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Registration of Images With Varying Topology
Using Embedded Maps
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Abstract—This paper presents registration via embedded maps
(REM), a deformable registration algorithm for images with
varying topology. The algorithm represents 3-D images as 4-D
manifolds in a Riemannian space (referred to as embedded maps).
Registration is performed as a surface evolution matching one
embedded map to another using a diffusion process. The approach
differs from those existing in that it takes an a priori estimation of
image regions where topological changes are present, for example
lesions, and generates a dense vector field representing both the
shape and intensity changes necessary to match the images. The
algorithm outputs both a diffeomorphic deformation field and
an intensity displacement which corrects the intensity difference
caused by topological changes. Multiple sets of experiments are
conducted on magnetic resonance imaging (MRI) with lesions
from OASIS and ADNI datasets. These images are registered
to either a brain template or images of healthy individuals. An
exemplar case registering a template to an MRI with tumor is
also given. The resulting deformation fields were compared with
those obtained using diffeomorphic demons, where topological
changes are not modeled. These sets of experiments demonstrate
the efficacy of our proposed REMmethod for registration of brain
MRI with severe topological differences.

Index Terms—Deformable registration, false deformation, Rie-
mannian embedding, topological change.

I. INTRODUCTION

D EFORMABLE registration with high-degree-of-freedom
transformations is the foundation of computational

anatomy (CA) [1]. In neuroimaging CA methods include the
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various forms of morphometry [2]–[4], and have been widely
used to study structural differences among brains and brain
regions due to genetics, environment, and disease (see [5] and
the references therein).
Image models of intact brains (excluding surgical resection)

typically assume that the brain is a collection of shapes with
a fixed topology representing distinct tissue types, gray matter
(GM) andwhitematter (WM),modulated by a bias field and cor-
rupted by additive noise (e.g., [6], [7]). This model holds reason-
ably well in the cortex of healthy young (postadolescent) sub-
jects with limited shape variation (a small deformation model).
However, in the case of older subjects, both with and without

manifest disease symptoms, the tissue shape and composition is
much more complex. In these subjects, the changes most often
seen in the clinic are large variations in the size and shape of
ventricles, most likely because of tissue loss in the adjoining
WM, as well as more subtle variations in subcortical shape, and
cortical thickness (a large deformation model) [8]. Accompa-
nying this increase in shape variation are changes in tissue com-
position that manifest as both diffuse and focal intensity dif-
ferences. These intensity changes need not be accompanied by
symptoms. For example WM hypo- and hyper-intensities have
long been noted in T1 and T2 weighted images of older subjects
(Leukoaraiosis) [9].
Intensity changes between images that cannot be modeled

as bias or noise adversely influence registration algorithms.
Such topological changes can cause false deformation in the
resulting dense vector fields of existing deformable registration
algorithms [10]. Consequently, in subsequent analysis such as
deformation based morphometry (DBM), false deformation
will be wrongly associated with local growth or shrinkage
[11]. Prior work using morphology largely neglects this
complication. In some studies, subjects with gross structural
abnormalities are excluded (e.g., [12]), which may or may
not exclude abnormal appearing tissue but likely does exclude
widespread Leukoaraiosis or focal lesions. However, in clinical
populations such changes of tissue contrast are common. Thus,
image-based assessment tools must be able to account for
tissue with abnormal appearance. The necessity of isolating
the impact of topological changes in deformable registration
has been demonstrated in previous works [13], using Cost
Function Masking (CFM) [14]. CFM has been applied to para-
metric registration methods, for example, on cosine transform
bases. The extension of CFM to nonparametric methods is not
straightforward due to the severely increased dimensionality
of the optimization space. However, some ongoing work is
exploring this approach [15].
Assuming that such regions can be identified ahead of time

(lesion segmentation), then their influence can be reduced. This
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can be accomplished by registering topology corrected images
rather than the original images, either through semi-manual la-
beling of the lesions [16] or through detecting and removing
topological changes automatically [10]. However, since seg-
mentation and registration are intimately connected, any issue
that confounds segmentation and registration is problematic.
Diffuse intensity changes are such a confound since defining
a criteria for what constitutes a lesion, as required by segmen-
tation, is arbitrary. Furthermore in WM regions near the cortex,
abnormal WM may be classified as cortical GM. This misclas-
sification propagates to the topologically corrected segmented
image, which can lead to artificially increased cortical thickness.
In some applications, precomputed pathology models ob-

tained from a group of training data can be used to account for
topological changes, for example, in tumors [17]. However,
the requirement for having such training data limits their ap-
plication. Further, the precomputed model is specific to certain
pathology and must be adapted on a per-case basis. In addition,
several other methods have been developed to register brain
images after surgical resection by matching subvolumes [18],
[19], landmarks [20], segmentation surfaces [21], and adapting
the EM framework [22], [23]. However the EM-based methods
are generally limited to lower degree-of-freedom transforma-
tions due to the computational complexity involved.
Another approach is to model each topological change as

a diffusion source or sink. Cuzol et al. used this approach in
2D to register images of Multiple Sclerosis patients [24] by
using vortex particles to represent divergence of the deforma-
tion field. In a similar vein, the work by Risholm et al. [25]
used anisotropic diffusion instead of Gaussian smoothing in a
Demons registration framework regulated by diffusion sinks to
generate a deformation field that was free of resection effects.
Since each lesion must be modeled as a source or sink this ap-
proach introduces a heavy computational burden. Alternatively,
a shape deformation and an intensity correction can be com-
puted using the active appearance models [26]. The challenge
with such method is that it needs a comprehensive training set,
which properly covers a large variety of topological changes,
for the construction of an appearance model.
Previous work most closely related to that presented here is

that of metamorphosis theory [27]. A metamorphosis is a Rie-
mannian metric defined on the space of images that measures
both geometric deformation and intensity changes. Computa-
tion of a geodesic for this metric in the space of images leads
to a partial differential equation (PDE) whose solution provides
a diffeomorphism optimal up to an image residual error. The
magnitude of the residual error is controlled via a spatially ho-
mogeneous parameter. This approach has been used in med-
ical image averaging [28] and recently for brain atlas estimation
[29]. However, because the allowed residual is spatially homo-
geneous, metamorphosis is not designed to minimize false de-
formation.
In previous work we developed a registration algorithm

via embedding images into higher dimensional Riemannian
space [30], [31]. The algorithm was used to register 2-D im-
ages without specifically suppressing false deformation. In
this paper we extend this approach, named registration via
embedded maps (REM), to handle topological changes by

suppressing their impact on the deformable registration process
for 3-D brain MRI. Specifically, images in Euclidian space
are embedded as surfaces in an Riemannian space. The
registration process is then conducted as surface deformation,
where the first three dimensions of the resulting deformation
field correspond to the spatial grid deformation in the
Euclidean space, and the fourth dimension corresponds to the
intensity displacement. The contribution includes two aspects.
First, compared with metamorphosis, our embedding models
the two types of deformation in a metamorphosis, i.e., a spatial
deformation and a template evolution, with a single PDE evo-
lution in a higher dimensional space. This guarantees a smooth
convergence of the diffusion to a local minimum. Second and
more importantly, by carefully choosing a feature-space in the
embedding, we are able to control the distribution of the de-
formation energy in a way that topological changes are mainly
attributed to intensity displacement, while brain structural
changes are mostly captured by spatial grid deformation. In
doing so, topological changes do not impact the spatial defor-
mation and thus false deformation is effectively suppressed.
The resulting spatial deformation is a diffeomorphism, evolved
using the intrinsic update step, as proposed in [32]. Note that,
using our proposed algorithm, the structural shape difference of
the brain anatomy is fully captured by the spatial deformation
field, free from the impact of topological changes. Therefore,
the resulting spatial deformation field can be independently
used in CA methods on brain shape analyses, such as DBM.
During the preparation of this manuscript we became aware

of a very similar approach by Zosso et al. [33], named Geodesic
Active Fields, where 2D images are also registered in a Rie-
mannian space and the deformation field is solved through a
minimal surface flow corresponding to the harmonic map. The
focus of that work was on general 2D imaging applications,
where the work described in this paper was focused on using a
similar approach for handling topological changes in 3-D brain
MRI. Thus, although developed independently, the papers are
complementary.
The rest of this paper is organized as follows. Section II

provides relevant background. In Section III, we describe each
component of our registration method and then summarize
it into a registration algorithm. Experiments and results are
given in Section IV. Section V discusses the limitations of,
and alternatives to, the registration approach and concludes the
paper.

II. BACKGROUND

In this section, we explain several key concepts adopted by
our proposed method, as well as give a brief introduction to the
nonlinear diffusion framework.

A. Topological Change and False Deformation

Healthy brains include normal classes of WM, GM, and CSF.
In constrast, aging- and disease-induced brain MRI intensity
changes can be referred to as topological changes. The new in-
tensity class associated with such topological changes, together
with the normal brain structural difference, drive deformation
during deformable registration. In the resulting deformation
field, part of the deformation that is caused by the altered
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intensity, rather than the brain structural shape difference, is
referred to as false deformation [10]. This definition of false
deformation is somewhat ad hoc since topological changes
result from various types of pathologies and associated tissue
alterations. For example, space occupying lesions, such as a
tumor, are associated with local deformation of surrounding
tissue. However, this is not the case for tissue characteristic
changes, such as multiple sclerosis, which do not cause local
deformation. Without knowing their nature, we simply refer
to all topological change-induced deformation as false defor-
mation, which can be alternatively considered as uncertain
deformation or deformation with unknown causes.
False deformation cannot be directly handled by typical regis-

tration methods. The reason is two-fold. First, it is hard for a reg-
istration algorithm to handle topological changes without pre-
determining their pathological nature. Hence, some local defor-
mation around topological changes is always expected to occur
as their efforts to minimize intensity profile difference between
images. Second, it is well known that the correctness of a de-
formation between two clinical images is in general not acces-
sible due to the lack of a ground truth. It is therefore similarly
difficult to distinguish false portion from an otherwise true de-
formation field. If images are registered using typical methods
without properly handling topological changes, false deforma-
tion can no longer be separated from the overall deformation
field in the postprocessing.
Due to these reasons, we adopted a new methodology in this

work, where lesion segmentation is taken as part of the input,
such that registration is performed as if the lesion had not been
present. This idea is illustrated in Fig. 1. Assume we are trying
to register the shape in Fig. 1(a) and (b), and the pathology of
the topological change (big black dot) presented in Fig. 1(b) is
unknown. If the two images are directly registered using a typ-
ical registration method, we will end up with a deformation field
similar to the one shown in Fig. 1(c). The deformation repre-
sented by blue arrows corresponds to the structural difference
between the circle and the square, and thus represents relatively
true deformation. However, deformation represented by red ar-
rows attempt to shrink the black dot in Fig. 1(b) to match the
intensity profile in Fig. 1(a). As we mentioned above, this is re-
garded as false deformation. If the black dot had been caused by
tissue characteristic change, the deformation represented by red
arrows should ideally not exist. If space occupying lesion had
been the reason for the black dot, it is possible that the defor-
mation energy is asymmetric in the case where one side of the
lesion grows faster than the other. One universal way of han-
dling these cases is to not allow topological change to cause any
deformation, which in this example leads to a deformation field
as shown in Fig. 1(d). This resulting deformation field is useful
in clinical applications since it registers all nonlesion tissue. For
instance, images of different dementia patients can be registered
to the same template without being affected by the hyperinten-
sity lesions, which enables the subsequent analysis of shape dif-
ference of cortex. Another example is that the structural shape of
a series of images with progressing tumor can all be registered
to an image at a healthy stage, after which the relative volume
of tumor can be assessed. After this registration step, if neces-
sary, a tumor progression model can be further applied to reveal

Fig. 1. Illustration of false deformation. (a) Image with normal topology. (b)
Image with topological change. (c) Typical registeration of (a) and (b) leads
to false deformation (red arrows). (d) Registration result with suppression of
the impact of topological change. (e) If tumor progression model being used
suggests one side of the tumor grows faster than the other, the corresponding
red arrows should differ in their lengths.

how its surrounding tissue deforms. This idea is demonstrated
in Fig. 1(e), where we see that if the tumor progression model
suggests that one side of the tumor grows faster than the other,
the red arrows of the reigstration result should reveal this model
and look like the ones shown in Fig. 1(e).

B. Sochen–Kimmel–Malladi General Nonlinear Diffusion

Our algorithm is derived from the Sochen–Kimmel–Malladi
general nonlinear diffusion [34], by choosing a particular em-
bedding for our specific problem. The surface evolution follows
the Euler-Lagrange equation that minimizes the surface weight
measured by the Polyakov functional. Specifically, an image
manifold in is embedded as an feature-space man-
ifold , where and are the metric tensors on and ,
respectively. The map is chosen as

(1)

where are the local image Cartesian coordinates in ,
and is the intensity of the voxel at in the
image to be registered, referred to as the moving image, , in
the registration process. Based on a chosen map and a metric
, the metric is determined through the pullback procedure

(2)

Note that (2) and subsequent equations use the Einstein nota-
tion (matching subscript and superscript variables are summed
over), with , for the given
embedding. In (2), represents the element of and

stands for the element of .
Using the above definitions, the surface area , sometimes

referred to as the weight of the map , is calculated as

(3)

where is the element of , is the square root of
the determinant of the metric , and is the dimension of .
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This measure of the surface area is referred to as Polyakov func-
tional in Riemannian geometry.1 The variation of the Polyakov
functional with respect to the embedding can be found by the
Euler–Lagrange equation

(4)
where are the elements in the
Levi–Civita connection, given by

(5)

Note that the factor multiplied before is to simplify
the mathematical expression and does not change the minimiza-
tion solution. Equation (4) defines the gradient descent direction
that minimizes the Polyakov functional, which shrinks the em-
bedded surface area most rapidly. Therefore, (4) is referred to as
a minimal surface flow. It has been shown that many image pro-
cessing tasks can be accomplished via minimizing the Polyakov
functional, e.g., image smoothing and segmentation [34].

III. REGISTRATION METHOD

In this work, we propose a registration algorithm via the min-
imization of the Polyakov functional. Our proposed algorithm
differs from existing methods in the sense that it uses a seg-
mentation of the topological changes as an input and is capable
of registering brain MRI, while eliminating false deformation.
The following describes the three major components of the pro-
posed algorithm and then summarizes them into a registration
algorithm.

A. Choice of Embedding

To establish a proper registration objective, we define the
metric in the following form:

(6)

where is a positive function that influences the shape of a har-
monic map by changing the physical meaning of the surface
weight.While for a metric tensor, it is merely required to be pos-
itive-definite and symmetric, this diagonal matrix holds the
simplest mathematical form while maintaining the three coor-
dinates of physical space uncorrelated. Additionally, using this
diagonal form, the length measure on the surface will be simply
scaled by function . Thus, function provides us with the flex-
ibility of intuitively adjusting the path of diffusion, similar to
geodesic surfaces [35], and enables the minimal surface flow
to achieve the desired objective. The term defines the fea-
ture-space of the embedding, which is the relative magnitude
between image features and spatial domain.
Taking inspiration from geodesic active contours [36], we

note that for a specific choice of metric, the Polyakov function
measures the area of the surface in the space . This gives us
the freedom to use the fixed image of the registration to define

1We refer interested reader to [34] for detailed explaination on its physical
meaning and its derivation.

the metric and thus influence the shape of the harmonic map.
In this work, we choose , where and
are the moving and the fixed images, respectively. The squared
image difference given by is the most commonly used error
measurement in intensity-based registration. The difference be-
tween our work and existing registration methods is that in our
work, is not directly minimized, rather it is used to modu-
late the metric . Intuitively, consider an infinitesimal region on
the embedded surface of the moving image, the value of at
this location scales the magnitude of the surface tensor, which
in turn modulates the distance measure, and thus scales the sur-
face area (surface weight) of this region. As a result, when using
the error measure between the moving and the fixed images
for the value of , such as , the embedded
surface will have larger surface areas at locations where there
are bigger differences between the two images. Consequently,
when minimizing the surface area, the embedded surface of the
moving image will shrink its area most rapidly at such locations.
Eventually, the surface area, measured by the Polyakov func-
tional, will achieve its minimum, where has minimal-value
everywhere, i.e., the moving and the fixed images are perfectly
aligned. In other words, during the diffusion, the surface area
is attracted by a potential well formed by , and our particular
choice of transforms the Polyakov functional into a registra-
tion objective.
The factor defines the relative magnitude between the fea-

ture and the geometric space. The choice of impacts the distri-
bution of deformation energy. This is illustrated in Fig. 2, where
we use red and blue curves to represent surface cut profiles of a
moving and a fixed image, respectively. The arrows denote the
gradient directions evolving the moving surface to the fixed sur-
face. In Fig. 2(a), is set to a small value, and thus image inten-
sity is weighted less in the pullback. When the moving image is
evolved to the fixed image, the gradient direction will be better
co-aligned with the intensity axis, and the deformation energy
will be concentrated on intensity displacement. Alternatively as
shown in Fig. 2(b), if is set to a large value, the gradient di-
rection of evolving the moving image to the fixed image will
be better co-aligned with the spatial grid axis, and the defor-
mation energy will be more distributed to the spatial deforma-
tion. Based on this intuition, if we have a function ,
whose value indicates the probability that the voxel at
lies within a region of topological change, we can construct the
function as

(7)

where is a small positive value to avoid division-by-zero. With
this function, for image regions with normal local topology,

will have small values and will have large values
accordingly. We choose to use the inverse function instead of
some other functions, for example , since it leads
to a sharper contrast between lesion and nonlesion regions, in
terms of the values in . Then the deformation in these re-
gions will concentrate on the spatial grid to capture the structural
difference between the moving and the fixed images. On the
other hand, for image regions that do have topological change,
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will have large values and small values, so that the
intensity displacement is favored during the registration process
to correct the tissue appearance.

B. Computation of Surface Variation

In the following, we use a single subscript to denote first order
derivative, e.g., is the partial derive of function with re-
spect to coordinate. Note that is the partial derivative of
with respect to the moving image. Double subscript means

second-order partial derivative, e.g., is the second order par-
tial derivative of the moving image with respect to coordinate.
Using the map given in (1) and the metric in (6), we can obtain
the metric through the pullback procedure, (2)

(8)

After the embedding, the registration is to be carried out by min-
imizing the conformal area given in (3). This leads to the fol-
lowing objective function:

(9)

where is given by (3). and are
given in (6) and (8), respectively. Further,

(10)

with a spatial deformation and an intensity displacement .
Again, we emphasize that, the optimization over the search
space is achieved jointly over in a single optimization
framework. In other words, we are not solving the problem
by separating and and seeking for their individual optima
in an iterative back-and-forth manner. This is a key point
that differs our method from existing ones. Using the result
from Sochen–Kimmel–Malladi diffusion in (4), the gradient
direction of the above minimization is given by

(11)

Here, is the time variable that represents a step in the diffu-
sion process. Note that in (11), the Euler–Lagrange equation is
multiplied by to simplify the expression. Since it is a strictly
positive function, the multiplication will not affect the solution.
Collecting the above terms, we obtain the registration updating
rule

(12)

where

Note that in (12), we intentionally assemble all the terms that
are related to the partial derivatives of in . The first three
dimensions in (12) define the spatial grid deformation that cap-
tures the structural differences between themoving and the fixed
images. The fourth dimension in (12) defines the intensity dis-
placement, which concentrates on the preidentified topological
changes. The detailed derivation of (12) can be found in the
Appendix. We want to emphasize that using (12), the distribu-
tion of the deformation energy in the intensity displacement and
the spatial grid deformation can be directly controlled by the
function . This is the major reason that false deformation can
be eliminated from the resulting deformation field. To better un-
derstand this, if we set to extreme values of and , we
can obtain the following two equations:

(13)

where the common term2

and

(14)

where the common term

It is easy to observe that (13) and (14) agree with our expec-
tation (refer to Section III-A). In particular, when has a very

2This case, i.e., , is known to be related to the mean curvature flow.
Interested readers can refer to [34] for details
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Fig. 2. Influence of on the deformation field. Red and blue curves represent
surface cut profiles of a moving and a fixed images, respectively. The arrows
denote the gradient directions evolving the moving surface to the fixed surface.
(a) is set to a small value, and thus image intensity is weighted less in the
pullback. When the moving image is evolved to the fixed image, the gradient
direction will be better co-aligned with the intensity axis, and the deformation
energy will be concentrated on intensity displacement. (b) is set to a large
value, the gradient direction of evolving the moving image to the fixed image
will be better co-aligned with the spatial grid axis, and the deformation energy
will be more distributed to the spatial deformation.

large value, the spatial grid deformation contains the most en-
ergy, whereas when has a very small value, the intensity dis-
placement dominates the deformation energy. Note that we do
not require a precise lesion segmentation to form the function.
It can be based on any estimated probability function .
In real applications, can be constructed from some le-
sion-likelihood measurements, or a smoothed version of a rough
lesion segmentation, for example

(15)

where is a Gaussian kernel and is the segmentation
label map of topological changes. In most cases, after intensity
displacement, the spatial deformation of the areas affected by
topological changes will be filled by the interpolation of the
deformation from their neighborhood, due to the smoothness
constraints of the deformation field. Thus, when we construct
from a smoothed rough segmentation of the topological change,
over- or under-segmentation have limited effects.

C. Diffeomorphic Constraint

In medical image registration, regularization of the spatial
transformation ensures a physically meaningful registration re-
sult. Most registration algorithms constrain the resulting defor-
mation field to be in the group of diffeomorphisms [32], [37].
Diffeomorphisms are smooth invertible transformations with
smooth inverse, which causes no tearing or folding of the phys-
ical space when being applied. Constraining the evolution of
a deformation field to be within the group of diffeomorphisms
also ensures a stable diffusion process by avoiding spikes when
solving the associated PDE.
Ideally, in diffusion based methods, diffeomorphism can be

obtained by physically constraining a positive Jacobian deter-
minant, using a constrained optimization [37]. However, in our
method, only the first three dimensions of the surface variation
correspond to spatial deformation and are required to be diffeo-
morphism. The fourth dimension, on the other hand, is intensity

change and should not be confined in the group of diffeomor-
phism. This can be illustrated by a simple example. Imagine
that, we have two pixels, the left and the right, on an input image.
If the left pixel has a smaller intensity than that of the right one,
diffeomorphism essentially ensures that after intensity displace-
ment, the left pixel cannot change to a larger intensity than the
right pixel, i.e., it maintains the “order” of the intensities of the
two pixels. This is obviously not desirable in our algorithm. On
the other hand, adding constraint only to some of the dimensions
in a diffusion process is difficult, and to the best of our knowl-
edge such a mathematical solution is not directly available. An
alternative method, is to perform spatial deformation within a
Lie group of diffeomorphism, as proposed in the work of diffeo-
morphic demons [32]. Then, the diffeomorphic registration can
be performed under unconstrained optimization routines. Fol-
lowing this idea, we adopt the intrinsic updating rule

(16)

for the evolution of the spatial deformation field. Here, is
the vector field of the overall spatial deformation and con-
tains the first three components of the surface evolution in (12):

. In the update rule,
stands for the vector field exponential operation, which can be
efficiently computed through iterative composition [32]. The in-
tensity displacement, on the other hand, is directly accumulated
as

(17)

where is the overall intensity displacement, and is the last
component of the surface evolution in (12): . The
intensity displacement is applied to the fixed image as

(18)

where is the time variable. Because the intensity difference
caused by topological changes is reduced during this step, we
refer to it as intensity correction.

D. Registration Algorithm

To summarize, we have the following registration algorithm:

Algorithm: Registration via Embedded Maps (REM)

• Initialization:
1) set image with normal topology as moving image ;
2) set image with topological changes as fixed image ;
3) construct using a segmentation label map using
(15) and (7);

4) set deformation field and intensity
displacement .

• Iteration :
1) Solve the optimization in (9) through surface
evolution given in (12):

2) apply fluid-like regularization on ;



LI et al.: REGISTRATION OF IMAGES WITH VARYING TOPOLOGY USING EMBEDDED MAPS 755

Fig. 3. Images used in this demonstrative experiments. First row, an elderly
subject, referred to as old; second row, a young subject, referred to as young;
third row, the young subject with a manually created resection, referred to as
resectioned.

3) update deformation field: ;
4) apply diffusion-like regularization on ;
5) update intensity displacement: ;
6) apply spatial deformation: ;
7) apply intensity displacement: ;
8) if break;

In the algorithm, , , and are all Gaussian
smoothing kernels. The variances for , are selected
in the same way as in Diffeomorphic Demons, where typical
value is within [0.8, 1.2]. The variance of has no direct
impact on the convergence of the diffusion, and it only controls
the spatial smoothness of the intensity displacement. We use a
variance of 0.4 for in all experiments. We choose to set a
maximum number of iteration as the stopping criteria, following
the convention in Diffeomorphic Demons. Note that under the
intrinsic updating rule, the registration error typically begins to
oscillate when the diffusion tends to become stable. This oscil-
lation effect is a detectable pattern and can also be used as a
stopping criteria. and are both normalized and multiplied by
a chosen step size as typical in registration methods. The step
size of is related to the variance of and , where
larger step size can be used with larger smoothing kernels. Ex-
perimental setting of is around 5% of estimated maximum in-
tensity displacements.

IV. EXPERIMENTS AND RESULTS

In this section, the proposed registration algorithm REM was
tested under multiple sets of experiments as commonly used

Fig. 4. Registration performance on images without topological change. The
upper row shows the checkerboard image of old and young, before registration;
the second row shows registration result using REM, which is the checkerboard
image of the young and the deformed old, i.e., after applying spatial deformation
to old; the third row shows the checkerboard image with registration result using
diffeomorphic demons.

for structural brain MRI analysis. The resulting deformation
fields were compared with those obtained using diffeomorphic
demons [32], where topological changes are not modeled. Some
additional results were provided to demonstrate the impact of
false alarm and misdetection of topological changes in the con-
struction of . Experiments were also conducted for the cases
where both moving and fixed images have topological changes
to show limitations of the current algorithm.

A. Registering Images of With Synthetic Topological Change

In this subsection, we conduct a series of demonstrative ex-
periments to highlight several key features of our registration
algorithm. Specifically, we register the brain image of an elderly
subject (referred to as old, shown in the first row in Fig. 3) to a
pair of images of a young subject with and without a manually
created resection (referred to as young and resectioned, shown
in the second and third rows in Fig. 3, respectively), to get a di-
rect and quantitative evaluation of the algorithm performance.
Both young and old are T1 MRI from OASIS dataset, where
young is taken for a healthy male at age 21, and old is from a
healthy female at age 77.
First, we use our algorithm to register old and young. The pur-

pose is to show that although our algorithm is motivated by the
need for accurately registering images with topological changes,
it can still be used to register images with normal topology,
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Fig. 5. image residuals. Blues bars, residuals before registration. Red bars, residuals after REM registration. Green bars, residuals after diffeomorphic demons
registration.

i.e., without topological changes. The spatial deformation, in
this case, carries all the deformation energy, achieved by set-
ting the lesion probability map to zero everywhere
and not allowing intensity to deform. In the experiment, old is
used as the moving image and young is used as the fixed. We
used Gaussian kernels with for
and .3 For comparison purposes, we used diffeomorphic
demons algorithm [32] to perform the same set of experiments.
Three resolutions are used in the diffeomorphic demons, and
10, 20, and 100 iterations were performed in each resolution, re-
spectively. The variances used in the Gaussian smoothing kernel
for fluid and diffusion regularization are both set to 0.8, the same
as in our algorithm. With this experiment setting, the computa-
tional load of the two algorithms is comparable. Fig. 4 shows
the registration results of both methods. The upper row shows
the checkerboard image of old and young, before registration.
The middle row gives the registration result using our proposed
REM, which is the checkerboard image of young and the de-
formed old, i.e., after applying spatial deformation to old. The
lower row shows the checkerboard image of the registration re-
sult obtained by diffeomorphic demons. The three columns give
the axial, sagittal and coronal views of the images, respectively.
Note that, due to the large age difference, the two subjects used
in this experiment have significant structural difference, which
can be seen at the locations pointed out by the red arrows. From
Fig. 4, it can be observed that both algorithms well aligned the
two images after registration. The image residuals of the
original images and those registered ones using the two algo-
rithms are shown as the first three bars in Fig. 5. We can see that
there is a large image residual between young and old before
registration (bar 1), and this is minimized to approximately the
same amount when the two registration algorithms are applied
(bars 2 and 3, respectively).

3All the parameter settings are in voxel units. All the images from OASIS
dataset have a spatial resolution of . Those from
ADNI dataset used in this work have a spatial resolution of

.

The glyph views of the deformation fields obtained via REM
(the left) and diffeomorphic demons (the right) are shown in
Fig. 6.4 We find that although the two algorithms converged to
comparable image residuals, the shapes of the two defor-
mation fields are different, due mainly to their respective opti-
mization objectives. For REM, the spatial deformation energy
mainly concentrates around the ventricle and several areas in
the temporal lobe and occipital lobe. For diffeomorphic demons,
however, the deformation energy is much more dispersed.
Second, we register old to resectioned. The image with resec-

tion is created by manually removing a large region of cortex
from the healthy brain of young used above. The manually cre-
ated image is then used as a probe, similar as the approach taken
in [38], to conduct the same registration experiments. The same
parameters as before are used, except that was constructed
with for in (15) and in (7). The
manual mask used to create the resection is taken to form
function. The checkerboard images of the original images and
after-registration ones using the above-mentioned parameters
are given in the first two rows of Fig. 7. Using the registration
results given in Fig. 4 as a reference, we see that for all the non-
resection parts of the brain, our algorithm converges to an accu-
rate alignment, i.e., visually almost identical to that obtained in
Fig. 4 and unaffected by the big resection area.
In addition, we include another experiment to demonstrate

how function is used to selectively deforme intensity only in
regions with topological changes. Specifically, we substitute the
function with a uniform positive value , and perform

the registration with all other parameters being the same. The
third row of Fig. 7 gives the checkerboard image of using this
parameter setting. In this case, spatial and intensity deforma-
tion will evolve simultaneously over the entire image. Concep-
tually, under this setting, our algorithm will behave similarly as

4Note that the arrows in the glyph plot are only for illustrative purposes, and
may not be in real voxel scale. In many cases, we increase their lengths for a
clear visualization. This applies to all the following glyph plots throughout this
work, unless mentioned otherwise.
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Fig. 6. Glyph views of the deformation fields obtained via REM (left) and dif-
feomorphic demons (right).

Fig. 7. Checkerboard image of registration results from old to resectioned. First
row, before registration; second row, after REM registration, when resection
mask is used to construct ; third row, after REM registration, when uniform
value is used; fourth row, after diffeomorphic demons registration.

the metamorphosis approach, or more generally speaking, sim-
ilarly as all other methods with a spatial deformation evolution
specified by and an intensity update given as

. With a close examination of the areas pointed
out by the red arrows, we notice that there is certain mis-alig-
ment, indicating that for some non-resection areas the spatial
deformation does not converge to an accurate registration. This
part of image profile difference, is in turn captured by intensity

Fig. 8. Spatial and intensity deformation between old and resectioned. The
upper row shows glyph plots of spatial deformation: (a) The result of REM
registration with function. (b) The result of REM registration with and (c)
the deformation field obtained using diffeomorphic demons. The middle row
shows intensity deformations: (d) corresponds to (a), the intensity deformation
mostly happens to the resection area; (e) corresponds to (b), where a relatively
strong intensity change happens to the entire brain.

deformation. Finally, Diffeomorphic demons is also used to reg-
ister old to resectioned, with the same set of parameters as used
before. The fourth row of Fig. 7 gives the checkerboard image
of the result. As expected, the moving images is severely de-
formed around the resection area.
The residuals of the original images and registered ones are

again plotted as bars (bar 4 to bar 8) in Fig. 5. Bar 4 repre-
sents the image residual between old and resectioned. The
residual is large, which is a mixture of the image profile change
caused by resection and the structural difference between the
young and old brain. Bar 5 is the image residual between young
and resectioned, which equals to the value difference between
bar 4 and bar 1. Bar 6 and 7 plot the image residuals after only
applying the spatial deformation obtained using REM to the
moving image, when and are used, respectively. We notice
that bar 6 roughly equals to the summation of bar 5 and bar 2,
which is one evidence that the nonresection areas are well reg-
istered as in the case without the resection. Bar 7 shows a larger
residual than bar 6, which agrees with our observation in Fig. 7
that with , the nonresection area does not converge to an ac-
curate registration. Finally, Bar 8 plots the image residual after
diffeomorphic demons registration, we see that the residual in
this case is even smaller than the image profile change caused
by resection, i.e., bar 8 is even shorter than bar 5. This clearly
demonstrates the existence of false deformation in the result of
diffeomorphic demons.
To further visualize the experiment results, in the upper row

of Fig. 8, we use glyph plots to compare the deformation fields
in the above experiment. Fig. 8(a) shows the result of REM reg-
istration with function. We see that the deformation field on
the nonresection areas appears to be very similar as in the left
subfigure in Fig. 6. The region with resection still carries some
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deformation energy, which is basically the accumulation of the
energy dispersed from its spatial neighborhood. Fig. 8(b) shows
the result of REM registration with , we notice that there exists
abnormally increased deformation energy around the area with
resection, which is in fact false deformation. Fig. 8(c) shows the
deformation field obtained using diffeomorphic demons. Note
that this vector field has to be plotted in a much larger scale,
where we see a severe concentration of false deformation energy
around the resection area. In the corresponding columns of the
lower row in Fig. 8, the intensity deformations of the two REM
registration experiments are plotted. When function is used,
despite that we can still observe a very weak intensity change in
the nonresection brain regions, which may be caused by local
intensity histogram mismatch and the smoothing effect along
edges of intensity change, the intensity deformation mainly oc-
curs at the resection area. In contrast, with being used, beside
the resection area, a strong intensity change happens to the entire
brain, which explains the observed misalignment after applying
the spatial deformation only.

B. Registering Template to Brain MRIs With Lesions

In the first set of experiments, we registered a brain template
to a set of 20 brain MR images containing white matter lesions.
The moving image is a template constructed for one of our early
studies [39], and was obtained by unbiased aligning and av-
eraging a set of 130 MR images for healthy elderly subjects
age from the OASIS dataset [40]. The testing set of 20
brain MR images with lesions were also from OASIS dataset,
but none of them were used in the template construction.
The template is affinely registered to the fixed images before

applying our deformable registration algorithm. Compared to
MR images of individual subjects, brain templates are smooth.
As a result, in the experiments, we used small Guassian Kernels
for the smoothing of deformation fields: for

and , respectively. Lesions were segmented using
the FreeSurfer tool [41] (segmented with the label white matter
hypointensity lesion), and was constructed with for

in (15); in (7) and for . In all
of the 20 registration experiments, the image residual stopped
dropping and began oscillating within 15–25 iterations, so we
terminated all registrations at the 30th iteration. Sample curves
plotting the registration residual during the registration process
for one of the experiments are shown in Fig. 9(a), where the solid
line plots the image residual after the spatial deformation
field of the current iteration is applied to the moving image, and
the dashed line plots the image residual after the intensity
displacement is additionally applied. From these curves, we
observe a smooth diffusion process both on the evolution of
spatial deformation and on that of the intensity displacement.
The image residuals before and after the registration for all
the 20 experiments are shown in Fig. 9(b). The blue bar shows
the residual between the moving and the fixed images before
applying our deformable registration. The red bar shows the
residual between the spatially-deformed moving image and

the fixed image, where we can see a significant drop of residual
values compared to the corresponding blue bar. We also observe
a further drop of residual values on the green bars, which are the

Fig. 9. (a)Samplecurvesplotting the registration residualduring the registration
process. The solid line plots the image residual after the spatial deformation
field of the current iteration is applied to the moving image, and the dashed
line plots the image residual when the intensity displacement is additionally
applied. (b) Image residuals before and after registration. The blue bars show
the residuals between themoving and the fixed images before the deformable
registration. The red bars show the residuals between the spatially deformed
moving image and the fixed images. The green bars show the residuals after
the intensity displacement is further applied to the fixed image.

residuals after the intensity displacement is applied to the
fixed image, in addition to spatial deformation. In other words,
the green bar shows the registration residual after removing the
contribution from the intensity difference caused by topological
change.
A sample of the registration results is given in Fig. 10. The

first row of Fig. 10 shows the checkerboard image of the tem-
plate and the fixed image. The second row shows the checker-
board image of the fixed image and the registered template, i.e.,
after spatial deformation. The fixed image that contains lesions
is given in the third row, where the segmentation result using
the FreeSurfer are marked out using blue contours. The fourth
row gives the fixed images after intensity displacement is ap-
plied. The three columns in Fig. 10 show the axial, sagittal, and
coronal views, respectively. By examining the areas pointed out
by red arrows, we see that the anatomical structures of the tem-
plate are well aligned with those on the fixed images and the
intensity within lesions in the fixed image is corrected to that of
healthy white matter.
Fig. 11 provides some samples of the resulting deformation

vector fields using a glyph view. The template image (the left-
most column) was registered to two subjects with severe lesions
(the second column). After the registration, the template image
is deformed to align with the subjects, as shown in the third
column. In the last column, we show a zoom-in view where the
deformation fields are plotted as glyph fields on top of the fixed
image. For the first subject (the upper row), we focus on the le-
sions around the first ventricle, and for the second subject (the
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Fig. 10. Sample of registration results from a template to a subject with lesion
from OASIS dataset. The first row shows the checkerboard image of the tem-
plate and the fixed image. The second row shows the checkerboard image of
the fixed image and the registered template, i.e., after spatial deformation. The
third row shows the fixed image that carries lesions, which are marked out by
blue contours. The fourth row gives the fixed image after intensity displace-
ment is applied. The columns are for the axial, sigittal, and coronal views of
each volume, from left to right, respectively.

Fig. 11. Samples of the resulting deformation vector fields from a template to
subjects with lesion fromOASIS dataset. Vector fields are shown in glyph views.
Left-most column: the template image. Second column from left: two subjects
with severe lesions. Third column from left: the spatially deformed template
image after registration. Right-most column: zoom-in view of the deformation
fields on top of the fixed image. For the first subject (upper row), zoom-in view
focusing on the lesions around the first ventricle. For the second subject (lower
row), zoom-in view focusing on the lesion around the lateral ventricle.

lower row), we focus on the lesion around the lateral ventricle.
From both cases, we found no false deformation around the le-
sion areas.

C. Registering Brain MRIs of Healthy Subject to Those of
Alzheimer’s Patients

In this set of experiments, we registered an old subject (the
same one used in Section IV-A) to a set of 20 brain MR im-
ages with lesions in the ADNI dataset.5 The images from ADNI
dataset were skull-stripped using the FSL (BET) tool [42].
In these experiments, because wewere conducting subject-to-

subject registration, the moving image had lower SNR and was
sharper compared to the template image used in Section IV-A.
As a result, we used larger Gaussian kernels for the smoothing of
deformation fields, compared with those used in the previous set
of experiments. Specifically, we used for

and , respectively. Other parameters were:
for in (15); in (7) and for . In
the registration experiments, the moving image was first affinely
registered to the fixed images. During registration the image
residual stopped dropping and started oscillating after 50–80 it-
erations, so we terminated the registration for all experiments at
100 iterations. Sample curves plotting the registration residual
during the registration process for one of the experiments are
shown in Fig. 12(a), with the same configuration as that used
in Fig. 9(a). The image residuals before and after the reg-
istration for all the 20 experiments are shown in Fig. 12(b), in
the same fashion as in Fig. 9(b). A sample of registration results
is given in Fig. 13, which is organized in the same fashion as
in Fig. 10. We can see that the moving image are spatially de-
formed and well aligned with the fixed image, and the lesions
in the fixed images are corrected to the appearance of healthy
white matter after the intensity displacement is applied.
Again, we used diffeomorphic demons algorithm [32] to per-

form the same set of registration experiments as comparison.
Three resolutions are used in the diffeomorphic demons regis-
tration, and 50, 50, and 200 iterations were performed in each
resolution, respectively. The variances used in the smoothing
Gaussian kernel for fluid and diffusion regularization are both
set to 1.2, the same as in our algorithm. In Fig. 12(b), in addi-
tion to the residuals plotted as in Fig. 12(a), the magenta bars
show the registration residual after applying the diffeomorphic
demons registration. We can see that in all the cases, the resid-
uals after applying diffeomorphic demons have values in be-
tween the residuals before and after the intensity displacements
(the red and green bars, respectively). Intuitively, in diffeomor-
phic demons, part of the spatial deformation attempted to mini-
mize the error caused by the intensity difference of the lesions.
This in turn caused false deformation.
Now we demonstrate the efficacy of our algorithm in elimi-

nating falsedeformation.Fig.14(a) and (b) shows the registration

5Data used in this paper are selected from the Alzheimer’s disease Neu-
roimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). The
ADNI was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, five-year public-private partnership.
The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials.
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Fig. 12. (a) Sample curves plotting the registration residual during the reg-
istration process. (b) Image residuals before and after registration. Figure
plotted in the same fashion as in Fig.~9. In addition, the magenta bars show the
residual after applying diffeomorphic demons registration.

results using our proposed algorithm and diffeomorphic demons.
In both (a) and (b), the subfigures in the upper rows, from left to
right, show axial views of themoving image, the fixed image, the
registeredmoving image (after spatial deformation) using our al-
gorithm, and the registeredmoving image (after spatial deforma-
tion) using diffeomorphic demons. In both cases, we find that the
diffeomorphic demons algorithm tries to deform the lateral ven-
tricle into the white matter areas with lesions, which leads to an
incorrect registration result. In contrast, these errors are not seen
inour registration results.Furthermore, inboth (a) and (b), the left
most subfigure in the lower row shows a zoomed region in order
to visualize the deformation field. The second and third subfig-
ures in both lower rows of (a) and (b) give the glyph views of the
deformation field obtained using our method and diffeomorphic
demons,respectively.Fordiffeomorphicdemons,wecanobserve
a dense deformation energy concentration (abnormally long vec-
tors) around the lesion-affectedareas in the resultingdeformation
field, which is obviously false deformation. On the other hand,
such false deformation is successfully removed in the results ob-
tained using our algorithm.We need to point out that, despite the
advantages of our algorithm shownby these results, keep inmind
that our algorithm does take lesion segmentation as an additional
input which is important prior knowledge.

D. Impact of False Alarm and Mis-Detection of Lesions

To eliminate false deformation, our registration method re-
lies on an a priori lesion estimation. However, the lesion seg-
mentation obtained from automatic segmentation tools is imper-
fect. Here, we provide some examples to demonstrate the impact
these errors have on our algorithm.
As explained in Section III-B, is a function of a smoothed

lesion segmentation. Fig. 15 shows such a case in our second

Fig. 13. Sample of registration results from the image of a healthy subject from
OASIS dataset to an image with lesion from ADNI dataset. The first row shows
the checkerboard image of the template and the fixed image. The second row
shows the checkerboard image of the fixed image and the registered template,
i.e., after spatial deformation. The third row shows the fixed image that carry
lesions, which are marked out by blue contours. The fourth row gives the fixed
image after intensity displacement is applied. The columns represent the axial,
sigittal, and coronal views of each volume, from left to right, respectively.

set of experiments (Section IV-B). From Fig. 15(a), we notice
that FreeSurfer underestimated the lesion-affected areas (inside
the blue contours), especially the lesion region to the left of
the ventricle. Fig. 15(b) shows the smoothing effect of the con-
structed function. All the lesions in the fixed image are
successfully removed after intensity displacement, as shown in
Fig. 15(c). Finally, in Fig. 15(d), we can see that the deformation
field was not affected by the presence of lesions, i.e., no false de-
formation was observed. This result demonstrated that slightly
over- or under-segmentation is tolerated by our algorithm.
However, if a lesion-affected area is completelymis-detected,

the registration performance will be affected. An example is
shown in Fig. 16(a), which gives the coronal view of a moving
image, a fixed image, and a registered moving image after ap-
plying the spatial deformation, from left to right, respectively.
We find that the skull stripping of the fixed image obtained by
FSL (BET) is not perfect, and some extracranial tissue was kept
as part of the brain. This tissue does not have matching anatomy
in the moving image, and thus, it can be regarded as a topolog-
ical change. In fact, such errors are commonly seen in large scale



LI et al.: REGISTRATION OF IMAGES WITH VARYING TOPOLOGY USING EMBEDDED MAPS 761

Fig. 14. Comparisonofour algorithmwithdiffeomorphicdemonsby registering
a healthy subject from OASIS dataset to images with lesion from ADNI dataset.
In both (a) and (b), the subfigures in the upper row, from left to right, show an
axial view of the moving image, the fixed image, the registered moving image
(after spatial deformation) using our algorithm, and the registeredmoving image
(after spatial deformation) using diffeomorphic demons. Also, in both (a) and
(b), the left most subfigure in the lower row indicates a region that we zoom-in
to visualize the deformation field. The second and third subfigures from the left
gives the glyph view of the deformation field obtained using our method and
diffeomorphic demons, respectively.

Fig. 15. Impact of imperfect lesion segmentation on our registration algorithm.
(a) Lesion segmentation obtained using FreeSurfer, lesion areas are underesti-
mated and marked out using blue contours. (b) The constructed function. (c)
Result after intensity displacement applied to the fixed image. (d) the deforma-
tion field.

studies. Fig. 16(b) shows the deformation field around this area,
where we observe some false deformation. Ideally, if this area
was modeled in , it will be corrected by intensity displacement
and should not cause any spatial deformation.
Underestimation or even misdetection is common in auto-

matic lesion segmentation algorithms, due to the minor intensity
differences of some lesions. However, it is relatively uncommon
to see false alarms during lesion detection, since it is expected
that there always exist some intensity difference. Thus, in the
two sets of experiments, we do not have results to show the im-
pact of false alarm. However, it is reasonable to expect that if

Fig. 16. Impact of misdetection of topological change on the registration result.
(a) From left to right: coronal view of the moving image, fixed image, registered
moving image, i.e., after spatial deformation. (b) False deformation caused by
the misdetection of topological change.

Fig. 17. Sample registration when both moving and fixed image carry lesion.
(a) Moving image with lesion. (b) Fixed image with lesion. (c) Deformed
moving image after spatial deformation. (d) The deformation field.

false alarm happens to regions with no or minor intensity differ-
ence between the moving and the fixed images, our registration
algorithm would perform normally. The reason is that if the in-
tensity of certain region on the moving and the fixed images are
very close, will have small values for these regions and no spa-
tial deformation or intensity displacement will be exerted, even
though has large values. On the other hand, if the re-
gion of false alarm covers mis-aligned boundaries between the
moving and the fixed images, the deformation energy will be
concentrated on intensity deformation.
Finally, we point out that the current version of our algorithm

only deals with lesions in the fixed image and a normal anatom-
ical topology of the moving image is required. Fig. 17 shows
the registration results when both the moving image [Fig. 17(a)]
and the fixed image [Fig. 17(b)] have lesions (from the ADNI
dataset). Only the lesion segmentation for the fixed image is
modeled in . We observed that around the left side of lateral
ventricle, the deformed moving image [Fig. 17(c)] is not well
aligned with the fixed image after registration, and false defor-
mation is present, as shown in Fig. 17(d).

E. Register Template to a Brain Image With a Tumor

In this experiment, we registered a brain MR image template,
as shown in the first row of Fig. 18, to a fixed image that carries a
brain tumor of considerable size, as shown in the second row of
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Fig. 18.6 The template image was constructed using 233 healthy
young subjects mean age from OASIS dataset in our
previous study [39]. The subject brain image with ameningioma
was obtained from the testing data distributed within the Slicer3
[43] package. It was skull-stripped using the FSL (BET) tool
[42]. As shown in the second row of Fig. 18, instead of a precise
segmentation of the tumor, our interface allowed a physician to
draw 3 profile lines on the fixed image to indicate the location
and size of the tumor (with orange line), which gives us an el-
lipsoid containing the tumor region (blue contours).
The registration process and results are shown in Fig. 18. Due

to the large sizeof the topological change,weusea largeGaussian
kernel for , for in (15), andall theother
parameters are set to the sameas inSection IV-B.The third rowof
Fig. 18 gives the checkerboard image of the fixed image and the
template; where the fourth row gives the checkerboard image of
thefixedimagesandtheregisteredtemplate,afterapplyingspatial
deformation. We find that after registration, the template is well
alignedwith thefixed image. Thefifth row shows thefixed image
after applying intensity displacement, where we see the intensity
of the tumor region is corrected by that of the co-aligned template
image. This step essentially provides us with a “tumor-repaired”
version of the fixed image, which is an estimation of the brain
anatomy had the tumor not existed. We notice that in the fixed
image, the growth of tumor pushes the surrounding tissue aside
and squeezes the ventricle. After intensity correction, the healthy
tissue is moved back to the normal location and the ventricle is
lifted. In Fig. 19, we plot the resulting deformation field using
glyphs. Clearly, the tumor does not induce local deformation, de-
spite the strong intensity gradient between the tumor region and
the surrounding healthy tissue.

F. Impact of Diffeomorphic Constraint

In this section, we conduct an experiment to demonstrate
the impact as well as the importance of the diffeomorphic con-
straint. In Fig. 20, we show the resulting deformation field when
the experiment in Fig. 13 is conducted with the exact same set
of parameters, except that we replace the deformation updating
rule given in step 3 of REM registration algorithm with the
following:

3) update deformation field: ,
i.e., we remove the diffeomorphic constraint by replacing the
intrinsic updating rule with a simple additive updating. In these
plots, we keep the original scale of the glyph lengths in voxel
unit. A zoom-in view is given in the right figure, where we can
observe that regions with the head of glyphs overlap, as pointed

6Note that in the second row and in the checkerboard images in the third and
fourth rows, the fixed image appears to be much darker compared to the tem-
plate. The appearances of the fixed image before and after intensity correction,
as shown in the second and fifth rows, are also very different. This is due to
the fact that the fixed image has a very different intensity profile because of the
bright tumor. As a result, the contrast of the whole image is not good, where
CSF appears to be dark and not really visible. However, if we pay some close
attention, it is easy to notice that major features, such as the separation between
gray matter and white matter and the boundary of ventricle are all well aligned
after the deformable registration. Also, as shown in the fifth row, after the in-
tensity of the tumor region is repaired, brain regions other than the tumor can
be visualized with a proper intensity contrast.

Fig. 18. Sample registration of a brain template to the MRI of a meningioma
patient. First row: a brain template, the moving image. Second row: fixed image,
MRI of a meningioma patient. The blue ellipsoid marks out the tumor region.
Third and fourth row: checkerboard image of the fixed and the moving image,
before and after spatial deformation, respectively. The fifth row: the intensity
corrected fixed image after intensity displacement. The three columns show the
axial, sagittal, and coronal views of the same image.

Fig. 19. Deformation field of registering a brain template to the MRI of a
meningioma patient in glyph plot. The three columns give the axial, sagittal,
and coronal views of the same image, respectively.

out by the yellow arrows. The overlapping means that there ex-
ists flipped ordering of adjacent voxel after the deformation.
An important property of diffeomorphism is its invertibility,

whichmeans if we have a diffeomorphism that maps the moving
image to the image space of the fixed image, it can be uniquely
inverted tomap the fixed image to the image space of themoving
image. The inverse of a diffeomorphism can be robust and effi-
ciently computed by many existing methods, such as describe in
[44]. In our algorithm, we intentionally set the image with topo-
logical change as the fixed image to avoid the additional warping
of the function in each iteration, which considerably decreased
the computational load. However, in clinical applications, there
are many cases when images of individual patients need to be
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Fig. 20. Resulting deformation field when diffeomorphic constraint is turned
off. Scale of the glyph lengths is in actual voxel unit. Right figure is a zoom-in
view of the marked out region in the deformation field shown by the left
subfigure.

mapped into the image space of a common template. The invert-
ibilityofdiffeomorphismenables theapplicationofouralgorithm
in these cases. To illustrate this, we used the tool developed by
Luethietal. [45] to invert thedeformationfields shown inFigs.13
and18.Fig.21(a)showstheresultcorrespondingtoFig.13,where
the first row shows the healthy subject, the second row shows
the image with topological change and the third row shows re-
sult when the images with topological changes is mapped to the
image space of the healthy subject. Similar result corresponding
to Fig. 18 is given in Fig. 21(b), where the third row shows the re-
sult when the image with tumor is mapped to the template image
space.

V. CONCLUSION AND FUTURE WORK

In this work, we present a new deformable registration al-
gorithm for images with topological changes. The proposed al-
gorithm is capable of incorporating a segmentation as an addi-
tional input and eliminating false deformation in the resulting
deformation field. The registration is performed by embedding
images in Euclidian space into surfaces in an Riemannian
space. Then the image registration is modeled as a surface evo-
lution process. The proposed algorithm was extensively tested
on different brain MR image datasets carrying minor to severe
pathology. The registration results are compared with those ob-
tained from diffeomorphic demons, which demonstrate the effi-
cacy of our proposed algorithm in terms of converging to correct
registration in the presence of lesion.
Thecurrentversionofourimplementationonlyallowsthefixed

image to contain lesion. A direct extension would be to sym-
metrize the energy function and allow lesions present in both the
moving and the fixed images to be modeled by separate proba-
bility maps. Other potential improvements include a multiscale
implementationandmoreautomatedstoppingcriteria.Mutual in-
formation might also be used instead of the image residual in
the embedding function ,whichwill further allow our proposed
algorithm to register images across different modalities.

APPENDIX

From (6), we get

(19)

Thus, we can compute the Levi–Civita connections using (5)
(see (20)–(23) on the next page). The inverse of the metric

Fig. 21. Invertibility of diffeomorphism. (a)The result corresponding toFig. 13,
where the first row shows the healthy subject, the second row shows the image
with topological change and the third row shows result when the images with
topological changes is mapped to the image space of the healthy subject. (b)
Shows a similar result corresponding to Fig. 18, where the third row shows the
result when the image with tumor is mapped to the template image space.

has the following form:

(24)

Plug all the above terms into the Euler-Lagrange equation in
(4), we get the first equation shown on the next page.
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Then and can be obtained in the symmetric
forms. And after mathematical manipulations, can

be derived as shown in the second equation on the bottom
of page.

(20)

(21)

(22)

(23)
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