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Abstract

Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted
increasing attention in Alzheimer’s disease (AD) research. An accurate prediction of conversion from MCI to AD can aid
clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based
on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise
biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ
hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant
biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the
selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called
stable expectation scores. We have used 293 MCI subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed
method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant
interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using
interaction features.

Citation: Li H, Liu Y, Gong P, Zhang C, Ye J, et al. (2014) Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer’s Disease
(AD) Conversion. PLoS ONE 9(1): e82450. doi:10.1371/journal.pone.0082450

Editor: Sonia Brucki, University of São Paulo, Brazil

Received February 13, 2013; Accepted November 3, 2013; Published January 8, 2014

Copyright: � 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors9 research was supported by 973 Program (2013CB329503) and NSFC (Grant No. 91120301, No. 61075004 and No. 61021063). Data
collection and sharing for our project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904).
ANDI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from
the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.;
Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company
Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research \& Development, LLC.; Johnson \& Johnson Pharmaceutical
Research \& Development LLC.; Medpace, Inc.; Merck \& Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc
Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector
contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. The funders had
no role in study design, data analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zcs@mail.tsinghua.edu.cn

Introduction

Alzheimer’s disease (AD) currently affects about 5.3 million

people in the US. It is the most common type of dementia,

accounting for 60{80% of age-related dementia cases [1]. Since

the therapeutic intervention is most likely to be beneficial in the

early stage of the disease, an earlier and more accurate diagnosis of

AD is highly preferred. Mild Cognitive Impairment (MCI), an

intermediate cognitive state between normal elderly people and

the AD patients [2], has attracted increasing attention, since it

offers an opportunity to target the disease status early. Patients

with MCI are at high risk of progression to AD, with an estimated

annual conversion rate of 10%{15%. If the MCI to AD

conversion probability can be accurately estimated, early stage

therapies can potentially be introduced to treat or cure the disease.

It helps lessen the time and cost of clinical trials. Thus, studies on

predicting conversion from MCI to AD have recently attracted

considerable attentions [3–7]. Two major research questions are:

how to build a model to accurately predict MCI-to-AD

conversion? how to identify biosignatures most predictive of the

conversion?

However, predicting conversion from MCI to AD is a

challenging task, and the prediction performance of existing

methods is not satisfactory [5]. Most existing work focus on finding

the most predictive biosignatures and they ignore the interactions

between different biosignatures. Intuitively, fitting models with

interactions can provide more information, and for complex

prediction problems traditional additive models are insufficient [8–

10]. Several recent work explore the underlying interactions

between different biosignatures about AD. For example, Wang
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et al. [11–13] demonstrate the power of using the interlink

between neuroimaging measures and cognitive scores by their

proposed multimodal multitask learning structure. These motivate

the study of an interaction model for modeling MCI-to-AD

conversion in this paper, aiming to identify the most predictive

biosignatures and the underlying relevant interactions simulta-

neously.

A significant challenge in the use of interactions models lies in

the large number of features introduced by considering all pairwise

interactions. Consider a dataset with 100 features; including all

pairwise interactions leads to thousands of new features. In [14–

16], only the interactions satisfying hierarchical constraints are

allowed to be included in the prediction models, which can be

used to prune a large number of interactions. Inspired by Bien et

al. [8], we consider the effects of the co-occurrence of different

biosignatures for the prediction task. To address the high

dimension/small sample size problem, we consider a hierarchical

interaction feature selection method, which prunes features by

sparsity and hierarchical constraints [8]. Then the selected features

and their relevant interactions are fed into classifiers such as

support vector machines (SVM) [17] and random forest (RF) [18].

In addition, we employ the stability selection method [19] to

identify the most predictive features and underlying interactions.

We have evaluated the hierarchical interactions model using the

ADNI dataset. Specifically, we use a set of 293 MCI subjects from

ADNI, including 161 MCI non-converters and 132 MCI

converters (the conversion was considered over the course of a

4-year follow-up period). Experimental results show that the

hierarchical interactions model achieves 74:76% prediction

accuracy, much higher than competing methods. The most

predictive biosignatures found by our method are consistent with

those identified by state-of-the-art methods. Our experiments also

identify several significant interactions predictive of the MCI-to-

AD conversion.

Background of Interaction Models
In many classification and regression tasks, traditional additive

(main effects) models are often used. They assume that the effects

of features are additive with different weights. However, these

models are insufficient for many prediction tasks, as they fail to

consider the co-occurrence effects of different features, called

feature interactions. Bien et al. [8] gave two examples to describe

different effects of symptoms co-occurrence in medical diagnosis.

The first situation is that the co-occurrence of two symptoms may

make a doctor confident that a patient has a certain disease

whereas the presence of either symptom without the other would

provide only a moderate indication of that disease. This situation

corresponds to a positive (i.e., synergistic) interaction between

symptoms. The other situation is when either one of two

symptoms conveys redundant information to the doctor about

the patient, thus knowing both provides no more information

about the disease status. This situation is called negative

interaction, which is also not additive.

Intuitively, fitting models with feature interactions may be more

effective for more complex prediction tasks. However, the

computation burden also increases with the high-dimensional

interactions. Consider a dataset with p measured variables. There

are
p

k
interactions of order k. To alleviate the computation

burden and control the model complexity, most work only focus

on the case of pair-wise interaction models [8,10,20]. Here we

employ the pair-wise interaction model proposed by Bien et al. [8].

Consider a regression model for predicting an outcome variable

y based on a set of predictors x1, . . . ,xp, with pair-wise

interactions between these predictors. We assume that:

y~b0z
X

j

bjxjz
1

2

X

j=k

Hjkxjxkze, ð1Þ

where e*N(0,s2) is an additive noise. The additive part
P

j bjxj

is referred to as the ‘‘main effect’’ terms and the quadratic partP
j=k Hjkxjxk is referred to as the ‘‘interaction’’ terms. The goal is

to estimate b[Rp and H[Rp|p, where matrix H is symmetric

(H~HT ) and the diagonal entries are zeros.

Based on the above formulation, the interaction of two different

measured variables is considered as a new additive term. Such a

setting can be regarded as a nonlinear extension of the original

linear regression models. Intuitively, however, not all interactions

make sense. To overcome the high-dimensionality problem caused

by adding interactions, certain constraints are often used to extract

significant interactions. The first assumption is called ‘‘hierarchical

constraints’’, which means ‘‘an interaction can be allowed into the

model only when the corresponding main effects are also in the

model’’ [8,14–16]. There are two types of hierarchical constraints

including strong and weak hierarchical constraints:

STRONG HIERARCH : ĤHjk=0[b̂bj=0 and b̂bk=0

WEAK HIERARCH : ĤHjk=0[b̂bj=0 or b̂bk=0
ð2Þ

The strong hierarchical constraint requires that an interaction

xjxk can have an effect on y(ĤHjk=0) only when both of the

corresponding variables xj ,xk have effects on y(b̂bj ,b̂bk=0). The

weak hierarchical constraint requires at least one related variable

has an effect on y(b̂bj=0 or b̂bk=0). Hierarchical constraints

assume that interactions have effects on y when their related

variables are predictive. On the other hand, violating hierarchical

constraints means an interaction can have effects on y even though

the related variables are not predictive at all. As Bien et al. [8]

pointed out, this is not true in practical situations. Therefore the

hierarchical constraints are often enforced when fitting models

with interactions.

Furthermore, as Cox mentioned in [21], due to the incomplete

nature of data, it needs to isolate some interactions in a way that

depends on the data. One general principle assumes that more

significant main effects are more likely to introduce predictive

interactions. In addition, the interactions corresponding to larger

main effects intuitively have more practical effects on the output.

Inspired by this principle, sparse regularizations will be imposed

on coefficients b and H to focus on the reliable interactions that

have larger main effects.

Methods and Methodology

Hierarchical Interactions Model
Since not all the main effects and interactions contribute to the

prediction model, especially when the input data is high-

dimensional, it is natural to employ sparse regularization to select

the most predictive features. Inspired by Bien et al. [8], we apply

‘1 norm regularization on b,H. Then to enforce the hierarchical

constraints, some extra constraints are also added into the

hierarchical interactions model as done in [8]. The hierarchical

interactions model is formulated as follows:

Predicting MCI to AD Conversion with Interactions
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min
b0[R,b[Rp,H[Rp|p

q(b0,b,H)zlEbE1z
l

2
EHE1

s:t: H~HT , EHjE1ƒDbj D for j~1, . . . ,p,

ð3Þ

where q(b0,b,H) is the loss function and Hj denotes the j-th row of

H. As our final goal is to predict the conversion from MCI to AD,

which is a binary classification task (y[f1,{1g), the logistic

regression loss is applied here. Here we represent q(b0,b,H) as the

negative log-likelihood logistic binomial form:

q(b0,b,H)~{
Xn

i~1

½yi log piz(1{yi) log (1{pi)�,

where pi~1=(1z exp ({b0{xT
i b{

1

2
xT

i Hxi)):

ð4Þ

Here n is the total number of training samples. If all the constraints

of Eq.(3) are relaxed, we obtain the All-Pair Lasso model. This

model does not consider the hierarchical constraints. Bien et al. [8]

pointed out that the symmetry and inequality constraints in Eq.(3)

could enforce the solutions to satisfy the Strong Hierarchical

constraints. Notice that if Hjk=0, then EHjEw0 and EHkEw0

(by symmetry of H) and thus Dbj Dw0 and DbkDw0. While the added

constraints enforce strong hierarchy, the optimization problem (3)

is no longer convex. By replacing b[Rp with two nonnegative

vectors bz,b{[Rp, the above optimization problem (3) is

equivalent to the following optimization problem:

min
b0[R,b+[Rp,H[Rp|p

q(b0,bz{b{,H)zl1T (bzzb{)z
l

2
EHE1

s:t: H~HT , EHjE1ƒbz
j zb{

j , b+
j §0, bz

j b{
j ~0

for j~1, . . . ,p:

ð5Þ

Here we can regard bz and b{ as the positive and negative parts

of b, i.e. b+~maxf+b,0g. Given the above equivalent problem,

the feasible solution set of (bz,b{) is not convex due to the

product constraints in (5), which makes the problem hard to be

solved efficiently [8]. Therefore we remove the product constraints

in (5), leading to a convex relaxation of (5) and (3), which is given

as follows:

min
b0[R,b+[Rp,H[Rp|p

q(b0,bz{b{,H)zl1T (bzzb{)z
l

2
EHE1

s:t: H~HT , EHjE1ƒbz
j zb{

j , b+
j §0 for j~1, . . . ,p:

ð6Þ

Here we call it Strong Hierarchical Lasso, which only contains

linear constraints and can be solved with Alternating Direction

Method of Multipliers [22]. In addition, by simply removing the

symmetry constraints on H, the Weak Hierarchical Lasso is

obtained:

min
b0[R,b+[Rp,H[Rp|p

q(b0,bz{b{,H)zl1T (bzzb{)z
l

2
EHE1

s:t: EHjE1ƒbz
j zb{

j , b+
j §0 for j~1, . . . ,p:

ð7Þ

In our work, we mainly focus on the Weak Hierarchical Lasso as

a feature selection method to extract potential predictive

biosignatures (main effects) and interactions. Because without the

symmetry constraints, the unknown parameters in (7) are

blockwise separable, which can be efficiently solved by blockwise

coordinate descent methods. However, the symmetry constraints

in (6) couple all the parameters together, which gives rise to a high

computational cost.

We employ the accelerated gradient descent method [23,24] to

solve (7). In each step, we solve p blockwise sub-problems involving

(bz
j ,b{

j ,Hj), which can be efficiently solved by an algorithm

named ONEROW in [8]. More detailed information about the

optimization process can be found in [8].

Framework of the Proposed Method
In the proposed framework, we first employ Weak Hierarchical

Lasso with the logistic regression loss (7) to extract significant

biosignatures and interactions. Note that sparse dimension

reduction methods [25–27] can also be used for feature selection

and dimension deduction, however, these methods fail to consider

the hierarchical constraints of interactions. Next, we use the

significant biosignatures and relevant interactions as new features

and apply standard classifiers, such as Support Vector Machine

and Random Forest.

Our framework is summarized as follows:

1. Data pre-processing: Given input features and outcomes

X[Rn|p, Y[Rn, normalize the data matrix X such that the

(k,j)-th entry of X denoted as Xkj satisfies
Pn

k~1 (Xkj)
2~

n{1,
Pn

k~1 Xkj~0, Vj[Np. Form the data matrix of the

interaction features Z[Rn|p(p{1), which are also normalized in

the same way. Here each column of Z corresponds to the dot

product of two different feature columns from data matrix X ,

i.e. Zk((j1{1)(p{1)zj2)~Xkj1|Xkj2 , Vk~1, . . . ,n.

2. Hierarchical interaction model learning: Using the algorithm

in [8] to solve (7) with input data X ,Z,Y , and then obtain the

optimal solutions ŵw~(b̂b0,b̂bz,b̂b{,ĤH).

3. Feature selection: with the coefficients ŵw~(b̂b0,b̂bz,b̂b{,ĤH)
learned in the previous step, we select the most significant

features with the largest components. We use d~0:0001 as the

thresholding value to select the significant features. Let Km be

the index set of main effect features, i.e., k[Km denotes a main

effect feature. If Db̂bz
k {b̂b{

k D§d, the main effect feature xk is

selected as a significant feature. Similarly, the interaction of

main effect features xjxk is selected when DĤHjk Dwd. The

selected interactions obviously satisfy hierarchical constraints.

We named the algorithm as the weak hierarchical lasso feature

selection (wHLFS) method.

4. Classification: with the selected features as input, involving

main effects and interactions, classification methods are

employed to build a prediction model.

Stability Selection
To identify the most predictive biosignatures and interactions

for our conversion predicting task, we propose to employ

stability selection [19] to quantify the importance of features

selected by the above hierarchical interaction feature selection

method. The stability score (between 0 and 1) of each feature

measures the importance of the feature. In this paper, we

propose to use the stability selection with weak hierarchical lasso

feature selection (wHLFS) to analyze the importance of biosigna-

tures and their interactions. This can potentially reveal how

Predicting MCI to AD Conversion with Interactions
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biosignatures and their interactions influence the prediction

performance.

The stability selection algorithm with wHLFS is given as

follows. Let Km,Kint denote the index of main effect features and

interaction features, respectively. Let k[Km be the index of a

particular main effect feature, and let (j,k)[Kint be the index pair

of two main effect features for a particular interaction. D denotes

the regularization parameter space and c is the stability interaction

number. Let B(i)~fX(i),Z(i),Y(i)g be a random subsample from

the input data B(i)~fX(i),Z(i),Y(i)g without replacements. For a

given parameter l[D, ŵw(i)~(b̂b
(i)
0 ,b̂bz(i),b̂b{(i),ĤH(i)) is the optimal

solution of wHLFS on B(i). Then the set of selected features,

involving main effects and interaction, are respectively denoted as

follows:

Ul
m(B(i))~fk : Db̂bz(i)

k {b̂b{(i)
k D§dg,

Ul
int(B(i))~f(j,k) : DĤH ið Þ

jk D§dg:
ð8Þ

We repeat this process for c times for a specific l, then repeat

this procedure for all l[D. Finally we obtain the stability score

for every main effect feature k[Km and interaction feature

(j,k)[Kint:

Sm(k)~ max
l[D

(
Xc

i~1

I(k[Ul
m(B(i)))=c),

Sint(j,k)~ max
l[D

(
Xc

i~1

I((j,k)[Ul
int(B(i)))=c):

ð9Þ

Then the stable features of main effects and interactions are the

features with largest Sm(k) and Sint(j,k), respectively. In our

implementation, we present the top 12 main effect features and

top 34 interactions features (c~10).

Furthermore, we are interested in finding the positive and

negative interactions between different biosignatures. We define

the stability expectation score for each feature as follows:

ŜSme(k)~ max
l[D

(j 1
c

Xc

i~1

(b̂bz(i)
k {b̂b{(i)

k )I(k[Ul
m(B(i)))j):

sgn(
1

c

Xc

i~1

(b̂b
z(i)
k {b̂b

{(i)
k )I(k[Ul

m(B(i)))),

ŜSie(j,k)~ max
l[D

(j 1
c

Xc

i~1

ĤH
(i)

jk I((j,k)[Ul
int(B(i)))j):

sgn(
1

c

Xc

i~1

ĤH
ið Þ

jk I((j,k)[Ul
int(B(i)))),

ð10Þ

where sgn(:) is the sign function (if x§0, sgn(x)~1 otherwise

sgn(x)~{1). Thus we can find the top positive or negative

interactions among all ŜSie(j,k). In our experiments, we list top 10

positive and top 10 negative interactions. To better understand

biological meanings of negative and positive interactions, we also

list the stable expectation scores of the related main effect

biosignatures.

Subject Characteristics
We use 293 MCI subjects from ANDI in our study, including

161 MCI non-converters (referred to as negative samples) and 132

MCI converters (referred to as positive samples). We only use a

subset of the MCI subjects from ADNI which have MRI scans at

the baseline. The conversion was considered over the course of a

4-year time period. The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering, the Food and Drug

Administration (FDA), private pharmaceutical companies and

nonprofit organizations, as a $60 million dollar, 5-year public-

private partnership. The participants in ADNI receive serial MRI,

PET, other biological markers, and clinical and neuropsycholog-

ical assessments.

In this study, the MRI features, denoted as ‘M’, were based on

the imaging data from ADNI database processed by the

UCSF team. They performed cortical reconstruction and

volumetric segmentations with the FreeSurfer image analysis

suite (http://surfer.nmr.mgh.harvard.edu/). The processed

MRI features can be grouped into 5 categories: average cortical

thickness (CTA), standard deviation in cortical thickness

(CTStd), the volumes of cortical parcellations (Vol.Cort), the

volumes of specific white matter parcellations (Vol.WM), and the

total surface area of the cortex (Surf.A). There are 305 MRI

features in total. We also use four kinds of features, including

demographic and genetic information, baseline cognitive scores,

and lab tests. We use ‘META’ to denote all these four types of

features. There are 52 META features in total (shown in Table 1).

The baseline cognitive scores are obtained when the patient

performs the screening in the hospital for the first time. Here we

also consider the performance by using the remaining 22 META

features without the baseline cognitive scores, denoted as ‘META-

22’.

Experimental Setup
We focus on the classification of MCI converters and MCI non-

converters. We use different combinations of features including

MRI (M), META (E) (see Table 1) and META without baseline

cognitive scores (META-22) to classify the MCI converters and

MCI non-converters.

To obtain more reliable results, we randomly split the dataset 10

times. Each time we use 10% samples for testing and use

the remaining data for training. Five-fold cross-validation is

performed on the training dataset to select best parameters. As

we use wHLFS to select features and compare it with Lasso

and All-pair Lasso method, the classification methods employed in

the following step are identical. The loss function used in

these competing feature selection methods is the square loss

function. Here we use two well-known classifiers including

linear SVM (implemented in lib-linear [28]) and Random

Forest (referred to as RF) with default settings. For comparison

purpose, we also provide the performance by using SVM with

RBF kernel (referred to as SVM-Kernel), which is another type of

nonlinear prediction model. Furthermore, we present the

performance based on sparse Logistic Regression (referred to

LR), which is used in [3]. These two methods use main effect

features.

For our wHLFS method, the regularization parameter l is

searched across a range : ln[½10,30�, where n is the number of

training samples. For the competing methods, the parameter l is

searched across a range: l[½0:05,0:8�. The relative performances

of different methods are evaluated using metrics of accuracy,

sensitivity and specificity, defined as follows:

Predicting MCI to AD Conversion with Interactions
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accuracy(%)~
num of true positivesznum of true negatives

num of total samples

|100%

sensitivity(%)~
num of true positives

num of true positivesznum of false negatives

|100%

specificity(%)~
num of true negatives

num of true negativesznum of false positives

|100%

In the statistical tests, the sensitivity measures the proportion of

true positives that are correctly identified; specificity measures the

proportion of true negatives that correctly identified. The accuracy

measures the overall correct classification rate.

We also conducted a series of paired t-tests to demonstrate the

significance of the experimental results. Since we randomly split

our dataset into 10 folds and use 9 folds for training and the

remaining fold for testing, there are 10 different training and

testing splits. We select 16 different values of ln from the

parameter space ln[½10,30�. Therefore, we obtain 160 groups of

classification results from different combinations of methods and

input feature datasets. We performed paired t-tests on these groups

of classification results.

Results and Discussion

Classification Performance
Table 2 summarizes the classification results using all META

and MRI features. As we partition all the samples into 10 folds and

perform the training/testing process 10 times, we also present the

standard deviation. Among all the feature selection methods and

classification methods, wHLFS combined with random forest

achieves the best performance with an accuracy of 74:76%. We

also report the results when no feature selection method is used.

Based on the original main effect features, sparse Logistic

Regression gives relatively good results. Although SVM-kernel is

also a nonlinear method, its performance is not very competitive.

As shown in Table 2, the performance of linear SVM and RF can

be improved by feature selection using Lasso. In addition, we can

observe from Table 2 that directly adding high-dimensional

interactions without imposing any hierarchical constraints does

not achieve satisfactory results. Although using All-pair Lasso to

select features can slightly improve the classification performance

when building models with interactions, the final classification

results are even worse than the ones obtained without including

interaction features. This may be due to the ‘‘curse of dimension-

ality’’ [29]. The wHLFS method can greatly improve the

performance.

We also conduct a series of paired t-test for comparing the

performance of wHLFS+RF and the other combinations of

methods. Here we consider all combinations of methods in each

stage according to Table 2, e.g. SVM, RF, LR and SVM-Kernel

methods with original main effect features, Lasso, Lasso+RF and

Lasso+SVM with the selected main effect features, SVM and RF

with all the main effect and interaction features, All-Pair Lasso

method and wHLFS method. Fixing the training and testing

datasets and the setting of parameters, we obtain the classification

performance from different combinations of methods in terms of

accuracy. Recall that we have 160 groups of classification results

from multiple combinations of methods with different training and

testing datasets and different settings of parameters. Therefore, a

series of paired t-test are performed on the results of wHLFS+RF

and the results of a competing method. The null hypothesis is that

the classification accuracy of wHLFS+RF is not higher than that of

the competing method. The results of hypothesis testing are given

in Table 3. The results demonstrate the significant improvement of

our proposed method over competing methods. Note that

wHLFS+RF is not significantly better than wHLFS+SVM (p-

value is around 0:05). This is consistent with the results given in

Table 2, where wHLFS+SVM also provides better results than

other methods except for wHLFS+RF. These results demonstrate

the promise of wHLFS method for building accurate prediction

models. Note that the relative improvements in Tables 2 and 3 are

different, since the results in Table 2 are obtained via parameters

tuning using cross-validation, while the results in Table 3 are not

based on cross validation.

Effects of Different Input Datasets
In Table 4, we present the performances of different input

feature datasets with wHLFS+classification methods. The input

feature datasets used here include META (E), MRI (M), META

without baseline cognitive scores combined with MRI (META-

22+M), and META combined with MRI (E+M). As shown in

Table 2, META features are more effective than MRI features for

our specific tasks. Comparing the results with different input

features, we can find that the baseline cognitive scores are the most

effective features for predicting MCI-to-AD conversion, which is

consistent with the results in [3].

ð11Þ

Table 1. Features included in the META dataset.

Types Details

Demographic Age, years of education, gender

Genetic ApoE-4 information

Cognitive scores MMSE, ADAS Sub-Scores and Total Scores(13), CDR, FAQ, GDS,

Hachinski, Neuropsychological Battery(11), WMS-R logical Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT 14, RCT 1407, RCT 1408,

RCT 183, RCT 19, RCT 20, RCT 29, RCT 3, RCT 392,

RCT 4, RCT 5, RCT 6, RCT 8, RCT 9.

There are 13 different types of ADAS Sub-Scores and Total Scores and 11 different types of Neuropsychological Battery features. A detailed explanation of each
cognitive score and lab test can be found at www.public.asu.edu/,jye02/AD-Progression/.
doi:10.1371/journal.pone.0082450.t001
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Hypothesis testing is also conducted to demonstrate the

effectiveness by using META combined with MRI (E+M) feature

datasets. There are 160 groups of results over accuracy for

hypothesis testing. The null hypothesis is that the classification

performance using E+M is no better than that using a different

feature combination in terms of accuracy. As shown in Table 5,

wHLFS+RF and wHLFS+SVM achieve significant improvements

by using the E+M feature combination.

Effects of l in wHLFS
We illustrate the effect of l in the wHLFS method in Figure 1.

The META and MRI datasets are used in this experiment. The

leave-one-out results are reported when we use different l values

(ln[½10,30�, n is the fixed number of training samples). From

Figure 1 we can observe that the best choices of ln is 15, with RF

as the classification method. In this case, the number of selected

main effect features is around 14, and the number of selected

interaction features is about 22. We can also observe that different

classification models achieve the best performance at different

values of ln. When ln increases, the number of selected features

will monotonically decrease (as shown in Figures 2,3). We can

observe that the performance of different methods decreases with a

larger lnw24 (as shown in Figure 1), since there are very few

features selected for the final classification models. We can also

observe from Figure 3 that the number of selected interactions by

wHLFS is small, which demonstrates the effectiveness of wHLFS

method in pruning the high-dimensional input features. Moreover,

the selected interactions lead to a good classification performance.

Stability Selection of Main Effects and Interaction
Features

In this experiment we evaluate the feature selection results of

our wHLFS method. Here we employ the stability selection

method on the input feature dataset META (E)+MRI (M). The

parameter searching space is D : fln[½10,30�g. We present the

Table 2. MCI converter/non-converter classification performance.

Interactions FS-Method Classifier Accuracy (%) Specificity (%) Sensitivity (%)

No — SVM 60.77(10.14) 66.58(17.03) 53.90(14.45)

RF 65.54(5.06) 77.13(13.43) 51.48(9.57)

SVM-Kernel 68.64(7.28) 71.47(13.42) 65.33(10.62)

LR 68.98(9.08) 67.79(12.00) 70.44(10.46)

Lasso — 69.02(8.32) 65.33(14.29) 73.57(9.35)

SVM 71.64(5.45) 76.43(9.54) 65.82(6.75)

RF 67.95(7.57) 72.68(14.15) 62.14(8.44)

Yes — SVM 58.13(9.95) 76.40(10.53) 35.77(14.68)

RF 62.52(6.78) 81.51(11.19) 39.34(12.17)

All-Pair Lasso — 68.36(9.73) 67.79(11.63) 68.90(13.29)

SVM 63.53(8.27) 64.63(9.12) 62.09(14.03)

RF 65.99(12.89) 69.01(12.59) 62.36(17.65)

wHLFS — 69.68(8.77) 77.13(15.80) 60.55(10.82)

SVM 72.10(9.17) 76.51(14.60) 66.76(7.63)

RF 74.76(7.68) 81.43(12.99) 66.65(11.57)

MCI converter/non-converter classification comparison of different combinations of feature selection methods and classification methods in terms of accuracy,
specificity and sensitivity. ‘‘—’’ in the ‘‘FS-method’’ column means no feature selection method is used. ‘‘—’’ in the ‘‘Classify’’ column means the final model from the
corresponding feature selection methods is directly used for classification. For this experiment, we used all the META and MRI features. The bolded and underlined entry
denotes the best performance for that particular setting. The standard deviations are shown in the parentheses.
doi:10.1371/journal.pone.0082450.t002

Table 3. Hypothesis testing over accuracy with different
combinations of methods.

Comparing Methods Mean % p-Value

Method1 Method2

wHLFS+RF SVM 9.81(0.7) ,0.0001

RF 5.04(0.56) ,0.0001

SVM-Kernel 1.94(0.70) 0.0031

LR 3.59(0.75) ,0.0001

Lasso 1.42(0.59) 0.009

Lasso+SVM 3.43(0.78) ,0.0001

Lasso+RF 3.63(0.77) ,0.0001

Interactions+SVM 12.4(0.99) ,0.0001

Interactions+RF 8.06(0.66) ,0.0001

All-Pair Lasso 2.35(0.78) 0.0015

All-Pair Lasso+SVM 6.33(0.85) ,0.0001

All-Pair Lasso+RF 4.77(0.88) ,0.0001

wHLFS 2.64(0.59) ,0.0001

wHLFS+SVM 0.94(0.57) 0.0506

MCI converter/non-converter classification comparison of different
combinations of feature selection methods and classification methods in terms
of accuracy. With the same input training and testing samples and the same
parameters, we compare the performances based on different combinations of
methods. By varying the sets of training samples and testing samples and the
settings of parameters, we obtain a series of comparisons between wHLFS+RF
and another combination of methods. A positive mean value means the
average improvement on accuracy by using wHLFS+RF. A p-value less than 0.05
means wHLFS+RF achieves a significant improvement on accuracy. The
standard deviations of mean values are shown in the parentheses.
doi:10.1371/journal.pone.0082450.t003
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Table 4. Performance comparison of different datasets.

Performance Method Dataset

E (52) M (305) META-22+M (327) E+M (357)

Accuracy (%) wHLFS 68.99(5.53) 65.17(9.38) 64.85(5.97) 69.68(8.77)

wHLFS+SVM 65.22(6.40) 60.41(10.35) 61.17(10.27) 72.10(9.17)

wHLFS+RF 71.00(5.10) 65.57(10.03) 66.30(7.96) 74.76(7.68)

Specificity (%) wHLFS 78.97(11.54) 75.88(13.26) 73.38(12.85) 77.13(15.80)

wHLFS+SVM 71.51(13.91) 65.22(13.21) 64.12(11.21) 76.51(14.60)

wHLFS+RF 77.61(12.26) 75.88(9.88) 75.96(11.74) 81.43(12.99)

Sensitivity (%) wHLFS 56.76(9.10) 52.20(14.65) 54.51(12.03) 60.55(10.82)

wHLFS+SVM 57.53(8.40) 54.51(14.77) 57.75(16.25) 66.76(7.63)

wHLFS+RF 62.86(9.23) 53.08(15.23) 54.73(11.94) 66.65(11.57)

MCI converter/non-converter classification comparison with different datasets in terms of accuracy, sensitivity and specificity. Methods applied here include the
combinations of wHLFS and different classification methods. The different feature datasets are META (E), MRI (M), and META without baseline cognitive scores (META-
22). Parameters are selected by five-fold cross validation on the training dataset. The number in the parenthesis indicates the number of features in the specific dataset.
The bolded and underlined entry denotes the best performance for that particular method. The standard deviations are shown in the parentheses along with the
accuracy.
doi:10.1371/journal.pone.0082450.t004

Table 5. Hypothesis testing over accuracy with different input datasets.

Comparisons E+M vs. E E+M vs. M E+M vs. META-22+M

Methods Mean % p-Value Mean % p-Value Mean % p-Value

wHLFS 0.29(0.53) 0.2905 1.72(0.76) 0.0124 1.28(0.64) 0.0238

wHLFS+SVM 1.8(0.71) 0.0064 5.81(0.76) ,0.0001 5.95(0.73) ,0.0001

wHLFS+RF 1.69(0.70) 0.0080 4.34(0.61) ,0.0001 3.77(0.63) ,0.0001

MCI converter/non-converter classification comparison with different datasets in terms of accuracy. Methods applied here include the combinations of wHLFS and
different classification methods. The different feature datasets are META (E), MRI (M), and META without baseline cognitive scores (META-22). With the same input
training and testing samples and the same method with the same parameters, we compare the performances based on different input feature datasets. By varying the
sets of training samples and testing samples and the settings of parameters, we obtain a series of comparisons. Then paired t-tests are performed on the performance
by using E+M dataset and the performance by using another dataset. A positive mean value means the average improvement on accuracy by using E+M dataset. A p-
value less than 0.05 means using E+M dataset can achieve a significant improvement on accuracy. The standard deviations of mean values are shown in the
parentheses.
doi:10.1371/journal.pone.0082450.t005

Figure 1. Classification performances with different ln. We vary ln from 10 to 30 (x-axis) and report the accuracy obtained (y-axis) with
different classification methods. The META and MRI datasets are used, and the leave-one-out performance is reported.
doi:10.1371/journal.pone.0082450.g001
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most stable main effect features with stable scores 1 in Table 6,

which includes 12 stable main effect features. The baseline

information of the 293 MCI subjects by the diagnostic group (e.g.

MCI Converters and MCI Non-converters) on these stable

biosignatures is also summarized in Table 6. There are significant

between-group differences in these biosignatures. Both ADAS-

subscores 1,4,7, FAQ and APOE, are significantly higher for MCI

Converters than for MCI Non-converters (pv0:001 with a~5%
significant level). CTStd of R. Precuneus, Vol.WM of L.

Amygdala, Vol.Cort of L. Entorhinal, Vol.WM of L. Hippocam-

pus, CTA of L. Isthmus Cingulate and LDEL are significantly

higher for MCI Non-Converters (pv0:0001 with a~5% signif-

icant level). Ye et al. [3] also found the most predictive

biosignatues ‘‘Bio-markers-15’’ by their proposed sparse logistic

regression with stability selection method. Comparing their results

with our feature selected results (shown in Table 6), we find the

most predictive biosignatures selected by two different methods are

very similar. Specifically, Vol.WM of L. Hippocampus, Vol.Cort

of L. Entorhinal, Surf.A of L. Rostral Anterior Cingulate from

MRI dataset, and features such as APOE, FAQ, LDEL, ADAS-

subscores 1,4,7 from the META dataset, are selected by both

methods. Thus our findings are consistent with several recent

reports in the literature. A more detailed biological interpretations

of these most predictive biosignatures can be found in [3].

Moreover, we can observe that almost all the significant stable

features in the META dataset are the baseline cognitive scores.

Figure 4 shows the stability results of interaction features. Here

we list the top 34 stable interactions (the names of top 10

interactions are detailed in Table 7). From Figure 4, we can

observe that many significant stable interactions are between

different datasets, such as M:CTA of L. Parahippocampal &

E:APOE, M:Surf.A of R. MidTemporal & E:LDELTOTAL, and

M:Vol.WM of FourthVentricle & E:FAQ so on. This explains why

combining different datasets is beneficial.

Next, we examine the stable expectation scores of every

interaction feature, which illustrate the negative or positive effects

of the interactions. In Figure 5, we list top 10 negative and top 10

positive interactions. A positive stable expectation score means the

interaction has a positive effect on the outputs y~1, while a

negative value means a negative effect. An interaction that has a

Figure 2. The proportion of selected main effect features.
doi:10.1371/journal.pone.0082450.g002

Figure 3. The proportion of selected interaction features.
doi:10.1371/journal.pone.0082450.g003

Table 6. The top 12 stable main effect features.

Non-converter Converter p-Value

Number of subjects 161(104/57) 132(80/52)

M: CTStd of R. Precuneus 0.63(0.06) 0.60(0.06) ,0.0001

M: Vol.WM of L. Amygdala 995.60(200.75) 872.14(194.15) ,0.0001

M: Vol.Cort. of L. Entorhinal 1820.45(423.94) 1527.22(463.09) ,0.0001

M: Vol.WM of L. Hippocampus 3074.59(497.90) 2673.09(474.44) ,0.0001

M: CTA of L. Isthmus Cingulate 2.49(0.25) 2.32(0.28) ,0.0001

M: Surf.A of L. Rostral Anterior Cingulate 671.86(139.57) 714.42(174.61) 0.0211

E: LDELTOTAL 4.70(2.61) 2.83(2.36) ,0.0001

E: ADAS_sub1 4.05(1.39) 5.04(1.23) ,0.0001

E: ADAS_sub4 5.27(2.34) 7.05(1.95) ,0.0001

E: ADAS_sub7 0.38(0.67) 0.87(1.02) ,0.0001

E: FAQ 2.49(3.67) 5.33(4.64) ,0.0001

E: APOE 0.50(0.65) 0.82(0.70) ,0.0001

The top 12 stable main effect features identified by wHLFS with stability selection. The average values of different stable biosignatures for the specific group are
presented. The standard deviations are shown in the parenthesis.
doi:10.1371/journal.pone.0082450.t006
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larger absolute value of stable expectation score is of more

practical importance. Figure 6 gives the stable expectation scores

of related biosignatures for the significant interactions. From

Figure 5, we can observe that the stable interaction between

‘‘ADAS-sub1’’ and ‘‘APOE’’ is negative, while the stable

expectation scores of these two biosignatures are positive (shown

in Figure 6). This means that higher values of these two

biosignatures lead to higher conversion probability from MCI to

AD. Positive effects of biosignatures but negative effects of their

interaction mean either of these two biosignatures conveys

abundant information about the conversion probability, so

knowing both may not provide additional information. The

negative component of their interaction reduces the additive

effects of these two predictive biosignatures. On the other hand,

from Figure 5, we can observe that the stable interaction of

‘‘Vol.WM of FourthVentricle’’ and ‘‘FAQ’’ has a positive effect.

From our stable selection results of biosignatures (see Figures 4,6),

we know ‘‘FAQ’’ has a strong positive effect. However, ‘‘Vol.WM

of FourthVentricle’’ with a small positive component is not as

significant as ‘‘FAQ’’. Here the positive stable expectation score of

their interaction means these two biosignatures have a synergistic

Figure 4. Stability selection results of the interactions features on the META (E)+MRI (M) dataset.
doi:10.1371/journal.pone.0082450.g004

Table 7. The top 10 stable interactions features.

No Biosignature Name 1 Biosignature Name 2

1 E:ADAS_sub1 E:APOE

2 M:CTA of L. Parahippocampal E:APOE

3 M:Surf.A of R. MidTemporal E:LDELTOTAL

4 M:Vol.WM of FourthVentricle E:FAQ

5 E:NPI E:RCT14

6 M:Vol.Cort of L. Entorhinal M:CTA of L. Medial Orbitofrontal

7 M:Surf.A of L. Entorhinal E:ADAS_sub7

8 M:Vol.WM of L. Hippocampus E:ADAS_sub5

9 M:Surf.A of L. Medial Orbitofrontal M:Vol.Cort of L. TemporalPole

10 M:CTStd of R. Entorhinal E:LDELTOTAL

doi:10.1371/journal.pone.0082450.t007
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effect. The co-occurrence reveals more information, while either

one only gives a moderate indication. The above two kinds of

interactions overcome the drawbacks of traditional additive

models, leading to better performances. Furthermore, finding

the underlying useful interactions sheds light on improving the

prediction performance with more predictive features. We expect

this to be a promising approach for other difficult disease

prediction tasks.

Figure 5. Stable expectation scores of the interactions features on the META (E)+MRI (M) dataset.
doi:10.1371/journal.pone.0082450.g005

Figure 6. Stable expectation scores of related biosignatures. We list the related biosignatures of the top 5 negative and positive stable
interactions shown in Figure 5.
doi:10.1371/journal.pone.0082450.g006
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Conclusion

In this paper we study the effectiveness of hierarchical

interaction models for predicting the conversion from MCI to

probable AD and identifying a small subset of most predictive

biosignatures and relevant interactions. We employ a weak

hierarchical interaction feature selection method to select a small

set of most predictive biosignatures and interactions. We also

propose to use the stable expectation scores of interactions and

their related biosignatures to analyze the negative and positive

interaction effects. This may provide useful information for

clinicians and researchers to find the significant interaction effects

of different biosignatures. Our approach sheds light on how to

improve the MCI-to-AD prediction performance using biosigna-

ture interactions.

In this study, we focus on weak hierarchical interaction model.

We plan to study the strong hierarchical interaction model in the

future. In addition, further analysis is needed to provide deeper

biological interpretations of the biosignature interactions. We also

plan to examine the effectiveness of the hierarchical interaction

model on predicting tasks of other common comorbidities, such as

cardiovascular risk factors disease and depression, family history of

dementia, prior head trauma etc.
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