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Abstract. The exact cause of Alzheimer’s disease is unknown; thus, 
ascertaining what information is vital for the purpose of diagnosis, whether 
human or automated, is difficult. When conducting a diagnosis, one approach is 
to collect as much potentially relevant information as possible in the hopes of 
capturing the important information; this is the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) adopted approach. ADNI collects different 
clinical, image-based and genetic information related to Alzheimer's disease. 
This study proposes a methodology for using ADNI's data. First, a series of 
support vector machines is constructed upon nine data sets. Five are the results 
of clinical tests and the other four are features derived from positron emission 
tomography (PET) imagery. Next, the SVMs are fused together to determine 
the final clinical dementia rating of a patient: normal or abnormal. In addition, 
the utility of applying feature selection methods to the generated PET feature 
data is demonstrated. 
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1   Introduction 

The Alzheimer's Disease Neuroimaging Initiative (ADNI) has made available a large 
quantity of data pertaining to Alzheimer's Disease (AD) [1].  This paper addresses the 
potential of this data to be used to train support vector machines (SVMs) for the 

purpose of automatic AD diagnosis.  Support vector machines work by mapping data 
                                                           

1 Data used in the preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu\ADNI). As 

such, the investigators within the ADNI contributed to the design and   
implementation of ADNI and/or provided data but did not participate in analysis or 
writing of this report. ADNI investigators include (complete listing available 
athttp://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf). 



that may not be linearly separable into a high-dimensional space where it is separable.  
This mechanism explicitly requires that data be represented as a feature vector. 

With the data sets utilized in this study, there are two distinct challenges that must 

be overcome.  The first difficulty is the data sets containing an enormous number of 
features.   The primary examples of this scenario are data sets containing several 
thousand features and only a few hundred patients.  SVMs trained on these data sets 
are highly likely to over fit the data.  Fortunately, it is likely that some features are 

more relevant to the diagnosis of AD than others.  In this case, a classifier should use 
only those features that are relevant and disregard the remaining features. 

With respect to the second difficulty, there are several dozen different tests, 
activities, and evaluations for any given patient.  Each of these data sets is very 
different in nature.  A medical doctor uses all of these variant sources of data to form 
a holistic picture of a patient's condition and renders an opinion based on that picture.  
Ideally, an automatic classifier would also take multiple sources of information about 
a patient into consideration simultaneously. 

Considering these two challenges, it is clear that the problem of using the ADNI 
data for automatic classification of AD is one of information management.  The task 
is to use as many relevant data sources as possible while ignoring as much irrelevant 
information within those sources as possible.  Feature selection using the genetic 

algorithm and data fusion are the methods proposed here for addressing these 
challenges.  This paper first presents the background of the problem and gives details 
of the data sets used.  Next the method for performing feature selection using the 
genetic algorithm is presented, followed by the method for performing data fusion.  

Finally, the empirical results of classification experiments using this methodology are 
presented. 

2   Background of Problem 

In [2], the investigators assumed that each patient was represented by one or two 

features, each which described the metabolic activity within a region, along with a 
clinical dementia rating (CDR) value as described below.  The CDR values were 
mapped into one of two categories, normal or abnormal.  A threshold was assigned a 
priori and, then, each feature was compared to the threshold.  If the feature’s value 
was greater than the threshold, the feature was considered to be evidence for 
dementia.  Otherwise, it was evidence against.  If all the features were supporting 
dementia, then the patient was classified as abnormal.  Otherwise, the patient was 
classified as being normal. 

In [3], researchers report on efforts to build a classifier to distinguish between 

subjects with AD and Frontotemporal dementia (FTD) using features extracted from 
PET images. Calculated z-scores associated with locations within the cortical region 
were partitioned into groups that best distinguished AD and FTD. For each resulting 

region, the z-scores were used to generate a representative “z-score” value for the 
region. The representative values were then used to build a decision tree to distinguish 
between subjects with AD and FTD. A total of 48 subjects were used, 34 diagnosed 
with AD and 14 diagnosed with FTD. An accuracy of 94% was reported. 



Results reported on in [4] applied voxel-based morphometry to a set of magnetic 
resonance imaging (MRI) scans in order to extract 20 features from each scan. The 
extracted features measured the amount of grey-matter found within a region. An 

artificial neural network was constructed to distinguish subjects diagnosed with AD 
and subjects diagnosed as normal condition (NC). The evaluated data consisted of 10 
subjects diagnosed as AD and 12 subjects diagnosed as NC. The reported average 
accuracy was 100%. 

Finally, results related to the classification of subjects with respect to mild 
cognitive impairment (MCI) have been reported. Specifically, in [5] researchers 
applied a nonlinear multivariate analysis technique to MRI images which resulted in 
classification accuracies of 81% and 74% with respect to MCI vs. NC and AD vs. 
MCI, respectively. The study included 66 subjects diagnosed as normal, 88 subjects 
diagnosed as MCI, and 56 diagnosed as AD.  In an alternative study, which was based 
on extracted z-scores from PET images, it was determined that subjects diagnosed as 
normal could be distinguished from subjects diagnosed as MCI with an accuracy of 

92% [6]. The latter study included 110 subjects diagnosed as NC and 114 subjects 
diagnosed as MCI. 

3   Data 

In this section, we will briefly describe the source of the data used in this study, 
explain what features were extracted from the PET imagery, provide an overview of 
the clinical data, and, finally, address some data cleaning issues.  

3.1 Data Source 

Data used in the preparation of this paper were obtained from the ADNI database 
(www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National 
Institute on Aging (NIA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year 
public-private partnership. The primary goal of ADNI has been to test whether serial 
MRI, PET, and other biological markers could be used to detect the progression of 
MCI and early AD. Determination of sensitive and specific markers of very early AD 

progression is intended to aid researchers and clinicians to develop new treatments 
and monitor their effectiveness, as well as lessen the time and cost of clinical trials. 

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA 

Medical Center and University of California - San Francisco. ADNI is the result of 
efforts of many co-investigators from a broad range of academic institutions and 
private corporations, and subjects have been recruited from over 50 sites across the 
U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to 
participate in the research - approximately 200 cognitively normal older individuals to 
be followed for 3 years, 400 people with MCI to be followed for 3 years and 200 
people with early AD to be followed for 2 years. For up-to-date information, see 
www.adni-info.org. 



3.2   PET Data 

As noted, we acquired the PET imagery from ADNI.  However, the learning 
algorithms utilized assumes that the data is represented as feature vectors.  Hence, we 
needed to convert each PET image into a usable representation.    

First, we converted the PET image into a set of 15964 data points (voxels); each 

data point is a Z-Score representing the metabolic activity at that point. The data 
points were computed using a GE proprietary application known as Cortex ID.  The 
regions are based on the Talairach-Tourneau atlas. 

Next, as noted in [2], it is common practice to normalize each PET image set to a 
reference region.  In this study, two different normalizations were considered.  One 
reference region used was the Pons (PNS); in this case, each pixel value within the 
PET scan was divided by the average activity in the Pons.  The other normalization 
considered was the average Global (GLB) activity of the brain.  The resulting two 

versions of the 15,964 points are referred as the Full Feature (FF) Data Set.   
In addition 31 regional Z-Score averages were also computed.  The values for the 

left side and right side of the brain were calculated for the following regions: Parietal, 
Temporal, Frontal, Occipital, Post Cingulate, Ant Cingulate, Medial Frontal, Medial 

Parietal, Sensorimotor, Visual, Caudate, Cerebellum, Vermis, and the combined 
Parietal, Temporal and Frontal.  In addition, a single value was computed for each of 
the following: Pons, Global (total brain) and Cortex.  The averages are treated as an 
additional dataset, which, in this paper, is referred as PET 31.  Thus, four data sets 
had been created: PET FF GLB, PET 31 GLB, PET FF PNS, and PET 31 PNS. 

3.3   Clinical Data 

There are several dozen clinical data sets provided by ADNI.  Five were chosen as 
representative data sets spanning lab tests, questionnaires, and doctor interviews.  
These were: the ADAS-Cognitive behavior test (ADAS), the functional assessment 
questionnaire (FAQ), the family history questionnaire (FHQ), a homocysteine test 

(HCRES), and the baseline symptoms checklist (BLSCHECK).  The result of each of 
these is a small number of “yes/no” values.  These were attractive because they are 
easily representable as feature vectors and because feature selection would not be 
required for these data sets, due to the small number of features in each set. 

3.4   Pre-processing the Data 

For the described data sets to be useful for classification, a certain amount of pre-

processing was performed.  The ADNI data has a number of mismatches between 
CDR records, which provide the correct classification of a patient, and the PET 
imaging data and the clinical evaluation data. In order to generate usable data, one or 
the other of these must be chosen as constant. CDR records serve that purpose here. 

Each CDR was paired with exactly one PET scan, the one nearest to it in time.  It was 
also paired with exactly one of each clinical measure to form a single problem 
instance.  Any problem instance which did not include one or more of the diagnostic 



measures was removed from the data set.  Furthermore, many of the PET scans have 
measurements which are inconsistent with other PET scans. The feature values are Z-
scores in comparison to a normal population. This sets an upper and lower bound for 

plausibility. A Z-score of +100 is simply so unlikely that it is more likely to be bad 
data.  Any problem instances containing PET scans with values outside of a 
predefined acceptable range were removed from the data set.  Finally, the Z-scores of 
PET scans were normalized to values between 0 and 1. 

4   Feature Selection 

Finding an optimal set of features to use for classification purposes requires 
exponential time in the worst case.  Evolutionary algorithms have been found to 
efficiently solve such problems in the past [7].  Furthermore, there is some historic 
basis for the genetic algorithm being used for feature selection [8] and, as will be 

shown, it is useful in obtaining good results for the PET FF GLB and PET FF PNS 
sets. 

The problem of feature selection in classification systems is, informally, a matter 

of deciding, with respect to the classification task, what information is relevant and 
what information is not.  In order to translate this into an algorithm, however, the 
problem must be formalized.   The task will be to find a set of features of size n, 
where n is some fixed constant, that maximize some performance function when used 
to perform a classification task.  Alternate definitions for the feature selection 
problem exist [9] but the one given above is the one adopted in this paper.  For the 
procedure advocated here, n is chosen to be 30 and the evaluation function is chosen 
to be the area under the classifier's receiver operating characteristic (ROC) curve 
(AUC) [10]. 

 

1) Generate a random gene pool 
2) Create an SVM for each chromosome; the SVM created will only use  
    the features referenced by that chromosome. 

3) Rank the SVMs by the area under ROC curve 
4) Create a set of chromosomes that correspond to the top 10% of the  
    SVMs as well as the chromosome that corresponds to the worst 
5) Use the resultant set of chromosomes as the parents of a new gene pool 
    a)  Randomly select two chromosomes from the resultant set as parents. 
    b)   Perform crossover; this results in two new chromosomes. 
    c)   For each gene in each new chromosome, randomly change the value  
          m% of the time. 
    d)  Insert the two new chromosomes into the new gene poll. 

6) If the best SVM is better than the evaluation function's stopping metric     
    then end, otherwise go to step 2 

Figure 1. Outline of the feature selection algorithm 

 
In adapting the genetic algorithm for this purpose, each feature will correspond to a 

single gene.  A chromosome will be a set of n genes.  The evaluation function will be 



the AUC of the chromosome's SVM after 5-fold stratified cross validation.  Crossover 
will consist of using a portion of one parent's features and a complementary portion of 
the other parent's features.  Mutation will be incorporated by allowing features to be 

randomly changed to other features.  The rate of mutation will be varied such that 
mutations will be more common in early generations than in later generations.  An 
outline of this algorithm is given in Figure 1.  Once the gene pool contains a member 
that meets the given stopping criterion then the best member of that generation will be 

returned as the best feature set.  Hence, by the end of this processing, we will have 
two new data sets: PET FS GLB and PET FS PNS 

5   Data Integration 

The purpose of data integration is to combine the five clinical sets (ADAS, FAQ, 
FHQ, HCRES, and BLSCHECK) with four PET data sets (31 GLB, FS GLB, 31 PNS 

and FS PNS). Each of the sets are individually used to train and test SVMs. In order 
to create RBF SVMs, a Gaussian kernel was computed for each of the above data sets. 
Each training set consists of one feature set associated with a patient diagnosis (CDR 

value). These training sets are each used to perform 10-fold stratified cross validation 
of a soft margin SVM. The results for each data set are averaged across all 10 folds, 
yielding a single summary statistic, the AUC. This AUC is then used to apportion 
weights in the data integration step. 

The combined kernel is created by a weighted linear summation of the individual 
kernel matrices. The weights are based on the individual ROC scores of the included 
data sources. A simple linear combination of kernels itself creates a valid kernel 
matrix because it maintains the positive, semi-definite nature of the kernel [11].  Let 
K be the set of n individual kernel matrices and W be the set of normalized relative 

performance of each kernel at the classification problem. 
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Formula (1) is the linear combination of the individual kernel matrices. This 

combined kernel is then used as input to perform 10-fold stratified cross validation 
with an SVM classifier on the same problem. 

6   Results 

After data preprocessing there are 495 clinical dementia ratings (CDRs) in the ADNI 
data which have related records in each of the data sets considered. A CDR can have a 
value of 0, 0.5, or 1+, where 0 is no dementia, 0.5 is questionable and 1+ is dementia.  
These possible CDR values can be used to create a binary classification problem 
where the task is to distinguish normal from abnormal patients, where a CDR of 0 is 

normal, and a CDR of 0.5 or 1+ is considered abnormal [2]. The set of training 
samples contains 362 abnormal CDRs and 133 normal. For the purposes of 
evaluation, an abnormal CDR is taken as the positive class. 



As stated earlier, all feature selection experiments thus far run with the ADNI 
Alzheimer's data generate chromosomes that contain 30 genes.  This number was 
chosen somewhat arbitrarily, but fits the requirement that the number of features be 

much smaller than the number of examples.  The stopping criteria is when an SVM is 
derived from the 30 features that has a minimum AUC of 0.98. 

To determine how the combined data set performed it was compared to its 
constituent parts. Each individual data set was evaluated on the same training set and 

classification task, where the evaluation metric is the area under the ROC curve. After 
feature selection was performed on the full feature set for the PET data, this feature 
set was evaluated for the subset of CDRs chosen for the data integration experiments. 
The AUC for both the global and pons PET scans were 0.94, gaining 3% AUC over 
the PET feature set of 31 regional averages. The other non-imaging clinical data had 
AUCs ranging from 0.58 to 0.93, as shown in Table 1. 

 
Table 1. AUC and weights for data sets evaluated 

 AUC Normalized Relative Performance 
(weight) 

ADAS 0.93 0.16 

BLSCHECK 0.62 0.11 

FAQ 0.92 0.16 
FHQ 0.72 0.13 

HCRES 0.58 0.1 

PET31 GLB 0.92 0.16 
PET31 PNS 0.92 0.16 

PET FS GLB 0.92 0.16 

PET FS PNS 0.94 0.17 
COMBINED 0.97 n/a 

 
By combining the data sets with weights as shown in Table 1, we were able to 

improve the AUC of our classifier another 3% from 0.94 with the feature selected 
PET data to 0.97 with all of the data included. 

7   Conclusions and Future Work 

The results of this experiment demonstrate that both feature selection by the genetic 
algorithm and data integration can successfully increase the accuracy of SVM 
classification of AD using the available data from ADNI.  Future work in this area 
will incorporate other clinical data to potentially increase accuracy even further.  

Additionally, the feature selection process could be used to identify which area(s) of 
the brain contain the most relevant information for the purposes of PET scan based 
Alzheimer's diagnosis.  Determining whether or not any such areas exist is another 
area of future research. 
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