ecent consensus on the genetic signature of prostate cancer for

atients with European ancestry as reported and maintained by

ational Institutes of Health (Date last modified 02/20/2015 ) were

sed as features (Appendix A). 

We have 27 samples with gene expression data and registered

maging data (14 normal, 13 cancer) from 21 patients. The eval-

ation of the proposed method on this small dataset was carried

ut in a leave one out scheme. Each time, the support trees were

rained using 26 samples, with all the single modality data sam-

les and features used for forming the scandent trees. 

.2. Alzheimer’s disease data 

We test the proposed single modal classification method on a

ataset from Alzheimer’s Disease Neuro-imaging Initiative (ADNI)

atabase (adni.loni.usc.edu). The ADNI was launched in 2003 as a

ublic-private partnership, led by Dr. Michael W. Weiner. The pri-

ary goal of ADNI has been to test whether serial magnetic res-

nance imaging (MRI), positron emission tomography (PET), other

iological markers, and clinical and neuropsychological assessment

an be combined to measure the progression of mild cognitive im-

airment (MCI) and early Alzheimers Disease (AD) (For up-to-date

nformation, see www.adni-info.org ). The ADNI study is an exam-

le of a multimodal scenario in which a large portion of samples

re missing one of the modalities. In this paper we take the sam-

les that come from patients with both MRI and PET scan as mul-

imodal dataset ( N m 

= 218 ) accompanied by a relatively large sin-

le modal dataset ( N s = 508 ) consisting of patients with only MRI

ata. This includes the MRI data from the 218 multimodal samples.

The single modality dataset consists of MRI volume measure-

ents of six ROIs in the human brain (ventricles, hippocampus,

hole-brain, entorhinal, fusiform and mid-temporal) and intra-

ranial volume (ICV) in mm 

3 . The multimodal feature set consists

f the same MRI features together with two additional PET scan

eatures, FluoroDeoxyGlucose (FDG) measurement and AV45 up-

ake measurement. The outcome labels include cognitively normal
atients (NL), patients with confirmed dementia (AD) and patients

ith mild cognitive impairment (MCI). The MCI group can be di-

ided into progressive (pMCI) that eventually converts to demen-

ia and stable (sMCI). In this paper we assume a maximum of 36

onth conversion time for the MCI class to be considered pMCI. 

The distribution of different outcome classes in the two

atasets is as follows: for the normal class we have 178 samples

n the single modal dataset versus only 18 samples in the mul-

imodal dataset, for the dementia class we have 108 single modal

amples versus 29 multimodal samples, for the sMCI class we have

26 single modal versus 144 multimodal samples and for the pMCI

lass we have 96 single modal samples versus 27 multimodal sam-

les. In other words, the multimodal dataset is much smaller than

he single modal dataset, and it also does not have the same dis-

ribution of outcome classes. This makes the data fusion between

he two datasets extremely difficult with traditional approaches

uch as imputation. We examine the performance of the proposed

ethod by reporting AUC for three classification scenarios: NL ver-

us pMCI, sMCI versus AD. and sMCI versus pMCI. 

.3. Baseline methods used for comparison 

A natural choice for a baseline imputation method, in the mul-

imodal test scenario of prostate cancer, is the state of the art im-

utation method embedded in decision forests. In our results, this

ethod is referred to as rfImpute. This iterative imputation ap-

roach starts with a median imputation of the whole dataset and

hen grows a random forest using the imputed dataset. In the next

tep the estimations of each missing value are updated by using

he proximity matrix of the resulting random forest as weights

n a voting scheme. This process is iterated using the new im-

uted values until a stable estimation is achieved. Another impu-

ation method worth investigating is the state of the art imputa-

ion method of C5.0 trees. This method uses an algorithm simi-

ar to the proposed method in the sense that it assigns fractional

eights (probabilities of belonging to a certain node). However,

he fractional weights are chosen separately for each node and

re only based on the proportion of samples in each parent node

hat end up in the corresponding child nodes. Moreover, the in-

erence method is based on a simple weighted-voting scheme. The

omplete list of comparison methods include two data-discarding

ethods where we simply drop one or the other dataset (the sin-

le modal forest and the multimodal forest), two forest-based im-

utation methods (C5.0 forest and rfImpute) and two other general

urpose imputation methods, namely replacing the missing values

ith zero, and replacing with the weighted average value of the K

earest neighbors (KNN), K = 10 in our work ( Ashab et al., 2014 ). 

In the single modal scenario, our proposed method uses the

vailable multimodal training data to find a helpful tree-based

eature transform to be used on the single modal dataset. Since

e do not have the assumption of similar feature sets in train-

ng and testing in this scenario, imputation does not provide a

air comparison. Our method is a tree-based feature transform

hat uses scandent trees. Therefore, we compare it with two other

imilar methods that involve a transformation, but not the scan-

ent trees. These include (1) PC-forest: using principal components

PCs) of the single modal features used along with the original sin-

le modal features for training an enhanced-forest baseline, and

2) Single modal feature transform forest: uses tree-based feature

ransforms generated using only single modal features. This is sim-

lar to stacking forests. However, we use categorical, as opposed to

ontinuous probability features unlike ( Cao et al., 2015 ). (3) Simple

ingle modal forest trained and tested on single modal data. 

It should be noted that in order to guarantee a fair compar-

son between the proposed methods and the baseline classifiers,

http://www.adni-info.org
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Fig. 3. AUC for multimodal classification task, prostate cancer dataset. 
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the support decision forest classifier and the single modal forests

used in all the methods are designed to be similar. 

4. Results 

4.1. Multimodal classification task 

Fig. 3 shows the AUC obtained on this data, for detection of

prostate cancer, for several experiments, namely from left to right

the bars show the distribution of AUC areas for (1) a multimodal

decision forest that simply ignores the existence of archival imag-

ing data, (2) our proposed scandent tree approach to use the

archival data to improve the performance of a forest trained and

testes on multimodal data, (3) the standard rfImpute method ap-

plied at the forest level to include the single modal data in train-

ing, (4) the standard C5.0 method applied at trees level, (5) train-

ing and testing a tree using only the single modal features of the

multimodal set, (6) KNN imputation, and (7) zeroing of the missing

feature values. 

It can be seen that the multimodal forest is performing signif-

icantly better than the single modal forest even though the sam-

ple size of the single modal dataset is significantly larger than the

multimodal dataset. This suggests that the missing modality, in

this case the genetic features, is far more discriminative than the
Spec
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Fig. 4. ROC curve for NL vs. progressive MCI classificati
hared modality, MRI. The imputation methods outperform a sin-

le modal forest, but they fail to outperform the multimodal forest.

his shows that even the state of the art imputation methods may

isguide the decision forest when a large portion of data is miss-

ng, to the extent that a simple imputation method like zero re-

lacement outperforms the state of the art imputation approaches.

In case of the proposed method, scandent forest, the significant

dvantage over a single modal forest, and each of the imputation

ethods is evident. Moreover, the proposed method does not in-

roduce bias into the prediction like the other imputation meth-

ds and as a result, it outperforms both the multimodal forest and

he single modal forest. However, because the shared modality is

ignificantly less discriminative than the missing modality, the im-

rovement in performance is small (mean AUC of 94% for the scan-

ent forest and 93% AUC for the multimodal forest), although it is

tatistically significant ( p < 0.01). 

.2. Single modal classification task 

In the single modal scenario, we used experiments on the ADNI

ataset to evaluate our proposed method of using scandent trees

o extract tree-based feature transforms, in comparison with other

pproaches to enhance the single modal forest that do not use

candent trees. The performance of all these methods is evalu-

ted for three classification tasks: discrimination of normal sam-

les from progressive MCI (NL vs. pMCI), discrimination of stable

CI from progressive MCI (sMCI vs. pMCI) and stable MCI from

ementia (sMCI vs. AD). 

5-fold cross-validated ROC curves of the baseline single modal

orest, PC forest, single modal feature transform forest, and the

candent tree multimodal feature transform forest for NL vs. pMCI

lassification task are shown in Fig. 4 . 

As it can be seen in Table 2 , the feature transform forests sig-

ificantly outperform the baseline single modal forest and the PC

orest. The difference between the baseline and the feature trans-

orm methods is statistically significant ( p = 0.01) for the single

odal transformed features and ( p = 0.002) for multimodal fea-

ure transforms. However, the improvement in the performance

chieved by the PC-based features is not statistically significant ( p -

alue = 0.92). The multimodal feature transforms are more effec-

ive compared to the single modal feature transforms. This differ-

nce is significant ( p = 0.04). 
ificity

0.
4

0.
2

0.
0

l forest

l feature transform forest
 feature transform forest

on, single modal classification task, ADNI dataset. 
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Table 2 

Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area under ROC 

curve (AUC) of the proposed methods and the baseline forest for the NL 

vs. pMCI single modal classification task, ADNI dataset. 

Acc Sens Spec AUC 

Single modal forest 0 .744 0 .663 0 .791 0 .779 

PC forest 0 .774 0 .878 0 .747 0 .781 

Single modal feature transform 0 .781 0 .691 0 .844 0 .819 

Multimodal feature transform 0 .788 0 .747 0 .805 0 .837 

Table 3 

Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area under ROC 

curve (AUC) of the proposed methods and the baseline forest for the 

sMCI vs. AD single modal classification task, ADNI dataset. 

Acc Sens Spec AUC 

Single modal forest 0 .731 0 .824 0 .699 0 .814 

PC forest 0 .752 0 .758 0 .748 0 .836 

Single modal feature transform 0 .782 0 .734 0 .863 0 .868 

Multimodal feature transform 0 .795 0 .737 0 .897 0 .892 
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Table 4 

Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area under ROC 

curve (AUC) of the proposed methods and the baseline forest for the 

sMCI vs. pMCI single modal classification task, ADNI dataset. 

Acc Sens Spec AUC 

Single modal forest 0 .743 0 .713 0 .744 0 .810 

PC forest 0 .757 0 .769 0 .746 0 .815 

Single modal feature transform 0 .777 0 .819 0 .750 0 .848 

Multimodal feature transform 0 .815 0 .831 0 .803 0 .872 
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Another classification problem worth investigating is discrimi-

ation of samples with stable MCI from dementia cases using the

RI feature set. Fig. 5 and Table 3 show ROC curves and perfor-

ance measures of the enhanced and baseline forests for this clas-

ification task. 

It can be seen that similar to the NL vs. pMCI task, the forests

nhanced by the new feature sets are outperforming the baseline

ingle modal forest. The improvement observed in the PC forest

s more significant than the previous task but it still can not be

onsidered statistically significant ( p -value = 0.08). On the other

and the proposed tree-based feature transform methods signifi-

antly outperform the baseline methods with p -values of 0.0 0 01

nd 3.698e −07 for the single and multimodal feature transforms,

espectively, and the multimodal feature transforms are more ef-

ective than single modal feature transforms ( p = 0.0 0 03). 

The third classification task which separates sMCI from pMCI

ases is potentially the most clinically relevant model. The ROC

urves and performance measures for this task can be seen in

ig. 6 and Table 4 . 

The trends remain the same: the tree-based feature transforms

utperform a simple single modal forest with p = 0.01 and and
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Fig. 5. ROC curve for stable MCI vs. AD classification
 = 0.0 0 02 for the single modal (MRI-based) and multimodal

MRI+PET) feature transforms, respectively. It can also be seen that

he PC-based features fail to enhance the baseline forest to a sta-

istically significant level ( p = 0.672). Similar to the previous ex-

eriments, the multimodal feature transforms yield a larger AUC

han single modal feature transforms with p = 0.01. 

. Discussion 

.1. Scandent tree: limitations and future work 

The prostate cancer dataset is an example of the worst case sce-

ario of missing data: a large non-random portion of the data is

issing the potentially more powerful genomic features resulting

n a very small multimodal dataset. At the same time, the num-

er of features on the single modality (imaging) side is small. It is,

herefore, revealing that even in this situation, the use of scandent

ree methodology provides a clear advantage against the traditional

pproaches to deal with a situation like this, such as simply ignor-

ng one or the other set, or imputation approaches. 

There are two limitations to our work with prostate cancer

ata. First, as our experiments show the missing modality (gene

xpression) is far more discriminative than the shared modality

MRI). This makes it extremely difficult for the proposed method

o model the relationships between the modalities and effectively

erge the two datasets. Second, the small number of features in

he shared modality (MRI) makes the feature-bagging in the sup-

ort tree unbalanced between the modalities. As a result, many

f the support trees are completely grown based on the missing

odality (gene expression) and scandent trees have to follow the
ificity
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structure of a whole support tree. This together with small sample

size of the multimodal dataset can cause over-fitting. 

Considering these limitation of the prostate cancer study, one

might question the value of training a complex model like a scan-

dent tree using such a small dataset with unbalanced feature sets.

Further tree-level investigations of the proposed model show that

even in the extreme case of the prostate cancer dataset, 56.3% of

the trees of the scandent forest were observed to outperform the

corresponding support trees. We observed that because of the low

sample size of the multimodal prostate cancer dataset, the infer-

ence algorithm is unable to optimize many of the leaves of the

scandent forest and as a result most of the leaves of a scandent

forest are not different from the support forest. This makes it hard

to show the effect of the local trees separately from the inference

method using the overall performance of a scandent forest. 

However, on the leaves that have enough out of the bag sam-

ples needed for optimization, our observations show that the ef-

fect of local trees on the performance of the inference algorithm

is evident. We also used a leaf-level error-rate calculated based

on out of bag samples as a measure to compare the local trees

method with a genetic-unaware partitioning of the samples. The

results show that the inference method achieves lower error rates

using the local trees and the reduction in error rates is statistically

significant. 

Given the limitations of the prostate cancer study, a more re-

vealing test of the performance of the solution proposed for the

multimodal scenario can be achieved in the study of benchmark

datasets. One such study was presented in our MICCAI 2015 work

where we examined the performance of the scandent tree method

for different mutlimodal sample sizes and different feature sets us-

ing a heart disease benchmark dataset publicly available from the

University of California Irvine (UCI) database ( Lichman, 2013 ). 

In comparison with the state of the art imputation method for

decision forests (rfImpute), we observed that in larger multimodal

sample sizes or when only a small number of features were miss-

ing from the single modal dataset, both of the methods perform

very well in handling the missing values for multimodal classifi-

cation. However, in smaller multimodal datasets or when a large

portion of features are missing from the single modal samples, the

scandent tree method showed significantly better performance in

comparison with the rfImpute method. Another observation was
hat for a fixed sample size, the scandent tree method is less sen-

itive to the number of missing features, especially in smaller mul-

imodal sample sizes. This advantage was also evident from the re-

ults on the prostate cancer dataset. 

We can envision two future improvements to the implementa-

ion of the scandent tree method. 

The first improvement would be optimization of the proposed

ultimodal classifier for computational efficiency. There are two

omputationally expensive steps in forming a scandent forest,

orming the scandent trees and the inference. Forming the scan-

ent tree is relatively complex in comparison to a conventional

ree. Moreover, its computational cost is highly dependent on the

elationships between feature sets. However, the computational

ost of training a scandent tree can be neglected in comparison

o the inference method. The current proposed inference method

s based on the optimization of the scandent trees in a leaf by leaf

anner. This is one of the main reasons for better performance

f the scandent tree method in smaller sample size. However, the

omputational load of the inference step can be considerable in

ase of large multimodal datasets. This depends on many param-

ters besides the number of leaves of the tree. For instance, the

umber of bootstrapped re-samples performed at each leaf and the

lgorithm used for finding the optimum sample selection thresh-

ld, q. Considering all these parameters, a valuable direction for

uture work would be to redesign the proposed method for better

omputational efficiency with emphasis on designing of the infer-

nce method. Note that our proposed multimodal method keeps

he testing cost the same as the baseline support tree. In contrast

o the proposed multimodal classifier, the scandent forests used for

ingle modal classification do not necessarily need the inference

tep. As a result, we do not see a need for redesigning the pro-

osed single modal classifier. However, because the feature trans-

orms are used in both training and testing steps, a more computa-

ionally efficient implementation of the feature transforms can be

aluable. 

The second area for continued work is improving the baseline

rees. Because we needed full control over each division of each

ree in the forest, we could not use the off-the-shelf decision forest

ackages available in R. Therefore, the support forest which is the

ase of the scandent tree method is our in-house implementation

nd can be improved. 
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Table 5 

Comparison of the proposed single modal method with the state of the art for sMCI vs. pMCI prediction, 

ADNI dataset. 

Method Sample size Modalities Performance 

Acc Sens Spec AUC 

Proposed method a 122 MRI 0 .815 0 .831 0 .803 0 .872 

Proposed method b 357 MRI 0 .759 0 .688 0 .774 0 .737 

( Cheng et al., 2015 ) 99 MRI, PET, CSF 0 .801 0 .853 0 .733 0 .852 

( Suk et al., 2014 ) 204 MRI, PET 0 .759 0 .48 0 .952 0 .746 

( Campos et al., 2015 ) 397 MRI, PET, CSF 0 .732 0 .655 0 .767 0 .786 

( Eskildsen et al., 2013 ) 388 MRI 0 .754 0 .705 0 .776 0 .82 

( Wee et al., 2013 ) 200 MRI 0 .751 – – 0 .84 

( Young et al., 2013 ) 143 MRI, PET, CSF, APOE 0 .741 0 .787 0 .656 0 .795 

( Zhang and Shen, 2012 ) 91 MRI,PET,CSF 0 .739 0 .686 0 .736 0 .797 

( Coupé et al., 2012 ) 405 MRI 0 .71 0 .7 0 .72 –

( Westman et al., 2012 ) 162 MRI, CSF 0 .685 0 .741 0 .63 0 .76 

a MCI:SMCI+EMCI 
b MCI:SMCI+EMCI+LMCI 
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.2. Scandent tree feature transforms 

.2.1. General discussions 

We examined the robustness of the proposed method for dif-

erent feature selection algorithms on the ADNI dataset, namely by

sing importance measure in a decision forest, in a C5.0 tree and

-value of a Pearson’s Chi-squared test. We observed that the pro-

osed method is robust to the choice of the importance measure

ut is sensitive to the size of the feature generating forests and

he number of selected features. This suggests that the statistical

ndependence between the features plays a more important role

omparing to the choice of the feature selection technique. A valu-

ble direction for feature work would be to design a method that

n addition to ranking the features based on their discrimination

ower, eliminates the statistically dependent features. 

One of the interesting results on the ADNI dataset is the ad-

antage of the multimodal feature transform forest over the sin-

le modal feature transform forest. Considering the fact that mul-

imodal feature transforms are optimized for mimicking the struc-

ure of the support tree, it might seem odd that they can be more

seful than the single modal feature transforms optimized directly

ased on the outcome label. This can be justified by the fact that

he divisions formed by the missing modality might guide the lo-

al tree to form feature transforms that could not be easily ob-

ervable by a conventional single modal tree growth algorithms.

hese new feature-sets belong to the same optimization space of a

ingle modal tree. Howevee, because each single modal tree is op-

imized based on step-wise sample space partitioning, the single

odal forest might not easily converge to the features generated

y the scandent forest. 

Another interesting point of discussion is the kind of relation-

hips that can be modeled by the scandent tree model. Naturally,

tatistical dependence between the features is assumed as a strict

equirement for any relationship model to work. Although it can-

ot be guaranteed that the proposed method can handle any type

f statistical dependence, it can be shown that in case of simple re-

ationships like correlation between features, the local trees can be

s effective as the other models used in state of the art imputation

ethods. However in case of modalities that do not have a trivial

elationship, we believe that using the local trees might have some

dvantages. Two well-known examples of modalities that measure

ifferent quantities and do not have a trivial relationship in general

re the MRI and PET modalities in the ADNI study. 

For example, PET and MRI values are not trivially related. Al-

hough we know that the MRI values may not be predictable by

ET values (and vice versa), we are hoping that they are not statis-

ically independent. The local trees in each scandent tree avoid the

r  
rediction of the exact values and instead translate the knowledge

f the missing modality into questions of the form “given that a

atient belongs to a partition of the PET feature space, what is the

robability that the patient belongs to a partition in the MRI fea-

ure space?”. For instance, “if a patient is similar to another patient

n the PET space, is it likely that these patients are also similar in

he MRI space?”. We are trying to show that sometimes, the an-

wer to this question is sufficient for a more accurate classification

nd we do not need to predict exact values of a modality by the

ther one. 

.2.2. Comparison with other work on ADNI 

We investigated the performance of the proposed method for

ingle modal classification on the ADNI dataset. In this study we

ocused on the problem of leveraging the multimodal set of sam-

les with both MRI and PET features for designing a single modal

lassifier that only needs MRI for classification. The solution pre-

ented here relies on the new concept of tree-based feature trans-

orms. We showed that in all clinically relevant questions related

o the ADNI dataset, the use of a the scandent trees as a means

o define tree-based feature transforms based on both PET and

RI data, and using them along with the original MRI features

or training and testing single modal data, results in an improved

erformance in comparison with methods that rely only on MRI

eatures. 

The block wise missing value problem is a well-known issue

f the ADNI dataset and it is addressed in many papers in litera-

ure. However, none of them has the same goal and assumptions

s our study. For instance, this paper focuses on improving the

erformance of decision forests with the assumption that a deci-

ion forest is the classifier of choice for a given multimodal dataset.

owever, most of the studies on the ADNI dataset use other clas-

ifiers like multi-kernel SVM for multimodal classification. As a re-

ult, it is difficult to compare our results with the available litera-

ure as any such comparison will be mostly informed by the choice

f classification paradigm. 

One other issue that makes the comparison difficult is the dif-

erent feature sets and sample sizes impacted by patient selection

riteria. A simple example is the different assumptions on the con-

ersion time for MCI to AD for differentiating progressive versus

table MCI. In our study, we assumed a 36 month conversion time

or progressive MCI cases and used the summarized set of features

xtracted by adnimerge R package as our feature set. This package

s accessible from the ADNI website ( https://adni.loni.usc.edu ). 

With all these differences and limitations in mind, we have

athered a list of comparable methods with performance measures

eported in the literature in Table 5 . These are all on the sMCI vs

https://adni.loni.usc.edu
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Table A.6 

The Genes used in prostate cancer study. 

Probe ID Gene name Probe ID Gene name 

2376037 MDM4 3947604 BIK 

4008427 NUDT11 3956433 CHEK2 

2436826 KCNN3 2887633 BOD1 

2562343 GGCX 3968303 SHROOM2 

3128411 EBF2 2920619 ARMC2 

3761737 ZNF652 3286921 08-Mar 

3754797 HNF1B 2934521 SLC22A3 

2852766 AMACR 2852742 AMACR 

2731257 AFM 2652027 CLDN11 

2736322 PDLIM5 2949901 NOTCH4 

3127978 NKX3-1 3043264 JAZF1 

24 84 970 EHBP1 3349660 HTR3B 

2845829 TERT 3359180 TH 

3739668 VPS53 3739679 VPS53 

2738146 TET2 3014159 LMTK2 

2536531 FARP2 3338060 MYEOV 

3839538 KLK3 3049522 TNS3 

2417390 CTBP2 2469157 GRHL1 

3311417 CTBP2 2636483 SIDT1 

3413787 TUBA1C 
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pMCI classification task. We report the performance of the pro-

posed method for two common choices of the MCI class, one con-

sisting of MCI casses labeled as SMCI or EMCI and the other one

consisting of MCI classes labeled as SMCI, EMCI or LMCI. As it can

be seen, the proposed method matches or surpasses the perfor-

mance of the state of the art, even in cases where multimodal data

is available for all cases. 

6. Conclusion 

We propose the novel concept of scandent trees for enriching

a multimodal classifier with large training dataset from a sub-

set of modalities. The results show that the proposed method

for multimodal classification outperforms the embedded missing

value imputation method of decision forests introduced in Breiman

(2001) and other state of the art imputation methods, particularly

in smaller samples sizes and when a large portion of features are

missing. We showed that the proposed method enables the inte-

gration of a small genomic plus imaging dataset, with a relatively

large imaging dataset. We also descibe a novel learning method

for training on multiple modalities and testing on one modality. To

this end, we introduced the concept of tree-based feature trans-

forms. We showed that using this approach, we can efficiently

transfer the discriminative power of PET imaging into the training

phase of building a model that would only use the MRI data at the

testing phase. 
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ppendix A. Prostate cancer dataset 

The 39 genes used as biomarkers for the prostate cancer study

re listed in Table A.6 . 
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