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Relating time-varying biomarkers of Alzheimer's disease to time-to-event using
a Cox model is complicated by the fact that Alzheimer's disease biomarkers are
sparsely collected, typically only at study entry; this is problematic since Cox
regression with time-varying covariates requires observation of the covariate
process at all failure times. The analysis might be simplified by using study entry
as the time origin and treating the time-varying covariate measured at study
entry as a fixed baseline covariate. In this paper, we first derive conditions under
which using an incorrect time origin of study entry results in consistent estima-
tion of regression parameters when the time-varying covariate is continuous and
fully observed. We then derive conditions under which treating the time-varying
covariate as fixed at study entry results in consistent estimation. We provide
methods for estimating the regression parameter when a functional form can
be assumed for the time-varying biomarker, which is measured only at study
entry. We demonstrate our analytical results in a simulation study and apply our
methods to data from the Rush Religious Orders Study and Memory and Aging
Project and data from the Alzheimer's Disease Neuroimaging Initiative.
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1 INTRODUCTION

Alzheimer's disease (AD) is the most common type of dementia in older adults, characterized by loss of cognition and
functional impairment. Its prevalence is estimated to be 5.5 million1 in 2017, with an estimated incidence of 476 000 in
2016 for people aged 65 years or older. Much of Alzheimer's research over the past decade has been dedicated to the
identification and validation of biomarkers that reflect the underlying neuropathology of the disease. Biomarkers will
help identify subjects early in their disease course, when therapeutic interventions might be successful. They also will
help identify surrogate end points for progression, which will allow for clinical trials that do not require long follow-up
to a clinical AD diagnosis.

Several models have been proposed for time-varying AD biomarkers such as Pittsburgh compound B–positron emission
tomography (PIB-PET), fluorodeoxyglucose–positron emission tomography (FDG-PET), and magnetic resonance imaging
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measures (MRI).2,3 Relating these biomarker trajectories to time-to-event using a Cox regression model would allow for
the prediction of disease progression. However, such an analysis presents a challenge, as imaging biomarkers are typically
sparsely collected. This is problematic since the Cox regression with time-varying covariates requires observation of the
covariate process at all failure times. The analysis could be simplified by treating the time-varying covariate collected
only at study entry as a fixed baseline covariate representative of a subject's disease state at the time of measurement.
However, in longitudinal AD studies, the time at study entry tends to be arbitrary, and the interpretability of such an
analysis is tenuous.4,5 In a time-to-event analysis, a well-chosen time origin should align subjects with respect to risk, so
that conditional on baseline covariates subjects are comparable.6 In addition, the choice of time origin should address the
goals of the analysis and provide meaningful estimates.4,7-12 A natural choice of time origin in AD is pathological disease
onset, a point at which individuals are comparable with respect to risk. However, disease onset precedes clinical symptoms
by decades, and thus, the exact time of onset is unknown. As an alternative, the time of first clinical diagnosis of mild
cognitive impairment (MCI) is a reasonable and measurable time origin. Birth is a plausible time origin since disease
risk increases with age; however, individuals at a given age may not necessarily be comparable with respect to risk, even
after conditioning on fixed covariates. In summary, while using study entry as the time origin would enable the use of the
time-varying biomarker as a fixed covariate in the analysis, it would jeopardize the interpretability of the analysis.

Several authors have considered the use of an incorrect time origin of study entry in a proportional hazards model with
a fixed-time covariate. Assuming the true time origin is birth, Korn and colleagues8 showed that fitting a proportional
hazards model that uses study entry as the time origin does preserve the true regression coefficient corresponding to a
fixed baseline covariate, provided that age at entry is included as a covariate in the model and the baseline hazard on the
age scale follows an exponential form. Thiebaut and Benichou13 and Pencina et al11 investigated the practical ramifications
of this result when the baseline hazard is not of exponential functional form (eg, Weibull or piecewise Weibull) and found
that the bias in the regression coefficient was not large for a wide range of true values.

In the case of time-varying covariates, some simulation studies have suggested an extension of the result from Korn
et al8; however, this has not been established analytically. Cnaan and Ryan4 argued that using an incorrect time origin
would preserve the regression parameter of interest provided that survival on the age scale is exponentially distributed. In
a simulation study, Thiebaut and Benichou13 found that use of study entry as the time origin results in unbiased estimates
for a Cox model with constant baseline hazard function and a fully observed time-varying binary covariate. Through
simulations, Thiebaut and Benichou13 and Griffin et al14 illustrated that bias can result when an incorrect choice of time
origin is used in a Cox model with time-varying covariates when the true baseline hazard is Weibull. There are no papers
that consider estimation based on a time-varying covariate that is observed only at study entry, with the time origin taken
to be either onset or study entry.

There is a considerable literature on dealing with sparse observation of time-varying covariates15-21 in survival regres-
sion models; standard methods include imputation, likelihood estimation, and joint modeling. These methods are not
applicable to many current Alzheimer's studies because of the their very sparse observation of the time-varying imag-
ing biomarker. Relevant to this setting, Sperrin and Buchan12 proposed a 2-stage method for analyzing survival data with
time-varying covariates measured at a single, arbitrary time point. They assume that the covariate process can be expressed
as the sum of a population-level function and individual time-independent errors. The first stage involves estimating
the population parameters of the covariate function and then calculating for each subject the residual error relative to
the observed value. In the second stage, the estimated residual for each subject is included as a covariate in a survival
model. They provided an analytical argument for the use of birth as the time origin, rather than study entry. They showed
through simulations that their 2-stage residual method has superior predictive ability, as measured by Brier and logarith-
mic scores, when birth is used as the origin and the estimated residuals and age are included in the model as covariates,
compared with 2 competing models that treat the time-varying covariate as fixed: one from study entry that adjusts for
age as a covariate and another from birth that does not adjust for age.

In this paper, we consider the analysis of time-to-event data in conjunction with a time-varying covariate that is observed
only at study entry. We assume the true time origin for the risk model is known and precedes study entry. We extend the
results of Korn et al to the case of time-varying biomarkers and derive the conditions for which treating a time-varying
biomarker as fixed at study entry results in an unbiased regression coefficient estimator. We then extend the work of Sper-
rin and Buchan,12 who proposed methods for relating a time-varying covariate with fixed-time residuals to time-to-event
when the covariate is measured only at study entry, by incorporating time-varying residuals. Furthermore, whereas Sper-
rin and Buchan focused on predictive ability, we investigate bias and standard error estimation. We use the sigmoidal AD
biomarker model22 as the basis for this approach. We support our analytical results and methods with simulation stud-
ies. Finally, we apply our methods to data from the Rush Religious Orders Study and Memory and Aging Project and
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from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and demonstrate the impact of different treatments of the
time-varying biomarker.

2 NOTATION AND MODELS

For subject i, let Ui denotes the time from disease onset to event, let Ci denotes the time from disease onset to censoring, let
Ei denotes the time from disease onset to study entry, and let Zi(u) denotes a time-varying covariate. We use the notation
Z̄i(u) to denote the history of Z up to and including time u. Then Ti = Ui − Ei represents the time from study entry to
event. The observed time from onset to event is Yi = min(Ui,Ci), and 𝛿i = I (Yi ≤ Ci) is the status indicator. We assume
that the time-varying covariates are collected only at study entry. The observed data are thus (Ei,Yi,Zi(Ei), 𝛿i).

We assume that the time-varying covariate, or biomarker, Zi(u), after transformation via f(·), satisfies a general addi-
tive error model, f(Zi(u)) = f(S(u)) + 𝜀i(u), where S(u) is the population-level biomarker trajectory and 𝜀i(u) is an
individual-level time-dependent deviation. We assume that the individual-level deviations are defined by 𝜀i(u) = ai +biu,
so that

f (Zi(u)) = f (S(u)) + ai + biu, (1)

where ai and bi are randomly distributed, both with mean 0; consequently, 𝜀i(u) has mean 0. When f is the identity
function, we refer to (1) as the absolute error model since the individual-level deviations are on the same scale as the
population-level trajectory. When f is the identify function and bi ≡ 0, the covariate model in (1) coincides with the
covariate model provided by Sperrin and Buchan.12 When f(x) = logit(x∕M), for some constant M, we refer to (1) as the
logit error model.

In the setting of AD, many population-level biomarker trajectories are plausibly modeled using a sigmoidal function2

S(u) = M
1 + e−𝜆(u−T0)

, (2)

where the upper bound M is assumed to be known as the maximum value of the biomarker and the parameters 𝜆 and T0,
which dictate the shape of the sigmoid, are not known. When T0 = 0, S(0) = M∕2; the value of T0 determines the lateral
shift of this curve. The parameter 𝜆 determines the rate at which the sigmoid accelerates to its maximum value with larger
values indicating a faster rate of increase; at u = T0, the slope of the sigmoid is M𝜆∕4.

The covariate function S(u) should be selected on the basis of prior studies and subject matter understanding. Scat-
ter plots of the cross-sectional data may also give insight into to the functional form of the covariate process. Choice
of the error function, f(·), also requires consideration. The absolute error model may not be appropriate for covariates
that are constrained by a maximum measured value, such as positron emission tomography amyloid, as it may lead to
individual-specific trajectories that exceed the maximum value. The logit error model with time-varying deviations has an
attractive interpretation when the population-level function is assumed to be the sigmoid in (2). The individual-specific
deviations modify the acceleration parameter, 𝜆, and the shift parameter, T0, so that each subject is allowed to have an
individual-specific trajectory. In particular, inserting the sigmoidal function (2) into the logit error model (1) yields an
individual-specific sigmoidal covariate function, Zi(u) = M∕[1+ e−�̃�(u−T̃0)], where 𝜆i = 𝜆+bi and T̃0,i = (𝜆T0 −ai)∕(𝜆+bi).
The logit error model assumes that the time-varying covariate is linear on the logit scale, which may be appropriate only
in some settings.

We assume that the true hazard function for the event of interest conditional on the history of Z, with time measured
from onset, is

𝜆Ui (u|Zi(·)) = 𝜆0U(u)e𝛽g(Zi(u)), (3)

for some function g and baseline hazard function, 𝜆0U(u). In this paper, we consider the case g = f. In general, g should
be defined to best capture the nature of the biomarker trajectory and its relationship to the hazard of the event.

3 IMPLICATIONS OF USING STUDY ENTRY AS THE TIME ORIGIN FOR
COX MODELS WITH TIME-VARYING PREDICTORS

When an appropriate time origin precedes study entry and the covariate of interest is not time varying, Korn et al8 provided
sufficient conditions under which fitting a model that uses study entry as the time origin preserves the desired estimated
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regression coefficient corresponding to the fixed covariate. They assumed that while the true survival model is given by

𝜆Ui(u|xi,Ei) = 𝜆0U(u)e𝛽xi ,

where xi is a fixed covariate, the data are fit instead to the model,

𝜆Ti(t|xi,Ei) = 𝜆0T(t)e𝜉xi+𝛾Ei , (4)

which uses study entry as the time origin. It is clear that 𝜉 = 𝛽 provided that 𝜆0U(u) = c exp{𝛾u} and 𝜆0T(t) = c exp{𝛾t},
for some positive constant c. Under these conditions, 𝜉 based on fitting the Cox model specified in (4) will be a consistent
estimator of 𝛽.

We now extend the results of Korn et al to the case of a continuous time-varying covariate, wi(u), and provide conditions
under which using study entry as the time origin and/or treating a time-varying covariate as fixed will preserve the Cox
regression parameter of interest. Suppose that the true survival model is

𝜆Ui(u|wi(·),Ei) = 𝜆0U(u)e𝛽wi(u). (5)

We assume further that E and U are continuous random variables and that the time-varying biomarker w(u) is con-
tinuous and defined on the support of U. Without loss of generality, we assume that the support of E is contained in the
support of U. In addition, we assume that 𝛽 ≠ 0, and the study entry times, Ei, and biomarkers, wi(u), are not constant
across individuals.

We consider 3 possible models that might be fit to these data. First, we consider the model that uses study entry as the
time origin and adjusts for study entry time as a covariate

𝜆Ti (t|wi(·),Ei) = 𝜆0T(t)e𝜉wi(t+Ei)+𝛾Ei , (6)

where w̄(t) denotes the history of w up to and including time t. In Theorem 1 part (a) below, we derive conditions on the
true baseline hazard function under which the coefficient of wi(t + Ei) is equal to 𝛽. Assuming only that 𝜆0U(u) = ce𝛾u,
the Cox partial likelihood derived from (6) can be used for estimation of 𝛽. Note that this extends the fixed covariate case
(Korn et al8).

Next, we consider models that treat the time-varying predictor as fixed, using either onset or study entry as the origin,
and derive conditions under which we obtain a consistent estimator of 𝛽. If the value of the time-varying covariate is
known only at study entry, it can be included in a Cox model as a fixed covariate in a second model with onset as the time
origin:

𝜆Ui(u|wi(·),Ei) = 𝜆1U(u)e𝛼wi(Ei). (7)

Note that estimation of this model must adjust for delayed entry (left truncation). If time from onset to study entry is
known, we can include Ei as a covariate in a third model using study entry as the time origin:

𝜆Ti (t|wi(·),Ei) = 𝜆2T(t)e𝜁wi(Ei)+𝜂Ei . (8)

The case where there is no covariate adjustment for study entry time is included in this model when 𝜂 = 0. Alternatively,
the time of study entry could be adjusted for through stratification or through covariate adjustment by a nonlinear function
of Ei, which we do not consider here. In Theorem 1 parts (b) and (c), we derive conditions under which the coefficients
of wi(Ei) in (7) and (8) are equal to 𝛽.

Theorem 1. Suppose the true hazard regression model is given by (5).

(a) (Korn et al8 extension) Consider the model in (6): 𝛽 = 𝜉 ⇐⇒ 𝜆0U(u) = ce𝛾u and 𝜆0T(t) = ce𝛾t, for some positive
constant c. In practice, if 𝜆0U(u) = ce𝛾u, (6) can be used to estimate 𝛽 without specifying that 𝜆0T(t) = ce𝛾t.

(b) Consider the model in (7): 𝛽 = 𝛼 ⇐⇒ wi(u) = wi(Ei)+g(u), for some continuous function g that is zero on the support
of E. In practice, if wi(u) = wi(Ei) + g(u), (7) can be used to estimate 𝛽 in an analysis that adjusts for left truncation.

(c) Consider the model in (8): 𝛽 = 𝜁 ⇐⇒ wi(t + Ei) − wi(Ei) = k(t), 𝜆0U(u) = ce𝜂u and 𝜆2T(t) = ce𝛽k(t)+𝜂t, for c > 0. In
practice, under these conditions on 𝜆0U and wi(t + Ei) − wi(t), (8) can be used to estimate 𝛽 even if 𝜆2T(t) ≠ ce𝛽k(t)+𝜂t.

The proof for Theorem 1 is given in the Appendix. Theorem 1 provides guidelines for implementing Cox regression
with a time-varying covariate using study entry as the origin or when the time-varying covariate is measured only at
study entry. Theorem 1 part (a) shows that study entry can be used as the origin if the covariate process is fully observed
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or if its functional form is known, as long as the baseline hazard is of exponential functional form. These conditions
are reasonable in some settings: In many instances, a covariate process can be modeled using subject-level knowledge,23

and constant hazard functions have been empirically shown to model incidence in many epidemiological studies,24 and
exponential-form (Gompertz) baseline hazards are widely used to model mortality.

If the time-varying covariate is observed only at study entry and its functional form is known, then the covariate process
can be treated as fixed in an analysis from onset, as long as the covariate function, wi(u), satisfies the condition in Theorem
1 part (b). An example of such a function is wi(u) = ai + m · (h(u) − h(L))1{u > L}, where L is the upper bound of the
support of E and h is continuous; this is a time-varying continuous covariate function that is constant on the support of
E but can vary for values of u outside of the support of E. Since we are mainly concerned with w(u) on the support of E,
Theorem 1 part (b) indicates that treating a time-varying (ie, nonconstant) biomarker as fixed using onset as the origin is
not valid.

Theorem 1 part (c) shows that if the time-varying covariate is observed only at study entry, an analysis using study entry
as the origin is valid only for special cases of the baseline hazard and covariate process. As discussed above, the baseline
hazard assumptions are realistic in some settings. One example of a time-varying covariate that satisfies the condition in
Theorem 1 part (c) is wi(t) = ai + a1t, a linear function with a subject-specific intercept. Thus, in some instances, it is
reasonable to treat time-varying covariates as fixed in an analysis from study entry.

In Theorem 1 parts (a) and (c), when the true baseline hazard function is of an exponential form, the results of the
theorem are contingent upon the incorporation of study entry time, E, into the model as a linear covariate. It can be
shown, using arguments analogous to the proofs of Theorem 1 parts (a) and (c), that adjustment of study entry time
through a transformation of E results in biased estimation; however, the extent of the bias is unknown. However, correct
specification of E may be important if entry time is highly correlated with the biomarker. For the case of a fixed covariate,
Pencina et al11 illustrated through simulations that in an analysis from study entry, adjusting for E using a quadratic term
and also through stratified methods can result in negligible bias.

The focus of this paper is the impact of the time-varying covariate wi(u) = f(S(u)) + ai + biu, as defined in (1), on the
hazard function through the Cox model defined in (5). Theorem 1 part (a) allows for valid estimation of 𝛽 using study entry
as the time origin provided that f, ai, and bi are known, Ei is included in the model as a covariate, and 𝜆0U(u) = c exp{𝛾u}.
If the covariate process is known only at study entry, then it is not valid to treat the time-varying covariate as fixed in an
analysis from onset because wi(u) − wi(Ei) = f(S(u)) − f(S(Ei)) + bi(u − Ei) is a function that depends on i and violates the
condition of part (b) of the Theorem.

The implications of Theorem 1 part (c) differ for the 2 examples of f introduced in Section 2. First, consider the absolute
error model with wi(u) = S(u) + ai + biu, where S(u) is the sigmoid in (2). Theorem 1 part (c) establishes that using study
entry as the origin and treating the time-varying covariate as fixed will yield biased estimates of 𝛽. To see this, Theorem 1
part (c) requires that wi(t+Ei)−wi(Ei) is independent of i; however, in this case wi(t+Ei)−wi(Ei) = S(t+Ei)−S(Ei)+bit is not
independent of i. This is the case even if bi ≡ 0. Alternatively, for the logit error model with wi(u) = logit[S(u)∕M]+ai+biu,
if bi ≡ b, using study entry as the origin and treating the time-varying biomarker as fixed is valid, provided that the
baseline hazard is of an exponential form, since wi(t + Ei) − wi(Ei) = (𝜆 + b)t is independent of i. If bi ≠ b, this condition
is not satisfied.

Note that the results of Theorem 1, parts (a) and (c), apply even when 𝛽 = 0. In contrast, Theorem 1 part (b) does not
apply to this case. If 𝛽 = 0, then the true survival model is

𝜆Ui(u|wi(·),Ei) = 𝜆0U(u).

If we fit the model in (7), it is easy to see that 𝛼 = 0 ⇐⇒ 𝜆0U(u) = 𝜆1U(u). In practice, this implies that fitting (7) when
𝛽 = 0 will yield �̂� = 0 without restrictions on wi(u).

4 METHODS

On the basis of our analysis in Section 3, it is not advisable to treat time-varying biomarkers measured only at study
entry as fixed covariates for the time origin of disease onset. And for the time origin of study entry, this can be done only
under strong assumptions on the baseline hazard function and the covariate function. Thus, lacking full observation of
the biomarkers over time, we require an approach that will allow us to estimate the full biomarker trajectory based on
cross-sectional observation of it and, importantly, does not require restrictive assumptions on the baseline hazard function
of the functional form of the covariate process.
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Assuming that the time-varying biomarker follows the general error model in (1) and the true hazard can be modeled
as in (3) for g = f, we provide methods for estimating the regression parameter 𝛽 when the fully observed time-varying
biomarker is measured only at study entry. We note that the components of the error, ai and bi, cannot be simultaneously
estimated when only a single biomarker measurement is available for each subject. We thus consider the cases ai ≡ 0 and
bi ≡ 0 separately.

4.1 Case: bi ≡ 0
The covariate process in this case is defined as f(Zi(u)) = f(S(u; 𝜆,T0)) + ai, with individual-level deviations that are
fixed over time. We assume that E(ai) = 0. We assume that the value of M, which represents the maximum value of the
sigmoidal predictor in (2), is known. To estimate the regression parameter 𝛽, we first estimate the parameters 𝜆 and T0 of
the population-level sigmoid S(u; 𝜆,T0) using least squares to minimize∑

i

[
f (Zi(Ei)) − f (S(Ei; 𝜆,T0))

]2

with respect to 𝜆 and T0. We then estimate the ai as âi = f (Zi(Ei)) − f (S(Ei; �̂�, T̂0)) and the time-varying covariate process
as ̂f (Zi(u)) = f (S(u; �̂�, T̂0)) + âi. The true hazard function 𝜆Ui(u| f (Zi(·))) can then be approximated as

𝜆Ui

(
u| f̂ (Zi(·))

)
= 𝜆0U(u) exp

{
𝛽 · ̂f (Zi(u))

}
= 𝜆0U(u) exp

{
𝛽 ·

[
f (S(u; �̂�, T̂0)) + âi

]}
= 𝜆0U(u) exp{𝛽 · âi}. (9)

The model in (9) shows that the desired regression parameter 𝛽 can be estimated by fitting a Cox model with âi included
as a fixed covariate.

Note that if f(Zi(u)) is linear in u, as is the case with the sigmoid-based logit error model, where

f (Zi(u)) = logit[Zi(u)∕M] = 𝜆(u − T0) + ai,

then the model based on ̂f (Zi(t + Ei))) is equal to that based on f(Zi(Ei)). In this case,

̂f (Zi(t + Ei)) = �̂�(t + Ei − T̂0) + âi = �̂�t + ̂f (Zi(Ei)) = �̂�t + f (Zi(Ei)),

by the definition of âi. Thus, fitting a Cox model from study entry with ̂f (Zi(t + Ei)) as a time-varying covariate is equivalent
to fitting the model from entry with the fixed covariate f(Zi(Ei)), since the population-level �̂�t term will be absorbed into
the baseline hazard function and will not affect estimation.

4.2 Case: ai ≡ 0
The covariate process in this case is defined as f(Zi(u)) = f(S(u); 𝜆,T0)+biu, with time-varying individual-level deviations.
At each Ei, it follows that

f (Zi(Ei))
Ei

=
f (S(Ei; 𝜆,T0))

Ei
+ bi, (10)

and thus, 𝜆 and T0 can be estimated via least squares by minimizing

∑
i

[
f (Zi(Ei))

Ei
−

f (S(Ei; 𝜆,T0))
Ei

]2

with respect to 𝜆 and T0. We then estimate bi as

b̂i =
f (Zi(Ei))

Ei
−

f (S(Ei; �̂�, T̂0))
Ei

.

Note that estimation of bi uses only those entry times Ei that are nonzero; in some settings, it is possible that a time origin,
such as disease onset, may coincide with study entry for some subjects. We estimate the time-varying covariate process
as ̂f (Zi(u)) = f (S(u; �̂�, T̂0)) + b̂iu. The true hazard function 𝜆Ui(u| f (Zi(·))) is approximated as



920 LEE ET AL.

𝜆Ui

(
u| f̂ (Zi(·))

)
= 𝜆0U(u) exp

{
𝛽 · ̂f (Zi(u))

}
= 𝜆0U(u) exp

{
𝛽 ·

[
f (S(u; �̂�, T̂0)) + b̂iu

]}
= 𝜆0U(u) exp{𝛽 · b̂iu}. (11)

The regression parameter 𝛽 can be estimated using Cox regression with the time-varying covariate b̂iu.

4.3 Adjusting sigmoid for disease severity
In the AD setting, individual sigmoidal trajectories might be explained by individual-level covariates (eg, APOE4 allele
status, gender) and not just simply by unexplained individual deviations. We propose to incorporate this into the sigmoidal
model by allowing the lateral shift of the population-level sigmoid, given by T0, to be a function of covariates. Let wi
denotes a vector of individual-specific covariates reflecting disease severity. We model the individual-specific lateral shifts
as T0,i = 𝛾 ′wi, for a vector of coefficients 𝛾 . Then the sigmoid is redefined as

S(u,wi; 𝜆, 𝛾) =
M

1 + e−𝜆(u−𝜸′wi)
,

additional individual deviations are modeled as f(Zi(u,wi)) = f(S(u,wi; 𝜆, 𝛾)) + ai + biu, and the true hazard model is
assumed to be

𝜆Ui(u| f (Zi(·))) = 𝜆0U(u) exp{𝛽f (Zi(u,wi; 𝜆, 𝛾))}. (12)

This can be implemented for any f. In the case of the logit error model (1),

logit
[

Zi(u,wi)
M

]
= logit

[
S(u,wi); 𝜆, 𝛾

M

]
+ ai + biu

= 𝜆(u − 𝛾 ′wi) + ai + biu,

so that the individual-specific lateral shifts are given by 𝛾 ′wi. The model in (12) then simplifies as

𝜆Ui(u|logit(Zi(·)∕M)) = 𝜆0U(u) exp
{
𝛽
[
logit(Zi(u,wi; 𝜆, 𝛾)∕M)

]}
= 𝜆0U(u) exp

{
𝛽
[
𝜆(u − 𝛾 ′wi) + ai + biu

]}
= 𝜆0U(u) exp

{
𝛽[ai + biu − 𝜆𝛾 ′wi]

}
.

As discussed above, both error components ai and bi cannot be estimated simultaneously. The estimation procedure is
analogous to that described in Sections 4.1 and 4.2 and differs only regarding the parameters of disease severity adjusted
population-level sigmoid; least squares is used to estimate 𝜆 and 𝛾 . For example, for the case bi ≡ 0, we use least squares
to minimize ∑

i

[
f (Zi(Ei)) − f (S(Ei,wi; 𝜆, 𝛾))

]2

with respect to 𝜆 and 𝛾 .

5 SIMULATIONS

We simulated left-truncated time-to-event data such that the time from onset to event, Ui, satisfies the hazard model
in (3) and the transformed time-varying predictor, f(Zi(u)), follows the logit error model in (1) with sigmoidal S in (2),
upper bound M, and f(x) = logit(x∕M). Study entry times, Ei, were generated independently of the survival times, Ui. The
time-varying covariates were available only from the times of study entry. The data, (Ei,Ui, f(Zi(Ei))), were generated to
achieve specified truncation probabilities, denoted 𝜋trunc = P(Ui < Ei). Parameters of the covariate process were chosen to
reflect Pittsburgh compound B–positron emission tomography measurements of the AD biomarker, A𝛽; hazard regression
parameters were chosen so that time-to-AD diagnosis values align with those observed in AD studies. The data were
generated in the following steps:

(1) Select 𝛽 ∈ {0, 0.25, 0.5, 1, 1.5}, n ∈ {100, 250}, M = 3, 𝜆 ∈ {0.1, 0.25, 0.4}, T0 = 40, 𝜎a ∈ {0.5, 1}, 𝜎b ∈ {0.01, 0.05}.
(2) Generate error components, ai ∼ N(0, 𝜎2

a) and set bi = 0, or generate bi ∼ N(0, 𝜎2
b) and set ai = 0.
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(3) Generate Vi ∼ Unif(0, 1) and solve for Ui in

Vi = exp
{
−∫

Ui

0
𝜆Ui (w)dw

}
= exp

{
−∫

Ui

0
𝜆0U(w) exp{𝛽 · [ f (S(w)) + ai + biw]}dw

}
. (13)

This can be easily done when the integral in (13) can be calculated in closed form.25 This is the case under the logit
error model (1) where f(S(u)) = 𝜆(u − T0) + ai + biu. We considered 3 separate baseline hazard functions, 𝜆0U(u),
defined below: constant, exponential form, normal density kernel. The constant and exponential-form baseline haz-
ard functions appear in Theorem 1 and were chosen to confirm our theoretical results. The normal density kernel
baseline hazard function was chosen because it permits a closed form solution for Ui and violates the requirements
of the theorem and thus also confirms our theoretical results.
Baseline hazard functions:

(a) (Constant baseline hazard) 𝜆0U(u) = c, where c = 0.0154, 0.01, 0.004, 0.001, 0.001 corresponding to 𝛽 =
0, 0.25, 0.5, 1, 1.5.

(b) (Exponential-form baseline hazard) 𝜆0U(u) = ce𝜓u, where c > 0 and 𝜓 ≠ 0 with c = 7 × 10−8 and 𝜓 = 0.2.
(c) (Normal density kernel baseline hazard) 𝜆0U(u) = m exp

{
−c(u − a)2}, where (c, a,m) = (0.001, 60, 1) for the

fixed-deviations case (bi ≡ 0) and (c, a,m) = (0.1, 70, 100) for the time-varying deviations case (ai ≡ 0). The
hazard function can be expressed as follows:

𝜆Ui(u) = m exp
{
−c(u − a)2 + 𝛽[𝜆(u − T0) + ai + biu]

}
= 𝜙(u;𝜇i, 𝜎

2) · Ki,

where 𝜙(u;𝜇i, 𝜎
2) is the normal density with mean 𝜇i = a + 𝛽(𝜆 + bi)∕(2c) and variance 𝜎2 = 1∕(2c) and

Ki = m exp
{
𝛽

[
a(𝜆 + bi) + ai +

𝛽(𝜆 + bi)2

4c
− 𝜆T0

]}√
2𝜋𝜎2.

(4) Generate study entry times Ei ∼ Uniform(0,Rtrunc), where Rtrunc is chosen to achieve P(Ui < Ei) = 𝜋trunc = 0.2, 0.4
and is a function of the parameters of the distribution of U. Values of Rtrunc used can be found in Table S1.

(5) Retain the first n observations that satisfy Ei < Ui; ie, incorporate delayed entry to this study (left truncation).
(6) Calculate f(Zi(Ei)) = f(S(Ei)) + ai + biEi = 𝜆(Ei − T0) + ai + biEi, where either ai or bi is zero.
(7) Estimate 𝜆 and T0 using least squares as in Sections 4.1 and 4.2.
(8) Estimate ai or bi using �̂� and T̂0 as in Sections 4.1 and 4.2.
(9) Define ̂f (Zi(u)) = �̂�(u − T̂0) + âi or ̂f (Zi(u)) = �̂�(u − T̂0) + b̂iu, as appropriate.

(10) Fit the following models, adjusting for left truncation when the origin is onset:

𝜆Ui (u| f (Zi(·)),Ei) = 𝜆0U(u)e𝛽1f (Zi(u)) (A)

𝜆Ui(u| f (Zi(·)),Ei) = 𝜆0U(u)e𝛽2
̂f (Zi(u)) (A′)

𝜆Ui (u| f (Zi(Ei)),Ei) = 𝜆1U(u)e𝛼f (Zi(Ei)) (B)

𝜆Ti(t| f (Zi(Ei)),Ei) = 𝜆1T(t)e𝜁1f (Zi(Ei)) (C)

𝜆Ti(t| f (Zi(Ei)),Ei) = 𝜆2T(t)e𝜁2 f (Zi(Ei))+𝜂Ei (D)

𝜆Ti(t| f (Zi(·)),Ei) = 𝜆3T(t)e𝜉1 f (Ẑi(t+Ei)) (E)

𝜆Ti(t| f (Zi(·)),Ei) = 𝜆4T(t)e𝜉2 f (Ẑi(t+Ei))+𝛾Ei . (F)

Model (A) is the true survival model, where f(Zi(u)) = 𝜆(u − T0) + ai + biu. Model (A) corresponds to the proposed
method in Section 4 where ̂f (Zi(u)) is defined in step 9. Model (B) corresponds to Theorem 1 part (b), and models (C)
and (D) correspond to Theorem 1 part (c), where f(Zi(Ei)) is from step 3. Models (E) and (F) correspond to Theorem
1 part (a), where ̂f (Zi(t + Ei)) = �̂�(t+Ei − T̂0)+ âi + b̂i(t+Ei). Given the linear form of f(Zi(u)) with bi ≡ 0, estimation
via models (E) and (F) is equivalent to that via models (C) and (D), respectively.
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(11) Repeat 5000 times.

The statistical package R26 version 3.1.2 was used for all data analyses. Nonlinear least squares minimization was
executed using the nls function in the stats package27 with convergence parameters set to maxiter=1e4 and
minFactor=1e-10 and with the default tolerance tol = 1e-5. Hazard regression was implemented using the func-
tion coxph in the survival package.28 Cox models with time-varying predictors were fit using the time-transform
option of coxph or using the counting process style input. R code is available in the Supporting Information.

The simulation results are given in Table 1 for varying values of 𝛽, 𝜆 = 0.25, 𝜎a = 0.5 and 𝜎b = 0.05, and 𝜋trunc = 0.2
for the fixed (ai) and time-varying (bi) individual-level deviations models, respectively. Means and standard deviations of
simulated estimates are presented. Type I error and power were taken to be the proportion of simulations, which rejected
the test statistic with probability less than 0.05 for 𝛽 = 0 and 𝛽 > 0, respectively. Type I error and power corresponding
to 𝛽 = 0.5 are given in Tables 2 and 3, respectively, for the parameter values used in Table 1. For the case of fixed
deviations (ai) and a normal density kernel baseline hazard, the parameters originally chosen for the baseline hazard
function to align with the AD setting result in a baseline hazard function that closely resembles an exponential and thus
do not serve the purpose of illustrating results under deviations from the exponential. Thus, the parameters of the normal
density kernel baseline hazard were then chosen to illustrate this contrast, (c, a,m) = (0.05, 30, 1), and the results for this
parameterization of the normal kernel density baseline hazard function in the fixed deviations case are given in Table 1.

The simulation results in column 1 of Table 1 confirm that fitting the true survival model, in (A), gives consistent
estimates of 𝛽. The second column demonstrates that the proposed method described in Section 4, which corresponds to
model (A), performs nearly as well as fitting the true model in column 1 for all baseline hazard distributions considered
(constant, exponential form, and normal density kernel), with slightly higher standard errors, because of estimation of
the covariate process.

When the covariate process follows the general error model in (1), Theorem 1 part (b) guarantees that treating a
time-varying biomarker as fixed at its value at study entry will always produce biased estimates of 𝛽 if the true origin is
used, for nonzero values of 𝛽. This analysis corresponds to fitting model (B), and the results are listed in column 3 of
Table 1 for 𝛽 ≠ 0 for both fixed and time-varying deviations and for all 3 baseline hazards considered and are as expected.
When 𝛽 = 0, we expect the estimated regression coefficient to be zero (see discussion following Theorem 1); this is seen
in the table, as well.

Theorem 1 part (c) provides conditions for when using an incorrect origin of study entry and treating the time-varying
predictors as fixed results in consistent estimates of 𝛽. For the fixed deviation models (ie, ai), the discussion following
Theorem 1 ensures that inference is valid if study entry is used as the time origin and the time-varying biomarker is
treated as fixed (with or without covariate adjustment for study entry time), as in models (C) and (D), provided that
the baseline hazard is constant. Similarly, if the baseline hazard follows an exponential form and both the value of the
time-varying biomarker at study entry and study entry time are included in the model as covariates, as in (D), estimates
of 𝛽 are unbiased. For the time-varying deviations models (bi), Theorem 1 part (c) guarantees that estimates of 𝛽 will be
biased if study entry is used as the time origin and the time-varying biomarker is treated as a fixed covariate (with or
without covariate adjustment for study entry time), as in (C) and (D). These theoretical findings are illustrated through
our simulation results in columns 4 and 5.

Theorem 1 part (a) corresponds to models (E) and (F). It asserts that for a constant baseline hazard, the model that uses
study entry as the origin and includes f(Zi(t + Ei)) as a time-varying covariate, with or without covariate adjustment for
study entry time, will give consistent estimates of 𝛽 for fixed or time-varying deviations. For a baseline hazard that is of
an exponential form, fitting the model that uses study entry as the origin, including both f(Zi(t+Ei)) and study entry time
as covariates, will give consistent estimates of 𝛽. These results are supported through our simulations when ̂f (Zi(t + Ei))
is used to approximate f(Zi(t + Ei)). When the baseline hazard does not follow an exponential form, Theorem 1 part (a)
guarantees that estimates of 𝛽 will be biased if a model is fit using study entry as the origin, including both f(Zi(t + Ei))
and study entry time as covariates. For the case of the normal density kernel baseline hazard and fixed deviations, this
is confirmed through our simulation results, when ̂f (Zi(t + Ei)) is used to approximate f(Zi(t + Ei)), with greater bias
corresponding to larger values of 𝛽. For the case of the normal density kernel baseline hazard and time-varying deviations,
our simulation results indicate that the bias increases with 𝛽.

For the models with fixed deviations (ai), notice that fitting models (C) and (E) give identical results. The same is true
for models (D) and (F). As noted at the end of Section 4.1, this is expected when the form of the covariate model is linear
in u, as is the case with the sigmoid-based logit error model.

Table 2 shows that the type I error is within 0.06 for all analyses that use onset as the time origin. For the analyses that
use study entry as the origin, the type I error is less than 0.06 for baseline hazard functions that are constant, or follow
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TABLE 2 Type I error for the logit error model for specified covariate model and baseline hazard function using n = 250 and 5000 iterations

Onset origin Study entry origin

Covariate model A: f(Zi(u)) A′: ̂f (Zi(u)) B: f(Zi(Ei)) C: f(Zi(Ei)) D: f(Zi(Ei)) + Ei E: ̂f (Zi(t + Ei)) F: ̂f (Zi(t + Ei)) + Ei

Fixed deviations, ai

Normal density–based hazard 0.051 0.052 0.054 1 0.124 1 0.124
Constant hazard 0.048 0.048 0.052 0.053 0.048 0.053 0.048
Exponential-form hazard 0.054 0.054 0.048 1 0.055 1 0.055
Time-varying deviations, bi

Normal density–based hazard 0.061 0.060 0.050 1 0.060 1 0.070
Constant hazard 0.056 0.056 0.044 0.049 0.053 0.050 0.058
Exponential-form hazard 0.050 0.052 0.052 1 0.052 1 0.051

TABLE 3 Power corresponding to 𝛽 = 0.5 for the logit error model for specified covariate model and baseline hazard function using
n = 250 and 5000 iterations

Onset origin Study entry origin

Covariate model A: f(Zi(u)) A′: ̂f (Zi(u)) B: f(Zi(Ei)) C: f(Zi(Ei)) D: f(Zi(Ei)) + Ei E: ̂f (Zi(t + Ei)) F: ̂f (Zi(t + Ei)) + Ei

Fixed deviations, ai

Normal density–based hazard 0.97 0.97 0.15 1 0.98 1 0.98
Constant hazard 0.97 0.97 0.07 1 0.97 1 0.97
Exponential-form hazard 0.97 0.97 0.07 1 0.96 1 0.96
Time-varying deviations, bi

Normal density–based hazard 1 1 0.99 1 1 1 1
Constant hazard 1 1 0.99 1 1 1 1
Exponential-form hazard 1 1 0.99 1 1 1 1

an exponential form, provided that study entry time is included as a covariate (models (D) and (E); the type I error is
inflated for all other analyses from study entry. This follows from Theorem 1 parts (a) and (c), which hold for 𝛽 = 0;
specifically, when 𝛽 = 0 and the conditions of Theorem 1 parts (a) and (c) are not met, then the estimated regression
coefficients are expected to be nonzero. Table 3 shows that the null hypothesis test is well powered, under the simulation
parameters specified in Table 1, for all analyses except for when onset is used as the time origin and the time-varying
covariate is treated as fixed (model (B). In this case, the population-level covariate function is absorbed by the baseline
hazard function, and the impact of the covariate is due to the individual-specific deviations, as in (9); it is likely that 𝛽 · ai
is close to zero for all subjects so that the likelihood of rejecting the null is also small.

In additional simulations (not shown), variations in the truncation probability, 𝜋trunc, had little effect on bias, type I
error, and power. Larger values of 𝜎a and 𝜎b, the standard deviations of ai and bi, were associated with smaller standard
errors and greater power, but had little effect on type I error. Varying 𝜆, the acceleration parameter of the sigmoid S(u),
gave comparable results with respect to bias, type I error, and power; however, greater values of 𝛽 were required to see bias
in the case of a normal density–based baseline hazard and a covariate process with time-varying deviations (bi). Reducing
the sample size to n = 100 resulted in larger standard errors and less power, but had little effect on type I error and bias,
except for the case of a normal density–based baseline hazard and time-varying deviations (bi) where greater values of 𝛽
were needed to see bias.

The analytical standard errors from the Cox model do not account for the variability from estimating the sigmoidal
parameters and may therefore be underestimated. Bootstrapped standard errors would account for the 2 sources of varia-
tion; however, bootstrapping within this simulation study is not computationally feasible. Because of this, we present the
analytical standard errors. In Section 6, where we apply our methods to Alzheimer's data, we compare the analytical and
bootstrapped standard errors.

6 APPLICATION TO ALZHEIMER'S DATA

We applied our methodology to 2 Alzheimer's studies: one from the Rush Alzheimer's Disease Center (RADC) and the
other from the ADNI. We chose to study the impact of a single biomarker on disease progression. Recently, Capuano and
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colleagues3 at Rush University provided convincing evidence for a sigmoidal trajectory for a measure of global cognition in
the RADC dataset. This complements the existing literature on sigmoidal biomarker models for AD proposed by Jack and
colleagues.2 On the basis of this theoretical framework for Alzheimer's biomarkers and empirical evidence, we assumed
a sigmoidal trajectory (2) for the time-varying biomarker in both analyses.

We fit models (A)-(E), and (F). We also fit the model that adjusts the lateral shift on the basis of an individual's disease
severity in Section 4.3. To account for estimation of the covariate process in variance estimation, we used a simple boot-
strap with 5000 resamples. For each study, we describe below the analyses, study population, biomarker, error model,
origin, end point, and study entry definitions.

6.1 Global cognition
We obtained a limited dataset from the RADC that combines data from the Religious Orders Study and the Memory and
Aging Project.29,30 The biomarker was an average of a battery of 19 cognitive test z scores,31 which was taken to be a mea-
sure of global cognitive function. The origin was defined as birth, the study entry was defined as the time of baseline
visit, and the end point was defined to be time of death or time of last cognitive testing based on the Mini-mental State
Examination,32 which is the last time the patient is known to be alive. Only subjects with at least one biomarker measure-
ment and who carried a diagnosis of MCI at the time of biomarker measurement were included in the study. The global
measure of cognition was translated by 2 units to achieve positive values. Gender and body mass index33 were included
as covariates in the model that adjusts the lateral shift on the basis of an individual's disease severity.

In choosing an error model, we used graphical diagnostics to determine goodness-of-fit of the absolute error and logit
error models based on the sigmoid, S(u), in (2). The absolute error model assumes that Z(u) = S(u; 𝜆,T0) + ai + biu. We
used least squares to estimate 𝜆 and T0 based on data (Ei,Z(Ei)) and plotted the residuals, Z(Ei) − S(Ei; �̂�, T̂0), against
study entry time, Ei. We saw that the residuals were centered around zero with nearly constant variance, indicating that
the sigmoid-based absolute error model with fixed deviations aligned well with the observed biomarker data. We also
considered the sigmoid-based logit error model that assumes that the transformed biomarker, logit(Zi(u)∕M), is linear in
u. We plotted the transformed observed biomarker values collected at study entry, logit(Zi(Ei)∕M), against time at study
entry, Ei, and saw a nonlinear, decreasing trend that accelerates with time. On the basis of these diagnostics, we assumed
the global measure of cognition followed a sigmoid-based absolute error model with fixed deviations. As a sensitivity
analysis, we also fit the sigmoid-based absolute error model with time-varying deviations, the sigmoid-based logit error
model with both fixed and time-varying deviations, and the following linear absolute error model,

Zi(u) = 𝜆(u − T0) + ai + biu, (14)

where 𝜆 and T0 play similar roles as they do in the sigmoidal function. The corresponding severity adjusted model is
given by

Zi(u) = 𝜆(u − 𝛾 ′wi) + ai + biu, (15)

where wi is a vector of individual-specific covariates reflecting disease severity, which alter the lateral shift of the linear
function.

Descriptive statistics are given in Table 4. A total of 737 subjects were included in the analysis, of whom 473 experienced
the event. A plot of the cross-sectional global cognition score at time of baseline visit with a fitted loess curve is displayed
in Figure 1. Although on the basis of cross-sectional, and not longitudinal data, a sigmoidal functional form is discernible,
and a clear downward trend is present indicating a decline in global cognition with increasing age.

The results of the analysis are displayed in Table 5. For each of the 6 covariate models assumed (absolute error, sigmoid
ai, etc), the estimated regression coefficient of the biomarker, considering 2 different origins and treating the biomarker
as time varying or fixed, is presented. Note that models (B), (C), and (D), which include the time-varying biomarker value
at study entry as a fixed covariate, do not involve estimation of the covariate function and are thus listed with the same
results for fixed (ai) as for time-varying deviations (bi). For these models, the 2-stage method proposed by Sperrin and
Buchan12 is comparable with our method. Assuming the sigmoid-based absolute error model with fixed deviations, ai, the
hazard ratio comparing the biomarker level over a one unit difference in the biomarker is 0.60 (exp(−0.51)) based on our
proposed method (A). It is 0.49 (exp(−.72)) based on (E) that assumes the origin is study entry and treats the biomarker
as a fixed covariate, adjusting for time between the origin and study entry. This difference highlights the importance of
selection of the analytic approach for answering the clinical question. Given that there is support for the sigmoid-based
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TABLE 4 Descriptive statistics of subjects included in the Rush
Alzheimer's Disease Center analyses

n %

Number of subjects 737
Male 218 29.6

Mean SD
BMI 26.6 5.1
Global cognition score 0.42 0.46
Age at baseline visit 80.9 7.5
Time from birth to last observation 87.8 7.2
Time from study entry to last visit 6.9 4.8

Abbreviations: BMI, body mass index.
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FIGURE 1 Plot of global cognition at study entry versus age at study entry with fitted loess curve

TABLE 5 Estimated regression coefficients corresponding to the biomarker (for 2 choices of origin and treating the biomarker as time
varying or fixed) and bootstrapped standard errors (5000 replications) of Rush Alzheimer's Disease Center analysis with global cognition
biomarker

Birth origin Study entry origin

Covariate model A′: ̂f (Zi(u)) B: f(Zi(Ei)) Sev Adj C: f(Zi(Ei)) D: f(Zi(Ei)) + Ei E: ̂f (Zi(t + Ei)) F: ̂f (Zi(t + Ei)) + Ei

Absolute error, sigmoid, ai −0.51 (0.10) −0.36 (0.10) −0.35 (0.10) −0.82 (0.10) −0.72 (0.11) −0.66 (0.09) −0.72 (0.10)
Absolute error, sigmoid, bi −0.27 (0.09) −0.36 (0.10) −0.30 (0.10) −0.82 (0.10) −0.72 (0.11) −0.61 (0.09) −0.65 (0.10)
Logit error, sigmoid, ai −0.60 (0.07) −0.40 (0.07) −0.38 (0.07) −0.93 (0.07) −0.81 (0.08) −0.67 (0.06) −0.81 (0.07)
Logit error, sigmoid, bi −0.56 (0.07) −0.40 (0.07) −0.33 (0.07) −0.93 (0.07) −0.81 (0.08) −0.58 (0.06) −0.74 (0.07)
Absolute error, linear trend, ai −0.54 (0.10) −0.36 (0.10) −0.19 (0.09) −0.82 (0.10) −0.72 (0.11) −0.59 (0.09) −0.72 (0.10)
Absolute error, linear trend, bi −0.50 (0.09) −0.36 (0.10) −0.15 (0.09) −0.82 (0.10) −0.72 (0.11) −0.52 (0.09) −0.65 (0.10)

absolute error model with fixed deviations based on our diagnostics, and it does not require any assumptions on the
baseline hazard, we would report the hazard ratio of 0.60.

For the birth origin analyses, the estimates from the model that treats the biomarker as fixed (B) are smaller in magni-
tude by approximately 30% than those from the model that estimates the full covariate trajectory (A), with the exception
of the absolute error model with time-varying deviations (second row) where the effect is increased in magnitude by 30%.
The estimates from the severity adjusted analyses using birth as the origin (column 3) are also moderately different from
the estimated time-varying model (A), with more of a difference seen with the linear trend biomarker models, in which
the change in magnitude of the regression estimates is more than 65%. This suggests that subject-specific adjustments
to the sigmoidal model are potentially important. This is seen as well with respect to the covariate function parameter
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TABLE 6 Analytical standard errors versus bootstrapped standard errors (5000 replications) for Rush Alzheimer's Disease Center analysis

Birth origin Study entry origin
̂f (Zi(u)) f(Zi(Ei)) Sev. Adj. f(Zi(Ei)) f(Zi(Ei)) + Ei ̂f (Zi(t + Ei)) ̂f (Zi(t + Ei)) + Ei

Wald Boot Wald Boot Wald Boot Wald Boot Wald Boot Wald Boot Wald Boot

Absolute error, sigmoid, ai 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.11 0.06 0.09 0.06 0.10
Absolute error, sigmoid, bi 0.05 0.09 0.06 0.10 0.06 0.10 0.06 0.10 0.06 0.11 0.05 0.09 0.06 0.10
Logit error, sigmoid, ai 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.08 0.07 0.06 0.07 0.07
Logit error, sigmoid, bi 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.08 0.06 0.06 0.06 0.07
Absolute error, linear trend, ai 0.06 0.10 0.06 0.10 0.06 0.09 0.06 0.10 0.06 0.11 0.06 0.09 0.06 0.10
Absolute error, linear trend bi 0.05 0.09 0.06 0.10 0.06 0.09 0.06 0.10 0.06 0.11 0.05 0.09 0.06 0.10

TABLE 7 Descriptive statistics of subjects included in the
Alzheimer's Disease Neuroimaging Initiative analyses

n %

Number of subjects 786
Male 465 59
One or more APOE4 alleles 408 52

Mean SD

Hippocampal volume 6735 1158
Age at first hippocampal measurement 73 7
Time from birth to last visit 76 8
Time from study entry to last visit 3 2
Converted to AD 280

Abbreviation: AD, Alzheimer's disease.

estimates given in Table S2. When study entry is taken to be the origin, there are moderate differences across the 4 models
that we fit (columns 4 through 7), and these estimates can vary dramatically from the estimates that are obtained when
using birth as the origin (columns 1 through 3).

In summary, for this data example, the choice of time origin and treatment of time-varying covariates do impact infer-
ence and thought must be given to the implications of these choices. Although the magnitude of the estimates for the
models differ slightly, the direction of the effect among all models using both origins agrees.

As mentioned in Section 5, the analytical standard errors from the Cox model do not account for the variability in
estimating the sigmoidal parameters and are likely to be underestimated. Table 6 compares the analytical standard errors
with the bootstrapped standard errors. For the logit error models, the analytical standard errors are comparable with
those that are obtained via bootstrapping. For the biomarker models based on the sigmoid with an absolute error model
and based on the linear model, the analytical standard errors are greatly underestimated, suggesting that bootstrapped
standard errors should be used.

6.2 Hippocampal volume
We also analyzed data from the ADNI database (adni.loni.usc.edu). Launched in 2003, the ADNI is a longitudinal study
aimed at using biomarkers of AD and clinical and neuropsychiatric assessments to measure the progression of MCI and
AD.34

The origin was defined as birth, the study entry was defined as the first biomarker measurement, and the end point
was defined to be the time of the first diagnosis of AD in the ADNI study. Only subjects with at least one biomarker
measurement and who carried a diagnosis of MCI at the time of biomarker measurement were included in the study.
Gender and APOE4 allele status were included as covariates in the model that adjusts the lateral shift on the basis of an
individual's disease severity. After considering several potential markers in a preliminary analysis, we chose to focus on
hippocampal volume, where a clear downward trend was seen in the cross-sectional plot. We standardized and shifted the
values by 3 units so that all resulting biomarkers quantities were positive. Descriptive statistics for the study population
are given in Table 7.
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TABLE 8 Estimated regression coefficients corresponding to the biomarker (for 2 choices of origin and treating the biomarker as time
varying or fixed) and bootstrapped standard errors (5000 replications) of Alzheimer's Disease Neuroimaging Initiative analysis with
hippocampal volume biomarker

Birth origin Study entry origin

Covariate model A′: ̂f (Zi(u)) B: f(Zi(Ei)) Sev Adj C: f(Zi(Ei)) D: f(Zi(Ei)) + Ei E: ̂f (Zi(t + Ei)) F: ̂f (Zi(t + Ei)) + Ei

Absolute error, sigmoid, ai −0.78 (0.07) −0.75 (0.07) −0.76 (0.07) −0.72 (0.07) −0.83 (0.08) −0.83 (0.08) −0.83 (0.08)
Absolute error, sigmoid, bi −0.74 (0.07) −0.75 (0.07) −0.74 (0.07) −0.72 (0.07) −0.83 (0.08) −0.81 (0.07) −0.81 (0.08)
Logit error, sigmoid, ai −0.83 (0.14) −0.80 (0.13) −0.81 (0.13) −0.86 (0.09) −0.93 (0.12) −0.93 (0.12) −0.93 (0.12)
Logit error, sigmoid, bi −0.83 (0.13) −0.80 (0.13) −0.80 (0.13) −0.86 (0.09) −0.93 (0.12) −0.92 (0.12) −0.92 (0.12)
Absolute error, linear trend, ai −0.79 (0.07) −0.75 (0.07) −0.73 (0.07) −0.72 (0.07) −0.83 (0.08) −0.82 (0.08) −0.83 (0.08)
Absolute error, linear trend, bi −0.78 (0.07) −0.75 (0.07) −0.72 (0.07) −0.72 (0.07) −0.83 (0.08) −0.80 (0.07) −0.81 (0.08)

We used graphical diagnostics, as described for the Rush data, to chose an error model for these data. A plot of
logit(Z(Ei)∕M) against Ei resulted in a clear linear trend with constant variability. In considering an absolute error model
based on the sigmoid in (2) and linear trends in (14), neither of the residual plots had mean zero. Therefore, we assumed
a sigmoid-based logit error model for this analysis. We fit the sigmoid- and linear trend-based absolute error models as
sensitivity analyses.

The results of the analysis are reported in Table 8. There were only small differences seen across the 3 birth origin
models and the 4 study entry origin models that were fit, regardless of the biomarker model chosen. This was likely due to
short follow-up and only small variations in the measured biomarker levels but potentially a nonexponential functional
form for the baseline hazard function.

7 DISCUSSION

In settings such as AD, using study entry as the time origin in a time-to-event analysis is convenient because time-varying
biomarkers are often measured only at study entry and thus can be used as fixed baseline covariates. If study entry is not
an appropriate time origin, the question of interest is “under what conditions is it valid to use an incorrect time origin of
study entry in a Cox model with time-varying covariates?” The answer to this question for the case of fixed covariates was
established by Korn et al.8 We have extended the work of Korn et al to the case of a time-varying covariate; we have shown
that using an incorrect origin of study entry is valid only for special cases of the baseline hazard function provided that the
functional form of the covariate process is fully observed. We further examined the implications of treating a continuous,
time-varying covariate as fixed at its value at study entry for both the onset and study entry origins; we showed that this
is only valid in certain cases of the baseline hazard and time-varying covariate. These theoretical findings underscore the
necessity for full observation of time-varying covariates or good modeling of them. This is challenging unless good prior
data are available.

For situations in which the full covariate function is not available, we developed methods for estimating regression
coefficients when the time-varying covariate follows the general error model f(Zi(u)) = f(S(u)) + ai + biu, when only
f(Zi(Ei)) is observed; this is a generalization of the covariate model with fixed residuals given by Sperrin and Buchan.12

While Sperrin and Buchan focused on predictive ability, we have examined the bias and standard errors of hazard model
estimates.

Our analysis of the RADC data provides an example of where the choice of time origin and biomarker model can
dramatically affect estimation in the presence of a time-varying covariate. Estimates from an analysis from study entry
that treats the time-varying biomarker as fixed are quite different from the estimates of our proposed model, even when
time between onset and study entry is adjusted for as a continuous covariate. On the other hand, our analysis of ADNI
data provides an example of when incorrectly viewing a time-varying covariate as fixed had little effect on estimation that
was likely due to covariate measurements that are nearly constant over a short follow-up period. However, the choice of
time origin did have a noticeable effect, suggesting that the baseline hazard was not of the requisite exponential functional
form to permit the use of study entry as the origin.

In this paper, we assume that the history of the biomarker is not used for case ascertainment. If it were used, such as
through a requirement that subjects' value for the biomarker be below a threshold, we would potentially have to adjust
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our estimation procedure in Section 4 to account for partial observation of the biomarker function, S. Furthermore,
interpretation of results would be limited to the sample population.

A main limitation of our results in Theorem 1 parts (a) and (c) is that the time of onset must be known. While exact
onset dates are not known within the setting of AD, there are intermediate milestone times that may be known up to short
intervals of time. And given the relatively long period of time during which biomarkers such as cognitive tests or amyloid
are nonelevated, the error around the exact onset date may not be critical. However, if we cannot trust the purported time
origin and revert to using study entry as the origin, the contribution of our paper is to identify when that is a reasonable
approach and when it is not. Specifically, our analytical results show that it is valid to use study entry as the origin and
treat time-varying covariates as fixed only when the baseline hazard measured from onset of disease is constant and the
continuous, time-varying covariate process satisfies the condition in Theorem 1 part (c).

The strength of this work is that our analytical results and methods can be applied to any setting in which time-varying
covariates follow continuous trajectories. It is important to note that our results are particular to the Cox model in which
time-dependent population-level expressions are absorbed into the baseline hazard function, as in (9). For example, the
methods we proposed cannot be directly applied to accelerated failure time (AFT) regression, as the AFT model with
time-varying covariates cannot be simplified in this way. However, Sperrin and Buchan12 showed through simulations
that including individual-specific deviations in an AFT regression model is superior in its predictive ability to the model
that includes the time-varying covariate treated as fixed.

As serial biomarker measurements are increasingly collected in longitudinal studies such as the RADC studies and
ADNI, possibilities exist for improved analyses via better parametric modeling, identification of both components of indi-
vidual level deviation, ai and bi, and more efficient estimation of the dependence between the event time and biomarker.
With 2 or more biomarker measurements per individual, our methods would allow for the estimation of the desired regres-
sion parameter whereas methods for Cox regression with missing data and joint modeling of survival and longitudinal
data are not likely to be robust with so few covariate measurements.
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APPENDIX

Proof of Theorem 1 part (a). (Korn et al8 extension)
Substituting the definition of time from study entry, Ti = Ui − Ei, into the definition of the hazard function

𝜆Ti(t|wi(·),Ei) = lim
𝛿→0

P(t < Ti ≤ t + 𝛿|Ti ≥ t,wi(·),Ei)∕𝛿

gives

𝜆Ti(t|wi(·),Ei) = lim
𝛿→0

P(t + Ei < Ti + Ei ≤ t + 𝛿 + Ei|Ti + Ei ≥ t + Ei,wi(·),Ei)∕𝛿

= lim
𝛿→0

P(t + Ei < Ui ≤ t + 𝛿 + Ei|Ui ≥ t + Ei,wi(·),Ei)∕𝛿,

= 𝜆Ui(t + Ei|wi(·),Ei)
(5)
= 𝜆0U(t + Ei)e𝛽wi(t+Ei).

(A1)

If 𝜆0U(u) = ce𝛾u for some c > 0, then (A1) yields

𝜆Ti(t|wi(·),Ei) = ce𝛾te𝛽wi(t+Ei)+𝛾Ei .

Thus, in comparison with model (6), it is clear that 𝛽 = 𝜉 provided 𝜆0T(t) = ce𝛾t.
If 𝛽 = 𝜉, it follows that

𝜆0T(t) = 𝜆0U(t + Ei)e−𝛾Ei ,

because 𝜆Ti(t) = 𝜆0T(t)e𝜉wi(t+Ei)+𝛾Ei by (6) and 𝜆Ti (t) = 𝜆0U(t +Ei)e𝛽wi(t+Ei) by (A1). In order for 𝜆0T(t) to be independent
of i, it must be that 𝜆0U(u) = ce𝛾u.

Proof of Theorem 1 part (b). First, observe that the true survival model in (5) can be rewritten as

𝜆Ui(u|wi(·),Ei) = 𝜆0U(u)e𝛽wi(Ei)e𝛽[wi(u)−wi(Ei)]. (A2)

If 𝛽 in (A2) is equal to 𝛼 in (7), then

𝜆1Ui(u) = 𝜆0U(u)e𝛽[wi(u)−wi(Ei)]. (A3)

This implies that wi(u) − wi(Ei) = g(u) for some function g that is independent of i; otherwise, 𝜆1U(u) would depend
on i, which is not the case. The condition wi(u) − wi(Ei) = g(u) requires that the function g is zero on the support of E
since it is zero at all study entry times, Ei. Note that g(u) may be nonzero outside of the support of E.

If wi(u) = wi(Ei) + g(u), then the true model given by (5) and fitted model given by (7) are equivalent and 𝛽 = 𝛼.

Proof of Theorem 1 part (c). Note that the true survival model in (A1) can be rewritten as

𝜆Ti(t|wi(·),Ei) = 𝜆0U(t + Ei)e𝛽[wi(t+Ei)−wi(Ei)]e𝛽wi(Ei). (A4)

If 𝛽 in (A4) is equal to 𝜁 in (8), then

𝜆2T(t) = 𝜆0U(t + Ei)e𝛽[wi(t+Ei)−wi(Ei)]−𝜂Ei . (A5)

It must be that 𝜆0U(t + Ei)e−𝜂Ei = h(t) and wi(t + Ei) − wi(Ei) = k(t) for some functions h and k independent of i;
otherwise, the right-hand side of (A5) would depend on i and cannot be equal to 𝜆2T(t), an expression independent
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of i. Since we are assuming that all hazard functions are continuous, 𝜆0U(t + Ei)e−𝜂Ei = h(t) implies 𝜆0U(u) = ce𝜂u, for
some c > 0.

If wi(t + Ei) − wi(Ei) = k(t) and 𝜆0U(u) = ce𝜂u for c > 0, then the true model in (A4) is

𝜆Ti(t|wi(·),Ei) = ce𝜂t+𝛽k(t)e𝛽wi(Ei)+𝜂Ei .

Comparing this with (8), it must be that 𝛽 = 𝜁 and 𝜆2T(t) = ce𝜂t+𝛽k(t).
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