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Brain atrophy measurement is increasingly important in studies of neurodegenerative diseases such as Alz-
heimer's disease (AD), with particular relevance to trials of potential disease-modifying drugs. Automated
registration-based methods such as the boundary shift integral (BSI) have been developed to provide more
precise measures of change from a pair of serial MR scans. However, when a method treats one image of
the pair (typically the baseline) as the reference to which the other is compared, this systematic asymmetry
risks introducing bias into the measurement. Recent concern about potential biases in longitudinal studies
has led to several suggestions to use symmetric image registration, though some of these methods are limited
to two time-points per subject. Therapeutic trials and natural history studies increasingly involve several se-
rial scans, it would therefore be useful to have a method that can consistently estimate brain atrophy over
multiple time-points. Here, we use the log-Euclidean concept of a within-subject average to develop affine
registration and differential bias correction methods suitable for any number of time-points, yielding a lon-
gitudinally consistent multi-time-point BSI technique. Baseline, 12-month and 24-month MR scans of healthy
controls, subjects with mild cognitive impairment and AD patients from the Alzheimer's Disease Neuroimag-
ing Initiative are used for testing the bias in processing scans with different amounts of atrophy. Four tests are
used to assess bias in brain volume loss from BSI: (a) inverse consistency with respect to ordering of pairs of
scans 12 months apart; (b) transitivity consistency over three time-points; (c) randomly ordered back-to-
back scans, expected to show no consistent change over subjects; and (d) linear regression of the atrophy
rates calculated from the baseline and 12-month scans and the baseline and 24-month scans, where any ad-
ditive bias should be indicated by a non-zero intercept. Results indicate that the traditional BSI processing
pipeline does not exhibit significant bias due to its use of windowed sinc interpolation, but with linear inter-
polation and asymmetric registration, bias can be pronounced. Either improved interpolation or symmetric
registration alone can greatly reduce this bias, and our proposed method combining both aspects shows no
significant bias in any of the four experiments.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Cerebral atrophy is a characteristic and relentlessly progressive
feature of Alzheimer's disease (AD) (Fox and Schott, 2004). Atrophy
correlates with neuronal loss at autopsy (Brun and Englund, 2002)
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and with cognitive decline in life (Fox et al., 1999; Jack et al., 2004).
For these reasons, there is great interest in using rate of cerebral atro-
phy, measured from serial MRI, as an outcomemeasure in trials of po-
tential disease-modifying therapies (Jack et al., 2008b; Hampel et al.,
2010). Automated image analysis techniques are increasingly used
in the measurement of brain atrophy from MRI (Freeborough et al.,
1997; Smith et al., 2001; Boyes et al., 2006; Desikan et al., 2008; Hua
et al., 2009; Avants et al., 2010; Leung et al., 2010). Automated mea-
sures have obvious attractions in terms of avoiding time-consuming
manual measurements. There is also the potential for improved preci-
sion and reliability, however it is essential that automated measures
do not themselves introduce a bias (Fox et al., 2011; Reuter and
Fischl, 2011) (to distinguish between consistent errors in measure-
ments and RF-inhomogeneity-induced intensity changes in MR
scans, we refer to the latter as ‘bias field’). Methodological biases
t brain atrophy estimation from the boundary shift integral, Neuro-
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could confound placebo-treatment comparisons in trials, and biased
measurements from a pilot study could lead to under-powering or
over-powering of subsequent trials, with ethical as well as scientific
and financial implications (Thompson et al., 2011). One potential
source of bias arises if the measurement process is not independent
of the order of different time points. For example, Yushkevich et al.
(2010) showed that deformation-based morphometry (DBM) intro-
duces bias in the measurement of hippocampal atrophy if there is
asymmetry in the application of global transformations between serial
MRI scans. Asymmetry here refers to the baseline and repeat scans
being treated differently in some way, e.g. when only the repeat
scans are transformed and interpolated. Furthermore, Yushkevich et
al. (2010) suggested that the ‘asymmetry in the application of the
global transformation between serial MRI imageswas the leading con-
tributor to bias, whereas the asymmetry in the high-dimensional de-
formable transformation is less implicated in the bias’.

Registration-based methods of calculating atrophy (e.g. structural
image evaluation, using normalization, of atrophy (SIENA) (Smith et
al., 2001) and the boundary shift integral (BSI) (Freeborough et al.,
1997; Leung et al., 2010)) offer more precise measurements of brain
atrophy from serial MRI scans than manual measurements. The BSI
involves global registration of repeat scans to the baseline scans, fol-
lowed by differential bias correction (DBC) (Lewis and Fox, 2004)
and the calculation of the BSI itself. However, the global registrations
used in both Freeborough et al. (1997) and Leung et al. (2010) were
asymmetric, with the global transformations being applied to the re-
peat scans, with consequent risk of bias (Yushkevich et al., 2010). In
addition, although DBC applies the differential bias field symmetrical-
ly to two time points, the current formulation does not extend to
more than two time points. For example, given a baseline scan I1 (ac-
quired at time t1) and two repeat scans (I2 and I3 acquired at time t2
and t3), DBC is often applied separately to the registered scan-pair I1
and I2 for calculating atrophy between t1 and t2, and to the registered
scan-pair I1 and I3 for calculating atrophy between t1 and t3. The base-
line scan I1 is thus processed differently depending on which pair of
scans are being analysed, which may introduce inconsistencies in
the measurement of brain atrophy in studies with more than two
time points. Here, we aim to make these steps as unbiased as possible
by ensuring that the results in each step are inverse- and transitive-
consistent over multiple time points.

Inverse inconsistency has long been recognised as a problem in
image registration (Christensen and Johnson, 2001): the transforma-
tion that maps a scan I1 to another scan I2 does not generally equal the
inverse of the transformation that maps I2 to I1. Many non-linear reg-
istration algorithms exist that estimate consistent forward and back-
ward transformations (Christensen and Johnson, 2001; Leow et al.,
2005; Ye and Chen, 2009), or estimate midway transformations that
warp I1 and I2 to a middle space (Rogelj and Kovacic, 2006; Beg and
Khan, 2007; Avants et al., 2008; Yang et al., 2008). For affine registra-
tion, Smith et al. (2001) applied the ‘square root’ of affine matrix to
transform I1 and I2 to a halfway position, so that ‘both images are sub-
jected to a similar degree of interpolation-related blurring’. In addi-
tion, when registering multiple scans (I1, I2 and I3) such as those
acquired in a longitudinal study, transitive inconsistency refers to
the problem that the transformation that maps I1 to I3 does not
equal the composition of the transformations that map I1 to I2 and
I2 to I3. Geng et al. (2005) extended the work of Christensen and
Johnson (2001) to include a penalty term for minimising transitive
errors, whereas Skrinjar et al. (2008) constructed inverse- and
transitive-consistent transformations from the pairwise transforma-
tions to a reference scan. Other related works include groupwise reg-
istration, which aims to register multiple scans into an unbiased
middle space (for example Woods et al., 1998; Aljabar et al., 2006).
Recently, Reuter et al. (2010) proposed a robust and highly accurate
inverse-consistent linear registration algorithm that maps two scan
I1 and I2 to a midway space.
Please cite this article as: Leung, K.K., et al., Consistent multi-time-poin
Image (2011), doi:10.1016/j.neuroimage.2011.10.068
In this paper, we set out a multi-time-point and symmetric meth-
od for calculating atrophy, and assess the technique for bias. We used
MR scans of healthy controls, subjects with mild cognitive impair-
ment (MCI) and patients with Alzheimer's disease (AD), downloaded
from the Alzheimer's Disease Neuroimaging Initiative (ADNI) website
(www.loni.ucla.edu/ADNI) as the test data.

Methods

Overview

We first describe the processing pipeline of the boundary shift in-
tegral, and then the differential bias correction and symmetric global
linear registration for multiple time points. The key mathematical
basis of this work is the link between scalar or matrix multiplication
and the geometric mean. Because the bias field in an MR image is typ-
ically modelled as a multiplicative scaling of the image intensities,
Lewis and Fox (2004) proposed to apply half of the differential bias
symmetrically to each image by multiplying one image by the square
root of the relative multiplicative bias field and the other by the in-
verse of this. This idea extends naturally to the geometric mean,
which can be expressed as an arithmetic mean in log-space, minimis-
ing the sum of squared ‘distances’ (in terms of log ratios) from the
mean to the set of images. Spatial affine transformations can be
expressed in terms of matrix multiplications in homogeneous coordi-
nates, and one can use the simple and efficient log-Euclidean distance
metric and associatedmean (Arsigny et al., 2006). This directly gener-
alises the log-space mean used in DBC to provide a geometric mean of
affine transformations using the matrix logarithm (Alexa, 2002;
Aljabar et al., 2006). In the following sections, we will illustrate our
methods using scans from three time points (I1, I2 and I3 acquired at
time t1, t2 and t3). In addition, key results will be stated for the general
case of n images {Ii}i=1

n .
We evaluate our novel multi-time-point symmetric BSI pipeline

using MR scans of healthy controls, subjects with MCI and patients
with AD, downloaded from the ADNI website. The use of different dis-
ease groups allows assessment of potential interaction between bias
and amount of atrophy. We assess the bias in the results arising from
asymmetric and symmetric DBC and registration schemes with differ-
ent choices of interpolation using four tests. The first test examines the
inverse consistency of the atrophy calculated from the baseline and
24-month scans (Christensen and Johnson, 2001; Fox et al., 2011).
The calculated atrophy should be independent of the order of the
time points specified in the image processing pipeline. The second
test examines the transitivity of the atrophy calculated from the base-
line, 12-month and 24-month scans (Fox et al., 2011). The sum of at-
rophy calculated from the baseline and 12-month scans, and the 12-
month and 24-month scans should equal the atrophy calculated
from the baseline and 24-month scan. The third test uses the availabil-
ity of two back-to-back scans at each time point from ADNI to perform
a direct test of bias (Yushkevich et al., 2010), as the mean atrophy be-
tween the two scans is expected to be zero. The fourth test uses the in-
tercept of a regression line fitted to the atrophy rates calculated from
the baseline and 12-month scans and the baseline and 24-month
scans (Yushkevich et al., 2010; Thompson et al., 2011; Hua et al.,
2011). Under the assumption of exactly linear progression of atrophy,
additive bias would be indicated by a non-zero intercept.

Boundary shift integral (BSI)

The processing pipeline of BSI involves the following steps
(Freeborough et al., 1997; Leung et al., 2010):

1. Brain segmentation. The whole brains in the baseline and repeat
scans are automatically and independently delineated from dura,
scalp and other non-brain tissue using a multi-atlas propagation
t brain atrophy estimation from the boundary shift integral, Neuro-
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(a) Asymmetric registration.

(b) Pairwise symmetric registration
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Fig. 1. Asymmetric and symmetric registration schemes.
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and segmentation (MAPS) technique (Leung et al., 2011). MAPS
uses non-linear registration of the top 19 best-matched templates
from a manually-segmented library of 682 brain scans to generate
multiple segmentations, and combines them using shape based av-
eraging (Rohlfing and Maurer, 2007) to create a reliable and accu-
rate brain segmentation.

2. Global linear registration. The brains on the scans are registered
using a global linear transformation.

3. Differential bias correction (DBC). DBC is applied to correct for the
differences in intensity inhomogeneity between the registered
scans.

4. Calculation of brain volume difference. KN-BSI (Leung et al., 2010) is
used to calculate the brain volume difference from the DBC-
corrected scans.

We describe the DBC and global linear registration in more details
in the following sections.

Differential bias correction (DBC)

This section describes the simple extension of the formulation of
DBC (Lewis and Fox, 2004) from two time points into multiple time
points. The formation of an MR image is assumed to be

v xð Þ ¼ u xð Þb xð Þ þ n xð Þ; ð1Þ

where v is the measured intensity, b is the bias field, u is the true signal
intensity and n is the noise. Given two images v1 and v2, the ratio of the
bias fields, called the differential bias field, is then estimated via log-
spacemedian-filtering of the ratio of the observed images, under the as-
sumption that themedian-filterwill remove thehigher-spatial frequen-
cy differences in anatomical structure (e.g. atrophy and noise) in the
ratio, leaving the low spatial frequency intensity inhomogeneity:

r12 ¼ b1=b2≈exp median−filter log v1ð Þ−log v2ð Þð Þð Þ: ð2Þ

Using the square root of the differential bias field to create the cor-
rected images, v′1 and v′2, results in both images having the same mid-
way bias field (

ffiffiffiffiffiffiffiffiffiffi
b1b2

p
)

v′1 ¼ v1=
ffiffiffiffiffiffiffi
r12

p ¼ u1

ffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ n1=

ffiffiffiffiffiffiffi
r12

p
;

v′2 ¼ v2=
ffiffiffiffiffiffiffi
r21

p ¼ u2

ffiffiffiffiffiffiffiffiffiffi
b1b2

p þ n2=
ffiffiffiffiffiffiffi
r21

p
:

To extend to the case of multiple time points, with vi=uibi+ni,
the pairwise differential bias fields are

rij ¼ bi=bj ¼ 1=rji; ð3Þ

and we create the i-th corrected image by dividing it by the geometric
mean of its differential bias fields with respect to the set of n images:

v′i ¼ vi=r
average
i ; ð4Þ

where

raveragei ¼
ffiffiffiffiffiffiffiffiffiffiffi
∏
n

j¼1
rij

n

s
¼ exp

1
n

Xn
j¼1

logrij: ð5Þ

To illustrate this with three images, the geometric means of the
pairwise differential bias fields are

raverage1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r12r133

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21= b2b3ð Þ3

q
;

raverage2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21r22r233

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22= b1b3ð Þ3

q
;

raverage3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r31r32r333

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23= b1b2ð Þ3

q
;
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and the corrected images are

v′1 ¼ v1=r
average
1 ¼ u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

3
p þn1=r

average
1 ;

v′2 ¼ v2=r
average
2 ¼ u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

3
p þn2=r

average
2 ;

v′3 ¼ v3=r
average
3 ¼ u3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

3
p þn3=r

average
3 :

All of them having a common bias field
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

3
p

.

Global linear registration

Asymmetric registration
Let I1(T) be the resampled image of a scan I1 under a transforma-

tion T, and similarity(I1, I2) be a similarity measure between two
scans I1 and I2. The transformation Tasym(I1, I2) that aligned I1 and I2
using an asymmetric registration scheme (see Fig. 1(a)) is given by

Tasym I1; I2ð Þ ¼ argmax
T

similarity I1; I2 Tð Þð Þ: ð6Þ

i.e. Tasym(I1, I2) is applied to resample scan I2 to the space of scan I1.

Symmetric registration
In order to remove the dependency on the order of different

time points in the measurement process, we registered the baseline
t brain atrophy estimation from the boundary shift integral, Neuro-
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and repeat scans using symmetric registration (Reuter et al., 2010)
and groupwise registration (Aljabar et al., 2006) schemes. As shown
in Fig. 1, after the pairwise symmetric registrations were performed
to find the transformations between the scans, the positions of
the registered scans were calculated by averaging the results of
the pairwise registrations. The details of each step are described
below:

1. Pairwise symmetric registration. Our aim was to estimate a global
linear transformation Tsym(I1, I2)1/2 which aligned I1 and I2 to a
middle space. Therefore, Tsym(I1, I2)1/2 is given by

Tsym I1; I2ð Þ1=2 ¼ argmax
T

similarity I1 Tð Þ; I2 T−1
� �� �

: ð7Þ

Ideally, Tsym(I1, I2)1/2=(Tsym(I2, I1)1/2)−1, meaning the registra-
tion is symmetric and inverse-consistent. In practice, however,
they might not be exactly the same, because the optimisation
process might reach slightly different local optima of the objec-
tive function for T and T− 1. Therefore, we calculate the average
of the two transformations (denoted as Tsym (I1, I2)) (Alexa,
2002) (see Fig. 1(b)):

Tsym� I1; I2ð Þ1=2

¼ expm
logm Tsym I1; I2ð Þ1=2 þ logm Tsym I2; I1ð Þ1=2

� �−1

2
; ð8Þ

where expm and logm are matrix exponential and logarithm.
This averaged transformation is now symmetric, as can be
shown by noting that the familiar property log(1/x)=− log(x)
generalises to the matrix case, logm(X− 1)=− logmX,

Tsym� I2; I1ð Þ1=2 ¼ expm
logm Tsym I2; I1ð Þ1=2 þ logm Tsym I1; I2ð Þ1=2

� �−1

2

¼ expm
−logm Tsym I2; I1ð Þ1=2

� �−1−logm Tsym I1; I2ð Þ1=2

2

¼ expm−
logm Tsym I1; I2ð Þ1=2 þ logm Tsym I2; I1ð Þ1=2

� �−1

2
¼ Tsym� I1; I2ð Þ1=2

� �−1
:

2. Transformation to the average position. We perform all the pairwise
symmetric registrations to obtain Tsym (I1, I2), Tsym (I1, I3) and Tsym
(I2, I3). The scans are then transformed to the average position
(Alexa, 2002; Aljabar et al., 2006) by the geometric means of the
pairwise transformations (see Fig. 1(c)):

Taverage
sym I1ð Þ ¼ expm

logm Tsym� I1; I1ð Þ þ logm Tsym� I1; I2ð Þ þ logm Tsym� I1; I3ð Þ
3

;

¼ expm
logm Tsym� I1; I2ð Þ þ logm Tsym� I1; I3ð Þ

3
;

Taverage
sym I2ð Þ ¼ expm

logm Tsym� I2; I1ð Þ þ logm Tsym� I2; I2ð Þ þ logm Tsym� I2; I3ð Þ
3

;

¼ expm
logm Tsym� I2; I1ð Þ þ logm Tsym� I2; I3ð Þ

3
;

Taverage
sym I3ð Þ ¼ expm

logm Tsym� I3; I1ð Þ þ logm Tsym� I3; I2ð Þ þ logm Tsym� I3; I3ð Þ
3

;

¼ expm
logm Tsym� I3; I1ð Þ þ logm Tsym� I3; I2ð Þ

3
:

In general, for n images, the average position of the i-th image is
given by the following transformation:

Taverage
sym Iið Þ ¼ expm

1
n
∑n

j¼1 logm Tsym� Ii; Ij
� �

; ð9Þ

which has the same form as Eq. (5).
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The pairwise transformations between I1, I2 and I3 under this aver-
aging scheme are then given by composing transformations to and
from the average:

T I1; I2ð Þ ¼ Taverage
sym I1ð Þ∘Taverage

sym I2ð Þ−1
; ð10Þ

T I2; I3ð Þ ¼ Taverage
sym I2ð Þ∘Taverage

sym I3ð Þ−1
; ð11Þ

T I1; I3ð Þ ¼ Taverage
sym I1ð Þ∘Taverage

sym I3ð Þ−1
: ð12Þ

Importantly, these can be shown to satisfy transitivity exactly. For
example:

T I1; I2ð Þ∘T I2; I3ð Þ ¼ Taverage
sym I1ð Þ∘Taverage

sym I2ð Þ−1
� �

∘ Taverage
sym I2ð Þ∘Taverage

sym I3ð Þ−1
� �

ð13Þ

¼ Taverage
sym I1ð Þ∘Taverage

sym I3ð Þ−1 ð14Þ

¼ T I1; I3ð Þ: ð15Þ

Implementation details
We use a two-stage global linear registration in the BSI processing

pipeline. The first stage is used to recover scanner scaling artefacts by
performing a 12-degree of freedom (DOF) registration over 8-voxel
dilated brain regions (obtained by performing binary morphological
dilation on the brain regions 8 times using a cross structuring element
of size 3×3×3) (Clarkson et al., 2009). We use 12-DOF instead of the
9-DOF used by Clarkson et al. (2009) because 9-DOF registration is in-
herently asymmetric — allowing only scalings that are aligned with
the reference axes, not the source. If either image can be scaled aniso-
tropically along its own axes, and the images are acquired such that
these axes need to be rotated to align anatomy, then the separate
scalings together with the rotation between the pairs of axes effec-
tively allow skews. More formally, 12-DOF transformations form a
matrix Lie group with an associated semi-Riemannian manifold
(Woods, 2003) so their inverses and compositions are also 12-DOF;
this is not generally true of 9-DOF transformations, whose inverses
or compositions are only guaranteed to be within the broader 12-
DOF group.

We parameterise the 12-DOF transformation as 3 translations, 3
rotations in Euler angles, 3 scaling factors and 3 skew factors, applied
in the reverse of that order (i.e. skews first, translations last). The sec-
ond stage is then to accurately register the brains, without further
changing the scalings or skews — to avoid the registration masking
any global component of atrophy. This is performed by re-
optimising the 3 translations and 3 rotations of the transformation
from the first stage over 2-voxel dilated brain regions. The dilation
is intended to restore potentially missing brain tissue and to capture
edge information for the registration.

During image registration, the scans I1 and I2 in Eq. (7) are trans-
formed into a middle space by the transformations T and T−1 of the
current iteration using tri-linear interpolation. Apodized normalised
cross correlation (Jenkinson et al., 2002) is used as the similarity mea-
sure between the resampled scans. The apodization removes small
local minima in the normalised cross correlation ‘formed by the
changes of the number of voxels in the overlapping field of view
with changing transformation parameters’ (Jenkinson et al., 2002).
In order to minimise computational cost, we use a distance transform
to obtain the distances of each voxel from the edges of the dilated
brain regions in I1 and I2, and use tri-linear interpolation to calculate
the distance to the edge at any location during image registration. The
distance of each voxel within the overlapping dilated brain region is
then given by the minimum of the distances from the edges of dilated
t brain atrophy estimation from the boundary shift integral, Neuro-
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brain regions. The distance threshold was empirically chosen here to
be 2 mm.

The optimisation is performed using Powell's method (Press et al.,
1992), a derivative-free direction-set procedure, which avoids the
non-trivial analytical computation of the derivatives of the apodized
normalised cross correlation and the complication that the deriva-
tives with respect to the parameters of the forward transformation
could be numerically inconsistent with the gradient of the inverse
transform. The optimisation stopped when the RMS deviation
(Jenkinson, 1999) within a spherical volume of radius 100 mm be-
tween two successive transformations was less than 0.001 mm.

The final resampling of the transformed scan was performed ei-
ther by (a) tri-linear interpolation or (b) windowed sinc interpolation
with a Welch window, 1−x2/m2, of radius m=5 (Meijering et al.,
1999). Although a high-order interpolation is preferred in the resam-
pling of images, it is not used in all situations (such as during the
parameter-estimation stage of image registration) due to its high
computational cost. We therefore compared the results generated
from the linear and the windowed sinc interpolation.

For DBC, we followed the suggestion in the original paper (Lewis
and Fox, 2004) to use a median filter of radius 5 (i.e. a 11×11×11
box).

All the algorithms in this manuscript were implemented using the
Insight Segmentation and Registration Toolkit (www.itk.org).
Experiments

Image data

Our test data from ADNI were chosen on the basis that subjects
had baseline, 12-month and 24-month 1.5T T1-weighted volumetric
MRI scans. In total, MRI scans of 439 subjects (138 controls, 211
MCI and 90 AD) were downloaded from the ADNI database, and a
list of the ADNI subject IDs is provided in the supplementary material
to facilitate direct comparison or replication of results. The mean (SD)
age of the groups were: 76.1 (4.6) years for the controls, 75.1 (6.9)
years for the MCI subjects, and 75.8 (7.1) years for the AD subjects.
The mean (SD) of the MMSE (a cognitive test with a maximum
score of 30) of the controls was 29.2 (0.9), which was higher than
the MCI subjects (27.1 (1.7)) or the AD subjects (23.3 (1.9)). Repre-
sentative imaging parameters were TR=2300 ms, TI=1000 ms,
TE=3.5 ms, flip angle=8°, field of view=240×240 mm and 160
sagittal 1.2 mm-thick-slices and a 192×192 matrix yielding a voxel
resolution of 1.25×1.25×1.2 mm, or 180 sagittal 1.2 mm-thick-slices
with a 256×256 matrix yielding a voxel resolution of
0.94×0.94×1.2 mm. The full details of the ADNI MR imaging protocol
are described by Jack et al. (2008a), and are listed on the ADNI web-
site (http://www.loni.ucla.edu/ADNI/Research/Cores/). Two back-to-
back T1-weighted scans were acquired during each scanning session.
Each scan underwent a quality control evaluation at the Mayo Clinic
(Rochester, MN, USA). Quality control included inspection of each in-
coming image file for protocol compliance, clinically significant med-
ical abnormalities, and image quality. Out of the two back-to-back T1-
weighted scans, the scan with better quality was processed using the
standard ADNI image processing pipeline, which included post-
acquisition correction of gradient warping (Jovicich et al., 2006), B1
non-uniformity correction (Narayana et al., 1988) depending on the
scanner and coil type, intensity non-uniformity correction (Sled et
al., 1998) and phantom based scaling correction (Gunter et al.,
2006) with the geometric phantom scan having been acquired with
each patient scan. In addition to the processed scans, we also down-
loaded the unprocessed back-to-back T1-weighted scans of the base-
line time point. We then applied intensity non-uniformity
correction (Sled et al., 1998) to the unprocessed scans inside brain
masks as described by Boyes et al. (2008).
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Assessment of bias

For ease of understanding and interpretation, we decided to report
absolute brain volume loss in millilitres (ml), instead of relative brain
volume loss as a percentage of (a chosen time-point's) whole brain
volume, although the latter (using the baseline) is more commonly
used in the literature to correct for the differences in brain volumes
between different subjects. Furthermore, we note that the
adjustment of nuisance variables including whole brain volume and
age may be better performed in a single statistical model (Schott et
al., 2010). We do not expect the use of percentage of whole brain
volume to have a significant effect on the results, given that the
calculation of the whole brain volume itself is not biased.

Asymmetric and symmetric registration schemes
We now briefly summarise each registration scheme:

• Brain volume loss using asymmetric registration scheme (Lasym). The
scans were registered and transformed to a single time point (Sec-
tion "Asymmetric registration"). DBC was applied to each pair of
images as in Lewis and Fox (2004) before calculation of the BSI.

• Brain volume loss using symmetric registration scheme (Lsym). All the
scans were registered and transformed to a middle position (Section
"Symmetric registration"). Symmetric DBC was applied (Section
"Differential bias correction (DBC)") before calculation of the BSI.

Experimental details
We used the following experiments to assess bias in brain volume

loss introduced by the different BSI processing pipelines with sym-
metric and asymmetric registration and DBC schemes:

1. Test of inverse consistency using two time points. Volume difference
should be independent of the order of the scans given to the BSI
processing pipelines. We compared brain volume loss between
the baseline and 24-month scans calculated from the asymmetric
registration scheme:
(a) Lasym.

i. L0−24
asym . The 24-month scan was transformed to the baseline

scan.
ii. L24−0

asym . The baseline scan was transformed to the 24-month
scan.
We model the measured (biased) brain volume loss as the
sum of an additive bias and the brain volume loss without
it. If ε be the additive bias and L̂ the true brain volume
loss, we have

Lasym0−24 ¼ L̂0−24 þ ε0−24; ð16Þ

Lasym24−0 ¼ L̂0−24−ε0−24: ð17Þ

ε0−24 is given by half of the difference between L0−24
asym and

L24−0
asym . We used a paired t-test to assess the differences be-

tween L0−24
asym and L24−0

asym .

2. Test of transitivity using three time points. We calculated brain vol-
ume loss using the asymmetric and symmetric registration scheme
between the baseline and 12-month scans (L0−12), between the
12-month and 24-month scans (L12−24), and between the base-
line and 24-month scans (L0−24). If there were no bias in brain
volume loss, the sum of L0−12 and L12−24 should equal L0−24.

(a) Lasym.
i. L0−12

asym . The 12-month scan was transformed to the base-
line scan.

ii. L12−24
asym . The 24-month scan was transformed to the 12-

month scan.
iii. L0−24

asym . The 24-month scan was transformed to the
baseline scan.
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Table 1
Test of inverse consistency using two time points. The table shows the mean (SD) of
brain volume loss (ml) between the baseline and 24-month scans calculated using
asymmetric and symmetric registration scheme. It also shows the 95% CI (in square
brackets) and p-value in the comparison between L0−24

asym and L24−0
asym .

Control (n=138) MCI (n=211) AD (n=90)

(a) Linear interpolation
L0−24
asym 18.14 (8.33) 24.21 (12.79) 32.78 (14.22)
L24−0
asym 9.62 (8.62) 17.67 (13.14) 28.24 (13.35)
(L0−24

asym −L24−0
asym )/2 4.26 (2.71) 3.27 (2.80) 2.27 (2.85)

[3.80, 4.71],
pb0.001

[2.89, 3.65],
pb0.001

[1.67, 2.87],
pb0.001

L0−24
sym and L24−0

sym 13.61 (8.10) 20.66 (12.57) 30.09 (13.65)

(b) Sinc interpolation
L0−24
asym 13.63 (8.01) 20.67 (12.75) 30.34 (13.77)
L24−0
asym 14.25 (8.15) 21.48 (12.77) 31.13 (13.64)
(L0−24

asym −L24−0
asym )/2 −0.31 (0.58) −0.40 (0.59) −0.39 (0.66)

[−0.41, −0.21],
pb0.001

[−0.48, −0.32],
pb0.001

[−0.53, −0.25],
pb0.001

L0−24
sym and L24−0

sym 13.93 (8.06) 21.01 (12.74) 30.64 (13.84)
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Fig. 2. Regression of bias in brain volume loss ((L0−24
asym −L0−24

asym )/2) against brain vol-
ume loss in the inverse consistency test using two time points. The figure shows the re-
gression of bias in brain volume loss ((L0−24

asym −L0−24
asym )/2) from the asymmetric

registration scheme with tri-linear interpolation in the inverse consistency test against
brain volume loss from the symmetric registration scheme with windowed sinc inter-
polation. We found a negative correlation (−0.026, p=0.001) between the bias in
brain volume loss and the brain volume loss.

6 K.K. Leung et al. / NeuroImage xxx (2011) xxx–xxx
(b) Lsym.
From our model of additive bias in brain volume loss, we have

L0−12 ¼ L̂0−12 þ ε0−12; ð18Þ

L12−24 ¼ L̂12−24 þ ε12−24; ð19Þ

L0−24 ¼ L̂0−24 þ ε0−24: ð20Þ

Assuming that L̂0−12 þ L̂12−24 ¼ L̂0−24 and the registration
scheme introduces a similar amount of bias in each case (i.e.
ε0−12≈ε12−24≈ε0−24), we estimated ε0−24 by calculating
the difference between L0−12+L12−24 and L0−24. A paired
t-test was used to test for any differences between L0−12+
L12−24 and L0−24.

3. Direct test of bias using the back-to-back scans of the baseline time
point. We used the two back-to-back T1-weighted scans to test
bias introduced by the symmetric and asymmetric registration
schemes as in (Yushkevich et al., 2010). The back-to-back scans
were acquired immediately after one another and so any differ-
ences are unlikely to be due to atrophy, but may represent noise,
artefacts, movement, or potential physiological fluctuations. Any
non-zero mean value indicated that there was an additive bias in
the processing pipeline. In order to avoid any systematic differ-
ences between the first and the second of the two back-to-back
scans, we randomly assigned the two scans as ‘baseline’ and ‘re-
peat’. We computed brain volume loss from BSI using the following
schemes:
(a) Lasym.

(a) Lasym− forward. The ‘repeat’ scan was transformed to the
‘baseline’ scan.

(b) Lasym−backward. The ‘baseline’ scan was transformed to the
‘repeat’ scan.

(b) Lsym.
A t-test was used to assess the non-zero mean value of brain
volume loss.

4. Test of bias using the intercept of the regression line from three time
points. We calculated brain volume loss L0−12 from the baseline
and 12-month scans and L0−24 from the baseline and 24-month
scans using the symmetric and asymmetric schemes listed below.
A regression line was fitted to the brain volume loss. If the rate of
brain volume loss was constant over the 24 months, the intercept
of the regression line would be expected to be zero. Gradual accel-
eration would give a negative intercept, deceleration a positive
one.
(a) Lasym.

i. Lasym− forward. The 12-month and 24-month scans were both
transformed to the baseline scan.

ii. Lasym−backward. The baseline and 12-month scans were both
transformed to the 24-month scan.

(b) Lsym.

Results and discussion

Test of inverse consistency using two time points

Table 1 shows that brain volume loss from BSI using the asymmet-
ric registration scheme is not inverse-consistent (pb0.001, all tests).
Up to 4.3 ml difference in brain volume loss (L0−24

asym >L24−0
asym ) was

detected between the forward and backward registration in controls
when using tri-linear interpolation with the asymmetric registration
scheme. The bias in brain volume loss was greatly reduced to less
than 1 ml (L0−24

asym bL24−0
asym ) in all subject groups when windowed

sinc interpolation was used. However, when using a symmetric regis-
tration scheme, brain volume loss calculated using tri-linear and
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windowed sinc interpolation was similar. This suggested that brain
volume loss using the symmetric registration scheme was not severe-
ly affected by the choice of interpolation.

There is always a possible tradeoff between bias and variance; for
example, independently performed measurements of brain volume
from separate time-points (e.g. using MAPS; Leung et al., 2011)
would have low or zero bias, but would have substantially higher var-
iance than the BSI. Results in Table 1 show that the SD of BSI in each
group is almost unchanged, while the bias is reduced when using the
symmetric registration scheme.

Table 1 also shows that bias in Lasym with tri-linear interpolation
(difference in brain volume loss in L0−24

asym and L24−0
asym ) is larger in con-

trols and smaller in AD subjects. This is a surprising result, since the
presence of multiplicative bias (something that is difficult to evaluate
accurately without ground truth) would be expected to result in
greater biases for the more affected subjects. Instead, in a post-hoc
analysis using linear regression, there seems to be a slight negative
correlation (regression slope [95% CI]=−0.026 [−0.046, −0.006],
p=0.01) between the bias and brain volume loss from L0−24

sym with
windowed sinc interpolation (see Fig. 2). The intercept [95% CI] of
t brain atrophy estimation from the boundary shift integral, Neuro-
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Table 2
Test of transitivity using three time points. The table shows the mean (SD) of brain vol-
ume loss (ml) between the baseline and 12-month scans (L0−12), the 12-month and
24-month scans (L12−24) and the baseline and 24-month scans (L0−24). It also shows
the 95% CI (in square brackets) and p-value in the comparison between L0−12+
L12−24 and L0−24.

Control (n=138) MCI (n=211) AD (n=90)

(a) Linear interpolation
L0−12
asym 10.75 (7.54) 14.17 (8.68) 17.94 (8.25)
L12−24
asym 11.69 (6.74) 13.27 (9.36) 17.41 (11.07)
L0−24
asym 18.14 (8.33) 24.21 (12.79) 32.78 (14.22)
L0−12
asym +L12−24

asym −L0−24
asym 4.30 (2.85) 3.23 (2.98) 2.57 (3.14)

[3.82, 4.78],
pb0.001

[2.82, 3.63],
pb0.001

[1.91, 3.23],
pb0.001

L0−12
sym 6.22 (6.73) 10.52 (8.45) 14.85 (7.92)
L12−24
sym 7.37 (6.50) 10.14 (8.79) 15.23 (9.79)
L0−24
sym 13.61 (8.10) 20.66 (12.57) 30.09 (13.65)
L0−12
sym +L12−24

sym −L0−24
sym −0.02 (0.10) −0.00 (0.12) −0.01 (0.14)

[−0.04, −0.00],
p=0.04

[−0.02, 0.01],
p=0.6

[−0.04, 0.02],
p=0.6

(b) Sinc interpolation
L0−12
asym 5.98 (6.81) 10.56 (8.62) 15.15 (7.97)
L12−24
asym 7.34 (6.49) 9.98 (8.97) 15.19 (9.86)
L0−24
asym 13.63 (8.01) 20.67 (12.75) 30.34 (13.77)
L0−12
asym +L12−24

asym −L0−24
asym −0.31 (0.86) −0.13 (1.05) −0.00 (1.03)

[−0.45, −0.16],
pb0.001

[−0.27, 0.01],
p=0.07

[−0.22, 0.21],
p=1.0

L0−12
sym 6.24 (6.67) 10.75 (8.54) 15.29 (8.01)
L12−24
sym 7.68 (6.38) 10.27 (8.88) 15.37 (9.69)
L0−24
sym 13.93 (8.06) 21.01 (12.74) 30.64 (13.84)
L0−12
sym +L12−24

sym −L0−24
sym −0.02 (0.13) 0.00 (0.14) 0.02 (0.18)

[−0.04, 0.01],
p=0.1

[−0.02, 0.02],
p=0.7

[−0.02, 0.06],
p=0.3
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the regression line was 3.92 [3.42, 4.42] (pb0.001), meaning that the
difference between forward and backward Lasym was estimated to be
3.92 ml if there is no atrophy. No significant correlation was found be-
tween the bias and baseline brain volume (regression slope=0.001
[−0.001, 0.003], p=0.4). BSI is calculated over the exclusive OR re-
gion of the 1-voxel dilated union and 1-voxel eroded intersection re-
gions from the baseline and repeat brain regions as described in the
following steps:

1. Perform binary morphological dilation on the baseline and repeat
brain regions once by 1 voxel;

2. Calculate the union of the dilated regions;
3. Perform binary morphological erosion on the baseline and repeat

brain regions by 1 voxel;
4. Calculate the intersection of the eroded regions;
5. Calculate the exclusive OR region from the union and intersection

regions.

Therefore, the greater change in brain regions between baseline
and repeat scans in AD subjects means that there is a larger exclusive
OR region for more of the bias to get averaged out (see Fig. 3), though
this would need to be explored more thoroughly in future work.

Test of transitivity using three time points

As shown in Table 2, brain volume loss from BSI using tri-linear in-
terpolation with the asymmetric registration scheme was not
transitive-consistent, with the sum L0−12+L12−24 being 2–4 ml
greater than L0−24. When using tri-linear interpolation with the
asymmetric registration scheme, the amount of transitive bias was
similar to the amount of inverse bias from the corresponding entries
in Table 1. Marginal statistical significance (p=0.04) in the transitive
bias was found in controls when using tri-linear interpolation with
the symmetric registration scheme, although the amount of bias
was very small (0.018 ml, L0−12+L12−24bL0−24). Nonetheless, the
symmetric registration scheme was able to reduce the bias when
compared to the asymmetric registration scheme.

Small, but statistically significant (pb0.001), transitive bias of
0.31 ml (L0−12+L12−24bL0−24) was found in controls when using
(a)

Intensity

GM

CSF

Intensity

GM

CSF

Baseline image

Baseline image

Repeat image with small/no change
after tri-linear interpolation

Repeat image with large change
after tri-linear interpolation

Extent of the partial volume
in the repeat image

Extent of the partial volume
in the repeat image

Position

Position

(b)

A B

Fig. 3. Illustration of the averaging of partial volume effect in subjects with small and
large brain volume changes.
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windowed sinc interpolation with the asymmetric registration
scheme. When using windowed sinc interpolation with the symmet-
ric registration scheme, there was no transitive bias (p≥0.1, all tests).

The standard deviation (SD) of the difference between L0−12+
L12−24 and L0−24 indicated the absolute agreement between them
at a pairwise level. The SD of the difference for the symmetric
Table 3
Post-hoc comparison between Lsym⁎ (brain volume loss calculated from the transfor-
mation of the 0-, 12- and 24-month scans to the average position of each pair of the
scans using Tsym (I1, I2)1/2 from Eq. (8)) and Lsym (brain volume loss calculated from
the transformation to the average position of all scans using Tsym

average(Ii) from Eq. (9)).
The table shows the mean (SD) of brain volume loss (ml) between the baseline and
12-month scans (L0−12), the 12-month and 24-month scans (L12−24) and the baseline
and 24-month scans (L0−24). It also shows SD ratio between brain volume loss from
the two methods. Numbers in square brackets denote 95% CI.

Control (n=138) MCI (n=211) AD (n=90)

(a) Sinc interpolation
L0−12
sym ⁎ 6.27 (6.72) 10.83 (8.62) 15.34 (8.03)
L12−24
sym ⁎ 7.76 (6.33) 10.27 (8.90) 15.50 (9.84)
L0−24
sym ⁎ 13.85 (8.08) 20.96 (12.76) 30.65 (13.78)
L0−12
sym ⁎ +L12−24

sym ⁎ −L0−24
sym⁎ −0.18 (0.97) 0.14 (0.94) 0.19 (0.90)

[0.01, 0.34],
p=0.03

[0.01, 0.26],
p=0.04

[0.00, 0.38],
p=0.05

L0−12
sym 6.24 (6.67) 10.75 (8.54) 15.29 (8.01)
L12−24
sym 7.68 (6.38) 10.27 (8.88) 15.37 (9.69)
L0−24
sym 13.93 (8.06) 21.01 (12.74) 30.64 (13.84)
L0−12
sym +L12−24

sym −L0−24
sym −0.02 (0.13) 0.00 (0.14) 0.02 (0.18)

[−0.04, 0.01],
p=0.1

[−0.02, 0.02],
p=0.7

[−0.02, 0.06],
p=0.3

SD ratio
L0−12
sym ⁎ and L0−12

sym 1.01 [0.99, 1.03],
p=0.4

1.01 [1.00, 1.02],
p=0.05

1.00 [0.99, 1.02],
p=0.7

L12−24
sym ⁎ and L12−24

sym 1.00 [0.98, 1.01],
p=0.4

1.00 [0.99, 1.01],
p=0.6

1.02 [1.00, 1.03],
p=0.02

L0−24
sym ⁎ and L0−24

sym 1.00 [0.99, 1.01],
p=0.7

1.00 [0.99, 1.01],
p=0.7

1.00 [0.99, 1.01],
p=0.4
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Table 4
Direct test of bias using the back-to-back T1-weighted scans in symmetric and asym-
metric registration schemes. The table shows the mean (SD) of brain volume loss
(ml), and the 95% CI (in square brackets) and p-value when compared to the mean
value of zero.

Control (n=138) MCI (n=211) AD (n=90)

(a) Linear interpolation
Lasym− forward 5.30 (4.01) 3.95 (3.51) 3.99 (3.50)

[4.62, 5.97],
pb0.001

[3.48, 4.43],
pb0.001

[3.25, 4.72],
pb0.001

Lasym−backward −4.89 (3.49) −4.16 (3.69) −3.63 (3.73)
[−5.48, −4.30],
pb0.001

[−4.66, −3.66],
pb0.001

[−4.41, −2.85],
pb0.001

Lsym 0.02 (2.37) −0.12 (2.10) 0.18 (2.09)
[−0.38, 0.42],
p=0.9

[−0.41, 0.16],
p=0.4

[−0.26, 0.61],
p=0.4

(b) Sinc interpolation
Lasym− forward 0.21 (2.45) −0.23 (2.06) 0.09 (2.13)

[−0.20, 0.63],
p=0.3

[−0.51, 0.05],
p=0.1

[−0.36, 0.53],
p=0.7

Lasym−backward 0.23 (2.45) −0.05 (2.12) 0.19 (2.04)
[−0.18, 0.64],
p=0.3

[−0.34, 0.24],
p=0.7

[−0.24, 0.61],
p=0.4

Lsym 0.11 (2.53) −0.15 (2.09) 0.03 (2.09)
[−0.31, 0.54],
p=0.6

[−0.44, 0.13],
p=0.3

[−0.41, 0.46],
p=0.9
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registration scheme was much lower than the asymmetric registra-
tion scheme using either tri-linear or windowed sinc interpolation.
This implied that brain volume loss using the symmetric registration
scheme was more consistent than the asymmetric registration
scheme. We feel that it is important to use the symmetric registration
scheme if BSI is used to quantify the brain volume change of a single
individual subject across multiple time-points.

In the particular situation that the subject has nearly the same po-
sition in the first and second scans, and a ‘vastly’ different position in
the third scan, the transformation of all the scans into the average po-
sition may lead to unnecessarily strong interpolation in the first and
second scans. We think that this would not produce suboptimal BSI
result. This is because similar interpolation errors will be introduced
in the resampled images of the first and second scans, and will mostly
be cancelled out as BSI directly compares the two resampled images.
For example, consider an extreme case that the first and second scans
are two identical scans: BSI of the two scans will be zero, no matter
how strong the interpolation is. Furthermore, compared with the
asymmetric transformation of the third scan to the first/second
scan, the symmetric transformation of MR scans into an average posi-
tion may reduce the interpolation errors in the first/second scan and
the third scan. To provide experimental evidence, we performed an
additional post-hoc experiment that separately considered each pair
of scans from the 0-, 12- and 24-month time-points, transforming
both scans to the average position of each pair using Tsym (I1, I2)1/2

from Eq. (8) and calculating the BSI. We used Pitman's method to
compare the SD of the BSI calculated from this pair-wise method
Table 5
Test of bias using the intercept of the regression line from three time points (baseline, 12-m
to the brain volume loss (ml) over the scan interval.

Control (n=138) MC

(a) Linear interpolation
Lasym− forward 3.41 [1.40, 5.43], p=0.001 3.4
Lasym−backward −5.73 [−7.63, −3.84], pb0.001 −3
Lsym −1.13 [−2.98, 0.73], p=0.2 −0

(b) Sinc interpolation
Lasym− forward −1.61 [−3.47, 0.24], p=0.09 −0
Lasym−backward −0.79 [−2.68, 1.10], p=0.4 0.4
Lsym −1.42 [−3.25, 0.40], p=0.1 −0
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and our multi-time-point method. The SD ratio shown in Table 3 sug-
gests that the variability of BSI calculated using our method is very
similar to the pair-wise method, showing no evidence that our meth-
od is suboptimal. On the other hand, a small but statistically signifi-
cant transitivity error is found with the pair-wise method. The
higher SD in L0−12

sym +L12−24
sym −L0−24

sym in Table 3 also indicates the
higher inconsistency in transitivity when compared to our method.

Direct test of bias using back-to-back scans from the same baseline time
point

The direct test indicated that a bias of between 3.6 and 5.3 ml was
introduced when using tri-linear interpolation with the asymmetric
registration scheme (pb0.001, all tests) (see Table 4). Results also
show that the bias depends on the direction of the transformation
when using tri-linear interpolation with the asymmetric registration
scheme: given two back-to-back scans, a positive bias (apparent
brain volume loss) is detected when transforming the repeat scans,
and a negative bias (apparent brain volume gain) is detected when
transforming the baseline scans. Recall that either the first or the sec-
ond of the back-to-back scans was randomly assigned to be the ‘base-
line’, with the other assigned to be the ‘repeat’. Furthermore, the
difference (between Lasym− forward and Lasym−backward was around
the value (4.3 ml) estimated in the post-hoc analysis in the Section
"Test of inverse consistency using two time points" for scans with
no atrophy. No bias was found in other cases. Both the symmetric reg-
istration scheme and windowed sinc interpolation were able to dras-
tically reduce the bias.

A bias of 4 ml is typically less than 0.4% of whole brain volume.
However, it is important when trying to determine difference in
rate of brain volume loss between treatment and placebo groups in
a clinical trial, as the total change may only be around 1–2% over
the study.

The SD of brain volume loss indicated the scan and re-scan repro-
ducibility of BSI. When using windowed sinc interpolation with the
symmetric registration scheme, we obtained a SD of 2.2 ml or 0.22%
of whole brain volume for all the subjects (n=439). A previous
study using a different cohort of subjects showed that the SD of per-
centage brain volume loss from classic-BSI using back-to-back scans
was 0.47% (n=60, 38 AD and 22 controls) (Boyes et al., 2006). The
improvement in reproducibility may be due to the improvement in
KN-BSI (Leung et al., 2010) over classic-BSI or greater consistency of
acquisition of the MR scans from ADNI.

Test of bias using the intercept of the regression line from three time
points

Tri-linear interpolation with the asymmetric registration scheme
introduced a bias of 3.41−5.73 ml in the intercept of the regression
line in controls (forward and backward registration, p≤0.001, both
tests), MCI subjects (forward and backward registration, p≤0.001,
both tests) and AD subjects (only backward registration, p=0.008)
onth and 24-month). The table shows the intercept [95% CI] of the regression line fitted

I (n=211) AD (n=90)

9 [1.73, 5.26], pb0.001 1.73 [−0.98, 4.43], p=0.2
.23 [−5.08, −1.37], p=0.001 −4.17 [−7.24, −1.10], p=0.008
.13 [−1.85, 1.60], p=0.9 −1.69 [−4.53, 1.15], p=0.2

.04 [−1.80, 1.72], p=1.0 −1.41 [−4.23, 1.42], p=0.3
6 [−1.31, 2.23], p=0.6 −0.91 [−3.77, 1.94], p=0.5
.01 [−1.74, 1.73], p=1.0 −1.45 [−4.29, 1.39], p=0.3
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as shown in Table 5 and Fig. 4. No bias was found in other cases.
Again, either the symmetric registration scheme or windowed sinc
interpolation was able to drastically reduce the bias.

Related work

There has recently been substantial interest and concern regard-
ing potential biases in longitudinal image analysis (Thomas et al.,
2009; Thompson et al., 2011; Yushkevich et al., 2010; Reuter and
Fischl, 2011; Fox et al., 2011; Holland et al., 2011). As mentioned in
the introduction, we followed Yushkevich et al. (2010) in using the
back-to-back scans and the intercepts of the regression line fitted to
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against scan interval in controls.
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the brain volume loss estimated from two time points, to assess bias
in the BSI processing pipeline. In these two tests of bias, we reached
the same conclusion that a symmetric global registration scheme
was able to remove bias present in an asymmetric scheme.

Yushkevich et al. (2010) suggested that asymmetric interpolation/
smoothing from an asymmetric global/affine transformation may
cause bias in non-linear registration based atrophy quantification, be-
cause the result of a non-linear registration is strongly influenced by
the initial gradient of the image similarity metric. For all nonlinear
registration algorithms based on voxel-similarity (the majority,
though HAMMER is a notable exception; Shen and Davatzikos,
2002), the computation of the metric and its gradient requires paired
voxels and hence interpolated images, calculated from the starting
point of the initial affine transformation. Algorithms that do not re-
quire a separate a priori transformation and reslicing of images have
the advantage that this internal voxel-similarity optimisation re-
quires only one interpolation step, rather than accumulating errors
from both the prior and the internal interpolation. However, as
shown by Yushkevich et al. (2010), who used ANTS (Avants et al.,
2008) and IRTK (Rueckert et al., 1999) without prior transforma-
tion/interpolation, even the single interpolation step is able to intro-
duce bias via the nonlinear optimisation process. Our results
showed that windowed sinc interpolation dramatically reduced the
bias in the BSI when using asymmetric registration. This suggests
that for asymmetric non-linear registration based measurement, it
might be preferable to resample the images after the affine registra-
tion with a high-order interpolation method and use them in the
non-linear registration, rather than to avoid the double interpolation
at the cost of being more detrimentally affected by lower-order inter-
polation in the non-linear optimisation process. Note that such inter-
polation prior to estimating the non-linear registration does not
mean that images warped using the non-linear transformation have
to suffer two interpolation steps, since the transformations can still
easily be composed and applied to the original image, even if this
image was not used to estimate the non-linear transformation.

Yushkevich et al. (2010) found that the effect of longitudinal bias
was small as long as sample sizes were calculated relative to the atro-
phy rate in controls. However, a control group may not be available in
some studies. It is important to note that this breaks down if the
amount of longitudinal bias differs between controls and patients,
as it did for the asymmetric registration with linear interpolation
(Fig. 2).

Our formulation of symmetric registration and DBC of multiple
scans is based on existing DBC (Lewis and Fox, 2004), symmetric reg-
istration (Reuter et al., 2010) and groupwise schemes (Alexa, 2002;
Aljabar et al., 2006). In this paper, we suggest a consistent formula-
tion for more than two scans, and highlight the important connection
between the ideas of the (scalar and matrix) square root and the geo-
metric (scalar and matrix log-Euclidean) average.

Strength of the study

In addition to using back-to-back scans and the intercept-based
experiments, we assessed inverse- and transitivity-consistency of
the BSI processing pipeline as suggested by Reuter and Fischl
(2011). As mentioned in the last section, we also investigated the ef-
fect of tri-linear and windowed sinc interpolation on bias in the pipe-
line. Furthermore, the study utilised serial MR scans of 439 subjects
acquired from multiple sites. The large number of subjects provided
enough statistical power to detect subtle bias caused by an asymmet-
ric registration scheme.

Limitations

Our study shares many of the limitations described by Yushkevich
et al. (2010). Since the true atrophy is zero in the back-to-back scans,
t brain atrophy estimation from the boundary shift integral, Neuro-
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multiplicative bias (which refers to bias that is proportional to the
amount of true atrophy, in contrast to simple ‘additive bias’, which
is a constant addition independent of the true value) is not present
in the back-to-back scans and cannot be detected. In the intercept-
based experiment, multiplicative bias has the same effect on the
brain volume loss between the baseline and 12-month scans, and be-
tween the baseline and 24-month scans, so that it does not affect the
intercept. More importantly, the intercept-based experiment as-
sumes that the brain volume loss is linear over a two-year period.
However, some studies have shown the acceleration of brain atrophy
in normal ageing, mild cognitive impairment and Alzheimer's disease
(Scahill et al., 2003; Chan et al., 2003; Jack et al., 2008c). When accel-
eration in rate of atrophy is occurring, one would expect the mean at-
rophy rate to be higher over the second time period and therefore the
intercept would be slightly negative. Indeed, we found this numeri-
cally to be the case (Table 5), although the intercept was not signifi-
cantly different from zero. It is also far from clear whether
hypothetically uniform (non-accelerating) atrophy would be defined
as linear in either absolute or percentage terms — since it cannot be
linear in both.

One criticism of constructing a middle transformation from the
pairwise transformations is that a poorly registered pair of images
can adversely affect the constructed middle transformation
(Christensen and Johnson, 2001). Visual checks should be performed
to make sure that all the image pairs are well aligned.

Conclusions

We described an unbiased brain atrophy estimation method, that
can consistently model changes over more than two time-points, by
combining symmetric registration and differential bias correction
techniques through the concept of a geometric mean. Using MR
scans of 439 subjects downloaded from the ADNI database, bias in
the BSI processing pipeline was assessed using four tests: (a) inverse
consistency, (b) transitive consistency, (c) back-to-back scans, and
(d) intercept of the regression line fitted to the brain volume loss
over time. Results suggested that the use of windowed sinc interpola-
tion or a symmetric registration scheme consistently reduced the bias
in the BSI processing pipeline. No bias was detected in any of the four
tests when using windowed sinc interpolation with the proposed
symmetric procedure.
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