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Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is
disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred
method for resting-state analysis. Because the brain is reported to have complex interconnected networks ac-
cording to graph theoretical analysis, the independency assumption, as in the popular independent component
analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present
a new statistical parameter mapping (SPM)-type analysis method based on a sparse graphmodel where tempo-
ral dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular,
a new concept of a spatially adaptive designmatrix has been proposed to represent local connectivity that shares
the same temporal dynamics. If we further assume that local network structures within a group are similar, the
estimation problem of global and local dynamics can be solved using sparse dictionary learning for the
concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across
subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using
sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard
SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from
normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the
changes in the default mode network extracted by the proposed method are more closely correlated with the
progression of Alzheimer's disease.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Spontaneous low-frequency fluctuations (b0.1 Hz) of blood oxygen
level-dependent (BOLD) signals during resting states have been shown
to represent cognitive functions and neural physiology (Biswal et al.,
1995; Cordes et al., 2001; Damoiseaux et al., 2006). Spatiotemporally
distinct resting-state networks have been consistently identified in the
kaist.ac.kr (J.C. Ye).
ed from theAlzheimer's Disease
ni.usc.edu/ADNI). As such, the
and implementation of ADNI
writing of this report. ADNI in-
ttp://www.loni.usc.edu/ADNI/
primary visual network, default mode network, salience network,
fronto-parietal network, and sensory motor network, among others
(De Luca et al., 2006). Among the various resting-state subnetworks,
the default mode network (DMN), which significantly deactivates dur-
ing cognitive task-related experiments, has been studied extensively
in functional connectivity analyses. It has been shown that the DMN is
closely involved with episodic memory processing (Lustig et al., 2003;
Greicius et al., 2004). Furthermore, previous works have provided evi-
dence that the PCC, which shows a neural deactivation in early
Alzheimer's disease (AD), is the first brain region to exhibit decreased
metabolism in AD patients (Minoshima et al., 1997).

Seed-based approaches (Lowe et al., 1998; Rombouts et al., 2003;
Fransson, 2005; Fox et al., 2009) and independent component analysis
(ICA)-based approaches (van de Ven et al., 2004; Beckmann et al.,
2005) are the most commonly used analysis methods in resting-state
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functional connectivity studies. The seed-based approach extracts BOLD
signal time courses from a region of interest (ROI), called a “seed” re-
gion, and computes the cross-correlation between time course signals
from the ROI and all other voxels in the brain to obtain a map of neuro-
nal connectivity (Fox and Raichle, 2007). Despite their popularity, seed-
based correlation analyses have limitations such that they require a
prior determination of the seed's location. On the other hand, ICA auto-
matically decomposes the entire BOLD dataset intomaximally indepen-
dent components. However, the brain networks are not independent of
each other due to their complex, interconnected regions. Another issue
in using ICA is that the individual analysis is usually not sensitive in de-
tecting networks compared to seed-based analysis. Moreover, the uni-
fied theory that links the individual analysis results to group analysis
is still not fully established. Additionally, graph theory-based quantita-
tive analyses of brain connectivity have been developed to study struc-
tural and functional brain networks and their interactions (Bullmore
and Sporns, 2009). However, graph theory-based analysis is dependent
on pre-defined parcellations. Therefore, parcellation-independent
graph theoretical analyses are required.

Unlike the conventional approaches, here we present a novel
parcellation-free functional connectivity analysis that is inspired by
the graph theoretical approach for brain networks. More specifically,
our method is derived from signal decomposition based on a sparse
graph model that regards the temporal dynamics at each voxel as a
sparse combination of unknown global information flow. Interestingly,
we can show that the sparse dictionary learning algorithm and the con-
cept of a spatially adaptive design matrix used for our fMRI analysis in
Lee et al. (2011b) can be used to represent local connectivities based
on the sparse graph model. However, one of the technical difficulties
of using Lee et al. (2011b) for functional connectivity fMRI analysis is
that the extracted temporal dynamics corresponding to each network
highly depend on the individual. Moreover, subject-dependent regres-
sors should be estimated, after which the group-level statistical infer-
ences should be performed using group average activation maps that
are extracted using the subject-specific regressors. This complicates
the group sparse learning and statistical inference. Similar difficulties
have been observed in other data-driven approaches, such as ICA. In
group ICA, the problem has been addressed by concatenating the data
or by using tensor factorization. However, even though group-wise ac-
tivationmaps can bedetected using these types of approaches,more ad-
vanced group analyses, such as a two-sample t-test, or an analysis of
variance (ANOVA), are often difficult. There are some recent methods
for ICA to obtain such components, such as dual regression (Zuo et al.,
2010), and GRAICAR (generalized ranking and averaging independent
component analysis by reproducibility) (Yang et al., 2012). However, a
unified framework from individual to group level using standard statis-
tical analysis tools still appears to be lacking.

To overcome such technical difficulties in group analysis, one of the
main contributions of this paper is to propose a novel unified mixed-
effect model framework where group-level sparse dictionary learning
and group inference can be performed in a unified linear mixed model
and the restricted maximum likelihood (ReML) variance estimation
framework. More specifically, to estimate the unknown global dynamics
and local network structures at a group level, we first concatenated the
time series across the subject and performed a group sparse dictionary
learning for the concatenated temporal data. We showed that the sparse
learning for the concatenated time series is equivalent to imposing a con-
straint that the network structures within a group are similar. Using this
constraint, a global dictionarywas estimated from the concatenated data,
after which the dictionaries from the concatenated time series were sep-
arated to obtain each subject-level sparse dictionary. Then, the SPM-type
analysis was performed using individualized dictionaries. Under the ho-
moscedasticity variance assumption, we showed that the aforemen-
tioned group sparse dictionary learning and inference can be rigorously
derived using the unified linearmixedmodel framework and the restrict-
ed maximum likelihood (ReML) variance estimation.
As themathematical framework for inference turns out to be similar
to that of a standard statistical parameter mapping (SPM) analysis with
only the exception of a spatially adaptive design matrix (which still re-
tains the homogeneous degree of the freedom), rich statistical analysis
tools, such as p-value correction using random field theory and
hypothesis-driven inference, can be used. Accordingly, we call the pro-
posed method as sparse SPM (SSPM).

To confirm the validity of the proposed method, we provide exten-
sive comparisons using group data from normal, MCI, and Alzheimer
subjects from both our clinical data set and the ADNI (Alzheimer's Dis-
ease Neuroimaging Initiative) data set (http://www.loni.usc.edu/ADNI).

Theory

Throughout the paper, xi and xj correspond to the i-th row and the j-
th column of matrix X, respectively. When S is an index set, XS and AS

correspond to a submatrix collecting the corresponding rows of X and
columns of A, respectively; xS denotes a subvector collecting the
corresponding elements of X. The superscripts ' and † denote the adjoint
operator and pseudo-inverse, respectively. A vector 1L denotes a L-
dimensional vector with elements of ones, and Ik × k is a k × k identity
matrix.

Sparse graph model for functional connectivity analysis

In the proposed method, the interactions of neural signal between
the brain's functional systems are modeled by a set of nodes (voxels)
linked by connections as shown in Fig. 1. Specifically, each circle denotes
a voxel or node where a temporal dynamic of BOLD signal is measured
continuously. A set of nodes in a functional brain network is defined as a
community if they share the same information flows.

In Fig. 1, the sparsity level (which determines the variety of informa-
tion flows) is k = 3. For example, a length m vectorized time series at
the nodes 1 and 2, denoted by y1 ∈ ℝm and y2 ∈ ℝm, is given by

y1 ¼ 2d1 þ d3 þ d4; y2 ¼ 3d2 þ d4 þ d5 ;

which shows that the information at the nodes 1 and 2 is composed of
three distinct information flows, i.e. k = 3. Moreover, in Fig. 1, the dot-
ted lines represent information flows other than d1,⋯, d5 so that at each
node the time trace is composed of k = 3 distinct information flows. If
we define a global dictionary D by collecting all local or long-range in-
formation flows as

D ¼ d1;d2;⋯;d5;d6⋯;dQ
� �

;

where d6,⋯,dQ denote the information flowon the dotted lines in Fig. 1,
then we can easily see that the temporal dynamics at nodes 1 and 2 are
described as a sparse linear combination of the atoms in the global de-
sign matrix. In general, we have

yn ¼ DInαIn þ εn; n ¼ 1;⋯;N ð1Þ

where N is the number of voxels, ϵ denotes noise, DIn∈ℝ
m�k is a

submatrix of D ∈ ℝm × Q composed of elements in the index set In, andαIn∈ℝ
k denotes the correspondingweight vectors. Note that a local sub-

set index In represents a local network structure at the n-th voxel, and a
regressor is a representative dynamic in a network module or commu-
nity that shares the same information flow. We are aware that model
(1) or its variations are frequently used. Structural equation modeling
(SEM) (Schlösser et al., 2003), and sparse partial correlations (Ryali
et al., 2012), among many others, all use linear regression models be-
tween nodes. The only differences in all of these linear models are the
additional constraints put into the regression. The main contribution
of our model (1) over the existing ones is that the spatially adaptive de-
sign matrix is used by selecting a subset of regressors from a dictionary
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Fig. 1. A graph theoretical model for sparse SPM.
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across all brain areas so that the subset index represents the topology of
local connectivity.

In Fig. 1, it is important to note that all the voxels,which are connect-
ed through k distinct information flows, share the information flow
from other communities. A community that a voxel belongs to is deter-
mined by statistical testing. Specifically, to extract a statistically signifi-
cant community that shares the same information flow, a hypothesis
test is conducted to test whether a specific information flow of interest
(z∈D) is presented in each voxel. This test can be formulated as follows:
a null hypothesis H0 : θn = 0 is tested against an alternative hypothesis
H1 : θn ≠ 0, where θn is a regression coefficient or an effect for the regres-
sor z:

yn ¼ zθn þ DIn zαn z þ εn ð2Þ

where \z denotes a reduced sizematrix or vector made by removing the
elements corresponding to the atom z. When z belongs to the set of
atoms from DIn , we have the following F statistics:

ℱ n ¼
y0n P⊥

DIn z
−P⊥

DIn

� �
yn

y0nP
⊥
DIn

yn

m−k
1

ð3Þ

where P⊥
DIn

and P⊥
DIn z

denote the projection on the orthogonal comple-

ment on the range space of Dn and DIn z, respectively. Note that the de-
gree of freedom (df) for (3) is 1, because we test the effect for a single
regressor. Hence, this is equivalent to the two-side t-test. The reason
we still prefer to call this as F test with df = 1 is to extend this later
for a group-level F test for ANOVA.

If z is not presented in the local dictionary DIn , then θn = 0 and the
signal at the voxel are irrelevant to the network associated with the
atom z, so H0 holds and Fn = 0. For example, in Fig. 1, if we test the
presence of z= d1 (or z= d2), we can obtain the nodes in community
1 (or community 2). By testing z= d3 or z= d4, the connector hubs be-
tween two community can be obtained, which belong to two communi-
ties at the same time. This implies that a voxel can belong to multiple
communities as long as the memberships for those communities are
statistically significant.

For a group of L subjects, we perform a similar connectivity analysis
using the concatenated times series frommultiple subjects.More specif-
ically, if Y (l)= [y1(l),⋯, yN(l)] denotes a collection of time traces for the l-th
subject across all N voxels, then we construct a concatenated temporal

time trace from L subjects across all voxelsY ¼ ½Y ð1Þ0 ;⋯; YðLÞ0 �0. Assuming
that the local design matrix index In is same across all subjects, we have
the following decomposition of Y:

Y≡
Y 1ð Þ

⋮
Y Lð Þ

2
4

3
5 ¼ DW ¼

D 1ð Þ

⋮
D Lð Þ

2
4

3
5 w1;⋯;wN½ � ð4Þ

where D denotes the concatenated global dictionary, D(l) denotes the
corresponding l-th subject individual sparse dictionary, and W is the
corresponding coefficients whose non-zero elements are sparse. In our
model, the individual dictionary D(l) is assumed to be normalized so
that each column has unit norm.

Now, the i-th column of D represents the representative temporal
dynamics at the voxel locations that have non-zero coefficients in the
i-th row ofW. More specifically, the i-th column of the resulting individ-
ual dictionary {D(l)}l = 1

L shares the same geometric connectivity. Hence,
our assumption that the local design matrix index In is same across all
subjects imposes the constraint that the local network structure within
a group is the same. This learning rule is very advantageous to identify
the group differences, because the network connectivity changes be-
tween groups are believed to be one of the main biomarkers in
resting-state fMRI analysis.

ReML estimation of group-wise sparse graph

Mathematically, the temporal dynamics at then voxel of the subject l
can be modeled as

y lð Þ
n ¼ D lð Þ

In
w lð Þ

In
þ ϵ lð Þ

n ; ϵ lð Þ
n � N 0;R lð Þ

n

� �
ð5Þ

where l=1,⋯, L denote the subject index and Rn
(l) denotes the l-th sub-

ject temporal correlation matrix at the n voxel. The subject differences
within a group can now be modeled as random-effects:

w lð Þ
In

¼ αn þ β lð Þ
n ; β lð Þ

n � N 0;Gnð Þ; ð6Þ

where αn denote a group mean and Gn is a random-effect covariance
matrix. Then, for the concatenated individual data, we can obtain the
following mixed model:

yn ¼ Xnαn þ Znβn þ ϵn ; ð7Þ
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where

yn ¼ y 1ð Þ0
n ;⋯; y Lð Þ0

n

h i0
∈ℝM

βn ¼ β 1ð Þ0
n ;⋯;β Lð Þ0

n

h i0
∈ℝq

whereM=mL, q= kL, and thefixed-effect and random-effectmatrixXn
and Zn are given by

Xn ¼
D 1ð Þ
In

D 2ð Þ
In
⋮

D Lð Þ
In

2
6664

3
7775; Zn ¼

D 1ð Þ
In

0 ⋯ 0

0 D 2ð Þ
In

⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ND Lð Þ

In

2
6664

3
7775 ;

or equivalently,

Xn ¼ ZnXG; XG ¼ 1L⊗Ik�k ;

where ⊗ represents the Kronecker product.
Note that in our sparse graph estimation problem, there are several

unknowns that need to be estimated, including the global dictionary D,
local network connectivity {In}n = 1

N , fixed and random-effect regression
coefficients {αn, βn}n = 1

N , and covariance matrices {Rn(l)}n,l = 1
N,L and

{Gn}n = 1
N . The maximum likelihood (ML) principle is perhaps the most

popular parameter estimation procedure in statistics because of its
many optimal properties, such as consistency (Searle, 1979). However,
one of themain problems of theML approach for covariance estimation
is that it does not take into account the loss in degrees of freedom
resulting from the estimation of the model's fixed-effects (Searle,
1979; Patterson and Thompson, 1971). To address this issue, Patterson
and Thompson (1971) proposed a method that takes into account the
loss in degrees of freedom resulting from estimating fixed-effects.
More specifically, they restricted their attention to a set of such con-
trasts that are invariant to the fixed-effect parameter and then estimat-
ed the covariance for such restricted cases of maximum likelihood. This
idea is known as the restricted maximum likelihood (ReML) method
(Searle, 1979; Harville, 1977; Kenward and Roger, 1997; Graser et al.,
1987; Friston et al., 2011).More specifically, if we are interested in find-
ing the restricted maximum likelihood that is invariant to the fixed-
effect parameter, we need to minimize the following form of the
ReML equation (Searle, 1979; SAS Institute, 1985):

CReML R lð Þ
n

n o
; Gnf g; Inf g; αnf g

� �
ð8Þ
¼ −
X
n

1
2
logjVnj þ 1

2
logjX0

nV
−1
n Xnj þ 1

2
yn−Xnαnð Þ0V−1

n yn−Xnαnð Þ
� �

;

where Vn is given by

Vn ¼ ZnGnZ
0
n þ Rn; ð9Þ

Rn ¼
R 1ð Þ
n ⋯ 0
⋮ ⋱ ⋮
0 ⋯ R Lð Þ

n

2
4

3
5 ð10Þ

However, ReML is usually computationally expensive. To simplify
the covariance estimation and the resulting inference, we first approxi-

mate thatDðlÞ0
In
DðlÞ
In
≃I. Because each individual dictionary is normalized to

have unit norm, this implies that each regressor is nearly orthogonal,
which is often used in SPM analysis. Next, we assume that the noise in
individual temporal dynamics is white, i.e. Rn(l) = σn

(l)2 ≃ I, and the
random-effect variance is spherical, i.e. Gn = gn

2I. This can be easily sat-
isfied using a prewhitening procedure. Finally,we employ the homosce-
dasticity variance assumption across subjects and groups, i.e. σn

(l)2 = σn
2,
which has also been used frequently in SPM. Then, the resulting cost
function becomes

CReML σ2
n

� 	
; g2n
� 	

; Inf g; αnf g
 �
¼ −

X
n

L M−kð Þ
2

ln g2n þ σ2
n


 �þ 1
2 g2n þ σ2

n


 � ∥yn−Xnαn∥2
 !

:

The problem can now be solved using an alternating minimization.
More specifically, for the estimated local connectivity In and the fixed-
effect parameter estimation α̂n, we have

ĝ2n þ σ̂2
n ¼ 1

L M−Kð Þ yn−Xnα̂nk k2

¼ 1
L M−kð Þ

XL
l¼1

y lð Þ
n −D lð Þ

In
α̂n

��� ���2 ð11Þ

Next, for a given sparsity level k for themaximum number of local
connections, we claim that the estimation problem of local connec-
tivity In, global dictionary D, and the fixed-effect parameter estima-
tion α̂n can be equivalently written as a minimization problem
with respect to D, W

minD;W Y−DWk kF ; subject to ∥wn∥0≤k; f or all n: ð12Þ

To see the equivalence, we consider a sparse regression problem for
a given global dictionary D:

minwn yn−Dwnk k22; subject to ∥wn∥0≤k: ð13Þ

which is equivalent to

min
In ;αn

yn−DInαnk k22; subject to Inj j≤k: ð14Þ

Therefore, by solving (13) and obtaining the non-zero index ofŵn as
In, we can obtain DÎn

and α̂n.
The simultaneous estimation ofD andW in (12) can be addressed by

using a sparse dictionary learning algorithmcalled K-SVD (Aharon et al.,
2006), which attempts to find the best possible dictionary D for a sparse
representation of Y in a greedy manner using a sparse coding step and
dictionary update step. More specifically, for a given dictionary D, the
sparse coding solves (13) for n = 1, ⋯, N. The active index set In is
then estimated by collecting indices corresponding to the k-largest cor-
relation between yn and dj as:

Cyn jð Þ ¼ y0nd j
�� ��2

2

d j
�� ��2

2

; j ¼ 1;⋯;Q ; ð15Þ

where Q denotes the number of atoms in a global dictionary D. The
fixed-effect parameter estimate α̂n is then given by

α̂n ¼ D0
InDIn

� �−1
D0
Inyn : ð16Þ

The dictionary update step then refines each column vector dj(j =
1, …, Q) and the corresponding coefficient row vector wj sequentially
by a rank-1 approximation using singular value decomposition. More
specifically, with estimated W, K-SVD puts into question only one col-

umn in the dictionary, dj, and the corresponding coefficient ~w j , the j-
th row of ~W . This can be solved using singular value decomposition
(SVD) with sparsity constraint. Then, for each j = 1, 2, ⋯, Q, K-SVD
does the following: (i) defines the index set ωj corresponding to non-

zero indices of ~w j; (ii) computes E j ¼ Y−∑p≠ jd j ~w
j; (iii) defines Ωj as

a diagonal matrix with ones for the indices corresponding to ωj and
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zeros elsewhere; (iv) chooses a subset Ejℛ = EjΩj; (v) takes SVD to the
restricted Ej

ℛ,

Eℛj ¼ UΛV 0 ¼
Xp
p¼1

σpupv0p ð17Þ

and (vi) updates d̂ j ¼ u1, ŵℛ
j = σ1v1′.

Note that the K-SVD procedure has very interesting interpretations
for resting-state fMRI analysis. First, as shown in Fig. 2, an update

stage for an atom d̂ j in the dictionary update stage of K-SVD is equiva-
lent to finding the largest principal component from a set of raw data
fyngn∈ω j , where ωj denotes the voxel indices that have non-zero coeffi-

cients from ~w j. More specifically,ωj denotes the voxel indices for a com-

munity that shares the dynamics d̂ j as shown in Fig. 2. Hence, the
dictionary update stage is basically to update a representative temporal
dynamic that constitutes a specific network structure by removing noise
using principal component analysis. Hence, this corresponds to a
filtering procedure.

Second, because a sparse coding step estimates the non-zero co-
efficients of the regression coefficients, it updates the local network
structures by which each voxel is connected to other voxels in the
brain. For example, as shown in Fig. 2, the resulting non-zero voxels
that correspond to the d1 constitute a local community that shares
the same temporal dynamic d1. Therefore, this procedure corre-
sponds to a clustering procedure that identifies the voxels with sim-
ilar dynamics. In particular, for a sparse coding stage, if we use the
correlation (15) to update In, then the clustering is based on the cor-
relation with respect to raw temporal dynamics yn and the updated
local information flow dj, which is very similar to seed-based analy-
sis. Hence, K-SVD sparse coding with (15) can be considered seed-
based clustering. However, the main difference between the conven-
tional seed-based connectivity analysis and the proposed method is
that in the proposed method, the seed dj is adaptively updated and
denoised during the dictionary estimation stage, which is not the
case in the conventional approach.

Therefore, such repeated applications of filtering and adaptive seed-
based clustering procedures allow our method to take advantage of
both the conventional seed-based approach and the ICA type of cluster-
ing approaches which makes the proposed algorithm very powerful.
Fig. 2. Dictionary update step: for a given set of voxels within a community, the corresponding
Sparse coding step: for each dictionary atom that represents the common temporal dynamic
community.
Inference on group differences

Suppose we are interested in comparing two different groups. Once
the group sparse dictionary learning is performed for each set of group
data, the temporal dynamics at the n voxel of the subject l in the i-th
group model are modeled as

y ilð Þ
n ¼ D ilð Þ

I ið Þ
n
x ilð Þ
I ið Þ
n
þ ϵ ilð Þ

n ; ϵ ilð Þ
n � N 0;R ilð Þ

n

� �
ð18Þ

where i = 1, 2 and l = 1, ⋯, Li denote the group and subject index for
each group, respectively, and Li is the number of subjects for the group
i. The subject differences within a group can now be modeled as
random-effects:

x ilð Þ
In

¼ α ið Þ
n þ β ilð Þ

n ; β ilð Þ
n � N 0;Gnð Þ; ð19Þ

whereαn
(i) denotes a groupmean. Therefore, if we stack the data togeth-

er (after ignoring the voxel-dependent index n for simplicity), we have
the following mixed model:

y ¼ Xαþ Zβþ ϵ; ð20Þ

where

y ¼ y 11ð Þ0
n ; y 12ð Þ0

n ;⋯; y 1L1ð Þ0
n ;⋯; y 2L2ð Þ0

n

h i0
∈ℝM

α ¼ α 1ð Þ0 ;α 2ð Þ0
h i0

∈ℝp

β ¼ β 11ð Þ0
n ;β 12ð Þ0

n ;⋯;β 1L1ð Þ0
n ;⋯;β 2L2ð Þ0

n

h i0
∈ℝq

where M = m∑iLi and q = k∑iLi and the random-effect matrix Z is
given by

Z ¼

D 11ð Þ
I 1ð Þ
n

0 ⋯ 0

0 D 12ð Þ
I 1ð Þ
n

⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ D 2L2ð Þ

I 2ð Þ
n

2
666664

3
777775 ;

and the fixed-effect matrix is

X ¼ ZXG; XG ¼ 1L1⊗I 0
0 1L2⊗I

 �
:

dictionary atoms are updated as a principal component analysis of the temporal dynamics.
s, the most correlated voxels are statistically tested to define their membership for each
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Then, using the standard results for the mixed-effect model, the
fixed-effect parameter estimate α̂ from the mixed model can be equiv-
alently represented as the second-level GLM using the summary statis-
tics

χ̂ ¼ XGαþ η; η � N 0;VGð Þ ð21Þ

where χ̂ ¼ ½ŵð11Þ0
Ið1Þn

; ŵð12Þ0
Ið1Þn

;⋯; ŵð1L1Þ0
Ið1Þn

;⋯; ŵð2L2Þ0
Ið2Þn

�
0
and

ŵ ilð Þ
I ið Þ
n

¼ D ilð Þ0
I ið Þ
n
R− ilð ÞD ilð Þ

I ið Þ
n

� �−1

D ilð Þ0
I ið Þ
n
R− ilð Þy ilð Þ

n ð22Þ

Here, forGn= gn
2I, VG is a block diagonalmatrixwhose (il)-th block is

composed of

D ilð ÞT
I ið Þ
n

R− ilð ÞD ilð Þ
I ið Þ
n

� �−1

þ g2nI: ð23Þ

For the group inference on group mean activation or differences, we
are interested in testing the following null hypothesis:

H0 : Cα ¼ 0;

where C∈ℝp1�k denotes the contrast matrix. Since (XTV−1X)−1 =
(XG

TVG
−1XG)−1 as shown in Appendix A, the test statistics for the

mixed model are equivalent to the second-level inference statistics:

S ¼¼
α̂0C0 C X0V̂

−1
X

� �−1
C0

� �−1

Cα̂
p1

¼
α̂0C0 C X0

GV̂
−1
G XG

� �−1
C0

� �−1

Cα̂
p1

:

Under the aforementioned assumptions of homoscedasticity vari-

ances and orthogonal regressors, we can now show that V̂G is a diagonal
matrix. Therefore, using the equivalence relationship in Appendix B, we
can show that

S ¼
χ̂0 P⊥

XG;0
−P⊥

XG

� �χ̂
χ̂0P⊥

XG
χ̂ M−k

p1
� Fp1 ;u

where XG,0 denotes the reducedmodel by excluding the effect estimated
by contrast C, u = m∑ilLil − k and χ̂ are summary statistics in (21).

Because this F statistics are standard statistics for ANOVA, the results
indicate thatwe can perform classical ANOVAusing the summary statis-
tics, and such analysis is equivalent to the inference in themixedmodel
as long as our assumption holds.Moreover, we do not need to perform a
computationally expensive ReML covariance estimation, because the
parts of the ReML variance estimation are already built in within the
resulting F statistics. Note that the degree of freedom is same across
all voxels, so it is easy to apply a random field-based p-value correction
(Friston et al., 2011) for the resulting F-maps, which is another advan-
tage of the proposed method compared to ICA approach, which ad-
dresses family-wise error correction in a heuristic way.

Method

Data acquisition

We collected three groups of resting-state fMRI data: 1) 22 normal
subjects (8 male, mean age 70 years), 2) 37 MCI patients (21 male,
mean age 72 years), and 3) 20 AD patients with CDR 0.5 (5 male,
mean age 72 years). During the task period, subjects were instructed
to be awake and alert but not actively involved in a task and with eye
closed. A 3.0 T fMRI system (Philips, Netherlands) was used to measure
the BOLD response. The echo planar imaging (EPI) sequence was used
with TR/TE = 3000/35 ms, flip angle = 90°. Each acquisition consisted
of 35 continuous slices, FOV (RL, AP, FH) = 220 × 140 × 220 mm, and
a voxel size of (RL, AP)=2.875 × 2.875mm. In the subsequent anatom-
ical scanning session, T1-weighted structural images were acquired. A
total of 100 acquisitions are obtained for each subject, and the total re-
cording timewas 300 sec. The experiments were approved by the Insti-
tutional Review Board of the Samsung Medical Center in South Korea.

We also used the data from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (http://www.loni.usc.edu/ADNI). The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the Na-
tional Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations as a $60million, 5-year public/private
partnership.

Data analysis using conventional methods

We used two conventional methods for resting-state fMRI analysis
and compared them with the proposed method. First, a multi-session
temporal concatenation of the Multivariate Exploratory Linear Opti-
mized Decomposition into Independent Components (MELODIC v3.0)
within FMRIB's Software Library (FSL) was used as an ICA method. We
began with a brain extraction tool (BET v2.1) for the anatomy data
with a fractional intensity threshold of 0.5 and the option of “robust
brain center estimation (iterates BET2 several times)” to obtain brain
images from the whole anatomy image. The following parameters
were applied in the MELODIC analysis: 128 sec for the high pass filter
cutoff, motion correction, smoothing using a Gaussian kernel of
FWHM 8 mm, normalization into MNI coordinates with a resampling
resolution of 2 mm, variance-normalized timecourses, and 20 indepen-
dent components for the dictionary regressor to make the analysis con-
ditions the same as those in our proposed method. Because MELODIC
providesmultiple subnetworks, wemanually chose the DMNwith visu-
al inspection.

Second, we used the functional connectivity toolbox (CONN) based
on statistical parametric mapping (SPM) for seed-based analysis. In
the CONN toolbox, there are pre-defined ROIs, including the posterior
cingulate cortex (PCC) region. The coordinates for the PCC region are
provided by the CONN tool, so we used this to extract the PCC seed re-
gion. The region posterior cingulate cortex (PCC) was used for the ROI
in the seed-based analysis, where the following procedures were ap-
plied: realignment, segmentation, normalization, smoothing using a
Gaussian kernel of FWHM8mm, bandpassfilterwith a cutoff frequency
of 0.008–0.09 Hz, and threshold p-value 0.001.

Data analysis using sparse SPM

The images were first spatially realigned to remove movement arti-
facts in the fMRI time series. The images were then spatially normalized
to a Montreal Neurological Institute (MNI) standard space and
resampled with voxel size 2 × 2 × 2 mm. Spatial smoothing was then
applied with full-width at half-maximum (FWHM) Gaussian kernel
size 8 × 8 × 8 mm. The brain regions of functional data were extracted
using a segmented anatomy data as a mask image with respect to gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF). To fil-
ter the temporal time series at each voxel, we used a discrete cosine
transform (DCT) filter with a cutoff frequency of 1/128 Hz, an appropri-
ate range of frequency for resting-state data, which show low-frequen-
cy oscillations in the range of 0.0–0.1 Hz. From each time series,
temporal DC components were removed. These preprocessing steps
were conducted using SPM8.

For group analysis, 3-D coordinates for the segmented GM,WM, and
CSF from each set of individual data were compared, and the corre-
sponding voxel coordinates common across all subjects in a group

http://www.loni.usc.edu/ADNI
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were extracted to build reference masks for group maps of GM, WM,
and CSF, respectively (see Fig. 3 for an example of training data from
GM data). The time series that corresponded to the group GM maps
were then collected from each set of individual data and concatenated
together to build a group training data set for sparse dictionary learning.
Considering that neural activation occurs mostly on gray matter that
contains neural cell bodies, graymatter is the basis of all brain functions.
Therefore, we focused on the gray matter rather than white matter and
CSF. In particular, the aging procedure is associated with general white
and gray matter loss. Consequently, if we use data from an aging
group, it can increase CSF partial volume artifacts, which can cause
problems in regions prone to CSF contamination, such as the genu of
corpus callosum that pass through or close to the ventricles. According-
ly, training using GM can extract the real neural dynamics rather than
other physiological noise. To reduce the computational burden of a
sparse dictionary learning algorithm, rather than initializing the dictio-
nary using all of the data, we choose a subset of the voxels by
downsampling by a factor of 4.

Once the group sparse dictionary learning was completed for each
group, we used the estimated global dictionaries to identify the local
network structures across the whole voxels in all brain areas. This was
an additional necessary step because the group sparse dictionary learn-
ing was performed using the downsampled data set to reduce the com-
putational complexity, but we needed to identify the network
structures across all voxels in the brain. This step was performed as fol-
lows. First, we identified the group-wise coordinates for the brain area
and then applied onemore sparse coding step using the estimated glob-
al dictionary, as shown in Fig. 3. This provided a spatially varying design

matrix fDIngNn¼1. Then, the spatially varying design matrix fDIng was

decomposed into an individual design matrix fDðilÞ
IðiÞn
g
n;i;l

, whose regres-

sors were normalized to have the same magnitude value of 1. The
final regression coefficients were then estimated by using the least
squaremethodwith respect to the designmatrices. The set of individual
summary statistics were then combined to obtain a group activation
map. These procedures are summarized in Fig. 4.
Fig. 3. Training data extraction for sparse dictionary learning fro
Experimental results

Parameter selection

The determination of the number of atoms in a dictionary is an im-
portant issue, because it represents the number of linearly independent
temporal dynamics across the whole brain. Group results with various
dictionary numbers are shown in Fig. 5. In general, when a small num-
ber of dictionary components are chosen, they tend to aggregate differ-
ent networks. On the other hand, a large dictionary size tends to
segregate a subnetwork intomultiple fragments.We tested various dic-
tionary component numbers. As shown in Fig. 5, with fifteen dictionary
components, there were noises in the mid-brain regions. Specifically,
we could also see the activation in the region of pons even though this
region is not the main ROI of the DMN. In addition, the frontal region
of the DMN could not be identified with twenty-five dictionary compo-
nents. Thus, we concluded that twenty was the optimal number of dic-
tionary components to extract.

Another important hyper-parameter that we needed to estimate for
our method was the sparsity level k = |In|. In our previous work for in-
dividual analysis (Lee et al., 2011b),we proposed theminimumdescrip-
tion length (MDL) as a criterion in deciding the sparsity level. In general,
a higher sparsity level provides more fragmented DMN structures, so
the different sparsity level for each group may provide different topo-
logical structures of the DMN network. However, in group analysis, we
found that imposing a fixed sparsity level is preferable to retain the
same subnetwork structures. Based on empirical results, we decided
to use the sparsity level k = 3 across all groups because it provided
the least fragmented DMN across all groups.

Because the data across subjects were concatenated for group anal-
ysis, we verified whether SSPM was sensitive to the concatenation
order. We processed SSPM with different orders, but the results were
identical (results not shown). This is as expected because the dictionary
learning step usingK-SVD is invariant to the permutation of the data set.

A pre-defined number of five iterations was used in the dictionary
learning step. We also applied different numbers of iteration steps
m individual data sharing a same group gray matter mask.
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Fig. 4. Group activation detection using a learned group dictionary.
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(from 1 to 10) with the normal subject group. We calculated the spatial
correlation betweenDMNs from adjacent iteration numbers. The results
in Fig. 6 show that with a small number of iterations (n b 3), there were
some topological errors, which diminished as the iteration number in-
creased. However, for more than three iterations, there were only
small differences.

Network extraction

To verify that SSPM analysis can extract other networks simulta-
neously, Fig. 7 illustrates all 20 subnetworks extracted by SSPM analysis
using normal subject data. We found other well-known networks, such
Fig. 5. The choice of the number of dictionary atoms of normal g
as the salience network, primary visual network, fronto-temporal net-
work, and sensory motor network. It is noteworthy that some of these
well-known networks in Fig. 7 could not be observed using ICA analysis
with the same data set (results not shown). This indicates that SSPM is
quite effective in extracting other networks, which are also useful for
resting-state data analysis.

If the noise is purely random, then SSPM does not extract the noise
components, because the random noise is considered as background
noise in the mixed-effect model. However, if the noise comes from
head motion, our previous work (Lee et al., 2011b) for individual data
showed that themotion could be decomposed as a separate component.
In this data set, the experimental conditions were well controlled and
roup data: (Blue) N = 15, (Red) N = 20, (Green) N = 25.
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Fig. 6. Spatial correlation between DMNs from adjacent iteration numbers. Fig. 8. Spatial correlation between individual DMN maps.
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there were no perceivable motions from each subject; thus, we could
not find any component that represented the motion. Consequently,
as shown in Fig. 7, the 20 networks extracted by SSPMmostly included
well-known networks, such as the DMN, sensory motor network,
fronto-parietal network, and visual network.

Next, we calculated the spatial correlation of theDMNbetween indi-
vidual and group data. The DMN componentwas identified by selecting
the componentwith the highest spatial correlation with the result from
the group data (see Fig. 8 and Table 1). Results showed that single-
Fig. 7. All networks ex
subject analysis of SSPM had a large spatial correlation value compared
with the results from ICA method (p= 0.0002). Bartlett's test for equal
variance showed that the difference in variance between SSPM and ICA
is statistically significant (p b 0.0147), whereas the variance difference
between SSPM and the seed-based approach is not (p b 0.347). Similar-
ly, the difference in variance between ICA and the seed-based approach
is not statistically significant (p b 0.1251). This indicates that SSPM also
had a smaller variance compared to ICA, which is another advantage of
SSPM over ICA analysis.
tracted by SSPM.



Table 1
Spatial correlation between individual maps generated by different methods.

Seed-based SSPM ICA

Spatial 0.6991 0.5518 0.4366
Correlation ±0.0672a ±0.0545a ±0.0946a

a Mean ± standard deviation format.
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Effect of disease progress

Because the proposed SSPM framework can conduct a group-level
ANOVA to identify regions that are affected by disease progression, we
performed such an analysis. Specifically, after performing an omnibus
F test to find the statistically significant group effect on the DMN, we
performed a 1 × 2 ANOVA to find the differences between adjacent
groups. Fig. 9 illustrates representative slices. As shown in that figure,
statistically significant changes occurs at the PCC area when the disease
progress fromnormal toMCI. In addition to the PCC area, the differences
at the MPFC and IPL became statistically significant when we compared
normal versus Alzheimer's patient groups. Only the PCC area had a sig-
nificant difference between the MCI and AD groups. We calculated the
mean value of the t-maps across all activated voxels for each group to
investigate whether the activation strength changes according to the
disease progression. Results showed that the mean value of normal
data was higher than in other groups (NL = 0.1122, MCI = 0.0854,
AD = 0.1050). The mean value slightly increased as the disease
progressed from MCI to AD. This coincided with the finding of Sohn
et al. (2014), which used an identical data set. In particular, the results
in Sohn et al. (2014) were obtained using the standard resting-state
analysis tools, which showed an interesting finding that there can be
compensatory mechanisms to make up for impaired cognitive function
in the AD stage.
ADNI data results

The data on 20 normal subjects and 22 AD patients were collected
from ADNI data. We then applied group SSPM to these data sets.
Fig. 10(a) clearly shows the DMN network from the normal group. On
the other hand, the DMN network from the AD data appearedmore dif-
fuse, as shown Fig. 10(b). This suggests that the DMN in the AD group
may have deteriorated. The mean values of the SPM map (Normal:
0.1286; AD: 0.1069) also confirmed the weakening of the activations.
Group differences between two groups from SSPM in Fig. 10(c) also
showed that there were changes in the PCC and IPL areas between the
groups.
Fig. 9. (Upper) DMN of each group (a) normal, (b) MCI, and (c) AD. (Lower) 1 × 2 ANOVA ma
Discussion

The ANOVA results in Fig. 9 clearly indicate progression of
Alzheimer's disease. The results imply that the PCC is the first area to
deteriorate and is followed by MPFC and IPL areas. These findings with
SSPM coincide with the biological findings that the posterior compo-
nents of the default network, including the precuneus and posterior
cingulate, are particularly vulnerable to early deposition of amyloid β-
protein, one of the hallmark pathologies of AD (Sperling et al., 2009).
This clearly indicates that SSPM is a valuable tool for resting-state
analysis.

One of the weaknesses of seed-based analysis compared to ICA and
SSPM analysis is that other well-known networks should be
recalculated with additional seeding, which is not the case for ICA and
SSPM, which simultaneously extract the other subnetworks in addition
to the DMN. In addition, even though the seed-based analysis has the
highest spatial correlation among individual subjects (see Fig. 8), the
seed-based approach may cause problems. For example, as shown in
Fig. 11, when we defined a seed in the MPFC region, the seed-based ap-
proach failed to extract the fronto-parietal network, whereas the
fronto-parietal network was intact in the SSPM analysis.

Single-subject analyses aremore sensitive to noise, because a single-
subject dataset has a low signal-to-noise ratio from insufficient informa-
tion. The results can also be biased according to the nature of each indi-
vidual. Thus, many brain network extraction methods only take the
simple average to overcome these issues. To show that these analysis
have systematic drawbacks, we used normal subject data (n = 22) to
extract the averaged DMN from each individual DMN. Parameters
used in the single-subject approachwere the same. Among various sub-
networks for each subject, we chose a single-subject DMN that has the
highest spatial correlation with that of group DMN. Then, we averaged
them and applied thresholding, assuming that the individual map
followed theGaussiandistribution (Fig. 12). The results in Fig. 12 appear
similar to those of the group SSPM analysis, but the activation patterns
looksmore diffuse, andmore false activationswere observed compared
to those from the SSPMgroup analysis. Furthermore, there are addition-
al limitations in this simple averaging approach. First, there are many
subjects in whom the individual DMNwas not clear, so finding individ-
ual DMNs using spatial correlation can be erroneous. Second, the statis-
tical process for calculating the threshold value is based on the specific
statistical assumption (such as Gaussian) of each individual DMN map.
However, this assumption is not true considering the complicated pro-
cedure of calculating SPM maps, so we cannot quantify the p-value ac-
curately. Third, to extract other subnetwork beyond the DMN, the
selection of corresponding multiple subnetworks from each individual
result is very complicated, which makes the simultaneous extraction
of all subnetworks difficult. On the other hand, the group SSPM
ps with p b 0.05 (uncorrected) (a) normal vs. MCI, (b) normal vs. AD and (c) MCI vs. AD.
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Fig. 10. Results from the ADNI dataset. (a) normal data, (b) AD data, (c) 1 × 2 ANOVA maps with p b 0.05 (uncorrected).
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approach imposes the constraint of local connectivity, and therefore, the
individual maps from the group SSPM are usually much clearer. More-
over, due to our ReML approach with a mixed-effect model, the quanti-
fication of the p-value is rigorous. Moreover, all the subnetworks can be
estimated simultaneously.

To verify the stability of SSPM, we extracted the DMN from the sub-
set of thewhole data. Even and odd indexed datasetswere split into two
groups, and we applied the SSPM method to each group. Fig. 13 shows
the extracted networks from the two sub-groups. They maintained a
high spatial correlation with the original group result. In the DMN, the
spatial correlation value between the whole dataset and the even
order sub-dataset was 0.75, and it was 0.81 between the whole and
Fig. 11. Fronto-parietal network from SSPM (left), and
odd order sub-datasets. This confirms that SSPM is not sensitive to the
choice of data.

The sparse brain network model has been extensively investigated
for functional brain connectivity analysis (Huang et al., 2010; Lee
et al., 2011a). For example, Huang et al. (2010) used the sparse inverse
covariance matrix to estimate brain connectivity, whereas Lee et al.
(2011a) utilized the compressed sensing framework to estimate the
sparse brain network. As an extension of these sparse brain network
models, there are several existing studies that used the sparse dictio-
nary learning (Lee et al., 2011b; Eavani et al., 2012; Abolghasemi et al.,
2015; Zhang et al., 2015; Leonardi et al., 2014; Lv et al., 2014; Khalid
and Seghouane, 2014), or sparse PCA (principal component analysis)
the seed-based method (seed = MPFC) (right).

https://www.researchgate.net/publication/257731849_Fast_and_incoherent_dictionary_learning_algorithms_with_application_to_fMRI?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/257731849_Fast_and_incoherent_dictionary_learning_algorithms_with_application_to_fMRI?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/271545470_A_single_SVD_sparse_dictionary_learning_algorithm_for_FMRI_data_analysis?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/271545470_A_single_SVD_sparse_dictionary_learning_algorithm_for_FMRI_data_analysis?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/41039108_Learning_brain_connectivity_of_Alzheimer's_disease_by_sparse_inverse_covariance_estimation?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/41039108_Learning_brain_connectivity_of_Alzheimer's_disease_by_sparse_inverse_covariance_estimation?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/269633890_Sparse_Brain_Network_Recovery_Under_Compressed_Sensing?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/269633890_Sparse_Brain_Network_Recovery_Under_Compressed_Sensing?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/267983526_Sparse_Representation_of_Whole-brain_FMRI_Signals_for_Identification_of_Functional_Networks?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/264432928_Disentangling_Dynamic_Networks_Separated_and_Joint_Expressions_of_Functional_Connectivity_Patterns_in_Time?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/224203199_A_data-driven_sparse_GLM_for_fMRI_analysis_using_sparse_dictionary_learning_with_MDL_criterion?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==
https://www.researchgate.net/publication/273156984_Characterizing_and_differentiating_task-based_and_resting_state_fMRI_signals_via_two-stage_sparse_representations?el=1_x_8&enrichId=rgreq-7b494ec551c24934143603471c6c4868-XXX&enrichSource=Y292ZXJQYWdlOzI4MzQ1NjY3NjtBUzozODYyMDk3MzUwMzY5MjhAMTQ2OTA5MDk4NDU1MA==


Fig. 12. Averaged DMN from each subject's DMN.

1043Y.-B. Lee et al. / NeuroImage 125 (2016) 1032–1045
(Ulfarsson and Solo, 2007), which exploit the “sparsity” of temporal
dynamics in the same way of our method. Specifically, the work by
Lee et al. (2011b)was one of the earliest works that used the sparse dic-
tionary learning to estimate the temporal dynamics in the sparse brain
network. However, as described previously, the extension to the
group-level analysis was lacking in Lee et al. (2011b). Similarly, the
main focus of most other works was to develop different types of sparse
Fig. 13. DMN extracted by SSPM from the sub-dataset. (a) whole datase
dictionary learning algorithms (Abolghasemi et al., 2015; Lv et al., 2014)
or sparse PCA (Ulfarsson and Solo, 2007, 2008). In another noteworthy
approach in Leonardi et al. (2014), the authors were interested in
extracting dynamic functional connectivity (dFC) using the sparse
matrix factorization of a spatio-temporal times series, which is different
from the static resting fMRI analysiswe focus on in this paper. In Lv et al.
(2014), the authors applied sparse dictionary learning for each
t, (b) sub-dataset from odd order, (c) sub-dataset from even order.
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individual and obtained the group activatingmaps by simply averaging
the individual activation patterns that weremanually selected based on
visual inspection, whereas in Zhang et al. (2015), the second-step dic-
tionary learningwas performed from individualized sparse dictionaries.
However, these types of group analysis were developed in an ad hoc
manner, the rigorous analysis of the impact to statistical analysis is lack-
ing, and there is no systematic way of calculating the p-value from the
standard statistical analysis. On the other hand, our group analysis
was developed based on the standard mixed-effect model with a
ReML covariance estimation, so accurate p-value calculation is possible.
Moreover, the group-level local connectivity can be obtained automati-
cally rather than by visual inspection, which makes the analysis very
practical.

One of the limitations of the current work is that the analysis was
performed based on the assumption that the functional connectivity
during the resting-state does not change. Growing evidence suggests
the importance of dynamical features of resting-state fMRI data to dis-
cover relevant organizations of brain function. The extension of the
sparse SPM in this regard will be very important, and we believe that
the recent work using the sparse innovation model (Karahanoğlu and
Van De Ville, 2015) gives an important clue for this future work.
Conclusion

In this paper, we developed a unified mixed model called sparse
SPM for group sparse dictionary learning and inference for resting-
state fMRI analysis. Unlike ICA methods, the new algorithm exploits
the fact that temporal dynamics at each voxel can be represented as a
sparse combination of global dynamics because of the property of
small-worldness of brain networks. In addition, the sparse coding step
in the sparse dictionary learning step of our proposed method enabled
SSPM for pacellation-free brain functional connectivity analysis solely
based on the graph theoretical approach.

Under the reasonable assumption that the individual network struc-
tures in the same group are similar, we developed a group sparse dictio-
nary learning algorithm that determines the subnetwork structures and
mixed-effect parameters from a unified individual- and group-level sta-
tistical analysis and inference. This framework also enabled ANOVA at a
group level, which provided systematic tools to investigate the disease
progression.

We compared and validated our tools with the existing seed-based
and ICA approaches for normal, MCI, and Alzheimer's disease patients.
The results indicate that the DMN network extracted with our method
shows a clear correlation with the progression of disease. Moreover,
the SSPM tools provided more spatially correlated individual maps
compared to the ICA analysis, which is another indication of the robust-
ness of the algorithm.We also showed that SSPM can extract other sub-
networks, which was not feasible using seed-based analysis.

Results indicate that extracted DMNs using the proposed method
exhibit excellent correlation with disease progression. Moreover, the
analysis of individual data showed much stronger spatial correlations
between individual data compared to ICA analysis. Compared to taking
the simple mean of the individualized sparse dictionary learning, the
proposed ReML framework provides more rigorous and robust group
network structures that can be utilized for comparing normal and pa-
tient groups. In addition, we demonstrate that other subnetworks
such as the salience network, fronto-parietal network, sensory motor
network, and primary visual network can be simultaneously detected
using the proposed method, which is not the case in seed-based
analysis.

Based on the results and unique theoretical advantages, we believe
that the results in this paper provide strong evidence that the proposed
SSPM is a powerful tool for resting-state fMRI analysis. The whole pack-
age of the SSPMwill be available on the authors homepage (http://bispl.
weebly.com).
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Appendix A. Matrix equalities.

Using the matrix inversion lemma, we have

V−1 ¼ ZGZ0 þ R

 �−1 ¼ R−1−R−1Z G−1 þ Z0R−1Z

� �−1
Z0R−1:

Hence,

Z0V−1 ¼ Z0ðR−1−R−1Z G−1 þ Z0R−1ZÞ−1Z0R−1
� �

¼ ðI−Z0R−1Z G−1 þ Z0R−1ZÞ−1
� �

Z0R−1

¼ ðI− Z0R−1Z þ G−1−G−1
� �

G−1 þ Z0R−1ZÞ−1
� �

Z0R−1

¼ G−1 G−1 þ Z0R−1Z
� �−1

Z0R−1

¼ Z0R−1Z
� �−1

þ G
� �−1

Z0R−1Z
� �−1

Z0R−1 ;

which leads us to

Z0V−1Z ¼ Z0R−1Z
� �−1

þ G
� �−1

:

Therefore, for X = ZXG, we have

X0V−1X ¼ X0
GV

−1
G XG ð24Þ

where

VG ¼ Z0V−1Z
� �−1

¼ Z0R−1Z
� �−1

þ G ð25Þ

B. Equivalence

Consider the following form of covariance matrices:

V ¼ ZGZ0 þ R; ð26Þ

Ω ¼ V−1−V−1X X0V−1X
� �†

X0V−1 ð27Þ

where R,G, and V are assumed invertible. Using the definition of V andΩ
in Eqs. (26) and (27), it is easy to show

ΩX ¼ 0; X0Ω ¼ 0; P⊥
XΩ ¼ Ω; P⊥

X VΩ ¼ I ð28Þ

Now, we show thatΩ= (PX⊥VPX⊥)†. To this, we need to show the fol-
lowing

P⊥
X VP

⊥
XΩP⊥

X VP
⊥
X ¼ P⊥

X VP
⊥
X

ΩP⊥
X VP

⊥
XΩ ¼ Ω

P⊥
X VP

⊥
XΩ


 �0 ¼ P⊥
X VP

⊥
XΩ

ΩP⊥
X VP

⊥
X


 �0 ¼ ΩP⊥
X VP

⊥
X

These are straightforward results using the properties in Eq. (28).
Now, as PX

⊥ = PQ, we have (PX⊥VPX⊥)† = (PQVPQ)† = Q(Q′VQ)−1Q′.
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Therefore, we have

Q Q 0VQ

 �−1Q 0 ¼ P⊥

X VP
⊥
X


 �†
Now, we are ready to prove the main result on the equivalence. As

we are only interested in estimable function, we assume L′ ⊂ R(X′)
(Rao and Toutenburg, 1999). Then, the test statistics is

S ¼
α̂0C0 C0 X0X


 �†C� �−1
Cα̂

σ̂2rank Cð Þ

¼
y0X0 X0X


 �†C0 C0 X0X

 �†C� �−1

C X0X

 �†X0y

σ̂2p1

From the definition of generalized inverse, we can find the full rank

matrix X* such that R(X*) = R(X) and ðX0XÞ† ¼ ðX�0X�Þ−1
. Therefore,

using the definition Eq. (27), we can defineΩ such that

Ω ¼ X�0X�
� �−1

− X�0X�
� �−1

C0 C0 X0X

 �†C� �−1

C X�0X�
� �−1

¼ P⊥
C 0 X�0X�
� �−1

P⊥
C0

� �†

Then, we have

S ¼
y0X0 X�0X�

� �−1
−ΩX0 �X�

� �
X0y

σ̂2p1

¼
y0X0 X0X


 �†− P⊥
C0 X0X

 �

P⊥
C0


 �†� �
X0y

σ̂2p1

¼
y0X0 X0X


 �†−Q Q 0X0XQ

 �−1Q

� �
X0y

σ̂2p1

¼ y0 PX−PX0


 �
y

σ̂2p1

¼
y0 P⊥

X0
−P⊥

X

� �
y

y0P⊥
X y

N−p
p1

where X0 = XQ denotes the reduced model by excluding the effect of
the contrast matrix C. This concludes the proof.
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